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Abstract

The electric power sector is the primary contributor to carbon emissions in China. Considering

the context of dual carbon goals, this paper examines carbon emissions within China’s elec-

tricity sector. The research utilizes the LMDI approach for methodological rigor. The results

show that the cumulative contribution of economies scale, power consumption factors and

energy structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon

emissions, the cumulative contribution of power generation efficiency and ratio of power dissi-

pation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction.

The decomposition analysis highlights the significant influence of economic scale on carbon

emissions in the electricity industry, among the seven factors investigated. Meanwhile, STIR-

PAT model, Logistic model and GM(1,1) model are used to predict carbon emissions, the

average relative error between actual carbon emissions and the predicted values are 0.23%,

8.72% and 7.05%, which indicates that STIRPAT model is more suitable for medium- to long-

term predictions. Based on these findings, the paper proposes practical suggestions to

reduce carbon emissions and achieve the dual carbon goals of the power industry.

Introduction

Background

The increasing carbon emissions have raised several questions [1]. The beginning of China’s

reform and open in 1978 has led to the second-largest economy global with sustained eco-

nomic growth [2]. However, this has also made China one of the biggest energy consumers in

the world, surpassing the United States [3]. At the same time, it also became the world’s biggest

carbon dioxide emitter [4, 5]. Given the need to decrease greenhouse gases emissions as well as

address global energy crisis, China urgently needs to reduce emissions and save energy.

As a responsible developing country, China attaches great importance to reducing carbon

emissions and pays great attention to developing a low-carbon economy with low emissions,

low energy consumption, and low pollution. China has given many commitments to reduce
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emissions at world conferences and has incorporated the goal of climate change action into its

national socio-economic development plan by formulating a low-carbon development route

and strategy in long-term. China is actively implementing " National Climate Change Adapta-

tion Strategy " [6],"the 13th Five-Year Plan for comprehensive work on energy conservation

and emission Reduction " [7], and various provincial special plans. These plans can adjust and

improve the working pattern of climate change in real-time and guide the gradual decomposi-

tion of the target task of climate change based on the carbon emission index. "China’s own

national initiative to address climate change action " [8], published in 2015, identifies the

autonomous target of action for 2030: the carbon emissions can reach their peak in 2030, as

soon as possible afterwards; compared to 2005 carbon intensity will decrease by 60%-65%, and

non-fossil energy could occupy about 20 percent of the basic energy consumption.

Among all industries, the power industry is the largest contributor to fossil fuel consump-

tion and carbon emissions. Therefore, achieving China’s dual carbon goals requires the power

industry to play a core role in carbon reduction.

Literature review

By reviewing the existing literature, it is evident that in recent years, many scholars in different

countries have used factor decomposition method (DA) to investigate driving factors that

affecting carbon emissions in various regions, including transportation, construction, and

chemical industries [9–11]. Wang et al. [12] use the temporal LMDI model to evaluate the

driving factors of carbon emissions and the spatial LMDI model to explore regional differ-

ences. Wu et al. [13] employed LMDI model to analyze the driving factors behind China’s

power industrial carbon emission changes from 2000 to 2018. Additionally, they simulated the

various scenarios evolution trend of carbon emissions by Monte Carlo algorithm. Similarly,

Liu et al. [14] built a carbon emissions decomposition analysis by using the LMDI method for

Beijing, Tianjin, Shanghai, and Chongqing in China.

Ehrlich and Holden were the first to propose "IPAT" equation, which reflects that effect on

the environment from the population. The equation consists of environmental impact (I), pop-

ulation (P), wealth per capita (A), as well as the environmental destruction technical level (T),

represented as "I = PAT." Building upon IPAT, York developed the STIRPAT model, widely

used for carbon emission forecasting. Liu et al. [15] conducted a comparative analysis of car-

bon emissions influencing factors and predicted carbon peak and carbon neutrality scenarios

in Tianjin under baseline, low-carbon, and ultra-low-carbon scenarios. Jia and Li [16] also

employed the STIRPAT model to forecast carbon emissions in Jiangsu province.

The Logistic Model has been extensively utilized by scholars to predict carbon emissions.

Ge et al. [17] applied Logistic predict model to analyze and forecast industrial carbon emis-

sions in Tianjin. Zheng et al. [18] forecasted the growth of power system carbon emissions in

Fujian province, China. The grey forecast theory also has been employed widely for the analy-

sis, modeling, and prediction of grey systems. Numerous scholars have successfully utilized the

grey forecast model (GM) model to predicted carbon emissions. Zhu et al. [19] employed GM

model to predict industrial carbon emissions in Tianjin. He et al. [20] applied GM model to

predict carbon emissions in Hebei province. Ren and Gu [21] predicted energy consumption

and analyzed energy structure using the GM model for China. Jia et al. [22]. analyzed the

major drivers of the ecological footprint using the STIRPAT model and the PLS method—A

case study in Henan Province, China.

However, in recent years, there have been few reports on predicting carbon dioxide emis-

sions in the entire Chinese power industry. Some of the only predictions have only been made

using 1–2 methods and have not been combined with the current dual carbon background, so
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the predicted results and suggestions may also have certain shortcomings. In this research, the

decomposition analysis and a forecast method are used to study carbon emissions in China’s

electricity industry based on the dual carbon background. Furthermore, this paper also pro-

vides insights into the current situation.

Methodology

Improved LMDI decomposition model

The LMDI model is presented in this paper with improvements. The gross effect can be

decomposed into seven parts: ΔCes, representing the effect of energy structural adjustment

means; ΔCcr, representing the effect of changes in power generation efficiency; ΔCs, represent-

ing the effect of structural adjustment of the electricity industry; ΔCr, representing the effect of

the power consumption-to-generation ratio; ΔCec, representing the effect of the scale of elec-

tric power consumption; ΔCy, representing the effect of economic scale; and ΔCemf, repre-

senting the effect of carbon emission factors. Therefore, the model is formulated as follows:

DCtot ¼ DCT � DC0 ð1Þ

DCtot ¼ DCes þ DCcr þ DCs þ DCr þ DCec þ DCy þ DCemf ð2Þ

DCes ¼
X

k
L CT

k ;C
0

k

� �
ln ESTk =ES

0

k

� �
ð3Þ

DCcr ¼
X

k
L CT

k ;C
0

k

� �
ln CRT=CR0ð Þ ð4Þ

DCs ¼
X

k
L CT

k ;C
0

k

� �
ln ST=S0ð Þ ð5Þ

DCr ¼
X

k
L CT

k ;C
0

k

� �
ln RT=R0ð Þ ð6Þ

DCec ¼
X

k
L CT

k ;C
0

k

� �
ln ECT=EC0ð Þ ð7Þ

DCy ¼
X

k
L CT

k ;C
0

k

� �
ln YT=Y0ð Þ ð8Þ

DCemf ¼
X

k
L CT

k ;C
0

k

� �
ln EMFT

k =EMF0

k

� �
ð9Þ

Where,
X

k
L CT

k ;C
0

k

� �
¼ CT

k � C0

k

� �
=ln CT

k =C
0

k

� �
10

ET represents t year’s energy consumption, ET
k means total consumption of fossil fuel type k

in year t, TPT means t year’s thermal power generation, GT means t year’s total power genera-

tion, ECT means t year’s total electric power consumption, YT means t year’s GDP, CT
k means

carbon emissions of fuel k in year t, ESTk means energy consumption proportion of the total

consumption for fuel k in year t ET
k =E

T
� �

, CRT means t year’s energy consumption per unit

thermal power generating production(ET/TPT), STk means t year’s proportion of thermal power

production to the total power production (TPT/GT), RT means the ratio of t year’s power pro-

duction and consumption (GT/ECT), EMFT
k means the ratio of carbon emissions to energy

consumption in t year for fuel k.
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STIRPAT model

STIRPAT model known as the random regression model that proposed by Dietz, is used in the

paper to analyze the influence of population, affluence, and technology on environmental

stress. That can be represented as below:

A ¼ aPc1Ac2Tc3e ð11Þ

In this equation, ’a’ means a constant, while c1, c2, and c3 are fitting coefficients. ’I’ means

environmental stress, ’A’ represents wealth, ’P’ represents the population, ’e’ means the error

of the model, and ’T’ represents technology.

The STIRPAT model allows for parameter estimation of the coefficients to assess the effect

of each factor and enables proper decomposition. Previous studies have made improvements

to the relevant variables based on their research purposes and needs.

In this paper, we made adjustments to the variables based on the LMDI model presented in

previous chapters. The main five factors affect carbon emissions were identified as economy

scale, electricity consumption scale, generation efficiency, electric structure, and energy struc-

ture. In this study, the economic scale factor is represented by GDP, electricity consumption is

represented by total electricity consumption, generation efficiency is represented by energy

consumption per unit of thermal power production per year, electric structure is represented

by the proportion of thermal power generation to the total, and energy structure is measured

by the proportion of coal and coke consumption to the total consumption. It is important to

note that coal has a higher carbon intensity compared to petroleum and natural gas, account-

ing for 36% and 61% respectively in terms of heat generation. Therefore, the proportion of

coal and coke consumption are used as an index for measure the energy structure.

The formula for completing the improvement represented as below:

C ¼ abc1
1
b
c2
2
b
c3
3
b
c4
4
b
c5
5
e ð12Þ

That a expressed a constant, c1, c2, c3,c4,c5 are fitting coefficient, β1 represent scale of econ-

omy, β2 represent the electricity consumption, β3 represent generating efficiency, β4 represent

energy structure, β5 represent electric industry structure, e represent the model error. Eq (13)

can be obtained as below by transforming the formula (12):

lnC ¼ lnaþ c1lnb1 þ c2lnb2 þ c3lnb3 þ c4lnb4 þ c5lnb5 þ 1 ð13Þ

Logistic model

The logistic model, as well as known as the block growth model, were utilized in various appli-

cations such as forecasting microbial growth and population projections, forecast energy con-

sumption and carbon emissions, and exploring disease risk factors for disease control. The

logistic model is advantageous due to its simplicity, mathematical feasibility, and lack of strin-

gent assumptions. Therefore, it is well-suited for depicting feedback mechanisms among

energy consumption, environmental impacts, and economic growth. The logistic model

employed for predicting carbon emissions can be represented as below:

dC
dt
¼ gC 1 �

C
K

� �

;C0 ¼ Cjt¼0 ð14Þ
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Eq (14) can be obtained as below by transforming the formula (13):

N ¼
K

1þ K
C0
� 1

� �
e� gt

ð15Þ

In the given context, the variables are defined as follows: C means carbon emissions, C0

means carbon emissions in the base year, r represents growth factor, and K represents the car-

bon emissions ultimate amount.

Set

Y ¼ ln
K � N

C

� �

ð16Þ

K
c0

� 1 ¼ ea ð17Þ

Eq (18) can be obtained as below by transforming the formula (15):

Y ¼ a � g ð18Þ

To obtain the optimal values of α and γ, an alternating iterative method can be applied, as

described in Eq (18) [23]. In this study, we aim to predict carbon emissions.

GM (1, 1) model

The grey forecast theory has widely been utilized for the analysis, modeling, and prediction of

grey systems. Grey prediction is employed when there is a combination of known and uncer-

tain information within a system. When examining the growth trend of power industry carbon

emissions, some information is known while other information remains unknown, with

uncertain relationships among various factors in the system. Therefore, the grey forecasting

model can be used to predict carbon dioxide emissions.

The original sequence data should undergo processing to generate a cumulative time series

in order to reduce the randomness of the original time series.

The original time series can be represented as below:

Cð0Þ ¼ Cð0Þð1Þ;Cð0Þð2Þ; . . . ;Cð0ÞðnÞ
� �

ð19Þ

One-accumulate of the time-series is represented as below:

Cð1Þ ¼ cð1Þð1Þ; cð1Þð2Þ; . . . ; cð1ÞðnÞ
� �

ð20Þ

where

cð1ÞðkÞ ¼
Xk

i¼1
cð0ÞðiÞ; k ¼ 1; 2 . . . ; n: ð21Þ

Neighbor sequences of the time-series can be represented as below:

Y ð1Þ ¼ yð0Þð1Þ; yð1Þð2Þ; . . . ; yð1ÞðnÞ
� �

ð22Þ

Where

yð1ÞðkÞ ¼ 0:5cð1ÞðkÞ þ 0:5cð1Þðk � 1Þ ð23Þ
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For the original time series, corresponding to GM(1,1), the differential equation of GM is:

dxð1Þ

dt
þ acð1Þ ¼ b ð24Þ

The forecast model can be obtained to solve the differential equations:

Ĉð1Þðk � 1Þ ¼ cð0Þð1Þ �
b
a

� �

e� ak þ
b
a
� k ¼ 1; 2; . . . ; n ð25Þ

By using the least square method, the parameters of a and b can be estimated as follow.

â ¼ ða; bÞT ð26Þ

â ¼ BTBð Þ
� 1BTZn ð27Þ

Where

B ¼

� yð1Þð2Þ 1

� yð1Þð3Þ 1

. . . . . .

� yð1ÞðnÞ 1

2

6
6
6
6
4

3

7
7
7
7
5
; zn ¼

cð0Þð2Þ

cð0Þð3Þ

. . .

cð0ÞðnÞ

2

6
6
6
6
4

3

7
7
7
7
5

ð28Þ

Data source

The primary data sources for this article include the China Statistical Yearbook [2], China

Electric Power Yearbook [24] (S1 File), and China Energy Statistical Yearbook [25] (S2 File).

Conversion coefficients were calculated using industrial organization data. Energy consump-

tion is measured in tonnes of standard coal equivalent (tce), unless otherwise specified.

To ensure consistency, the industrial output for the year 2000 remains constant in the

LMDI model employed in this study. Due to limited data availability, carbon emissions are cal-

culated only up until the year 2020.

Results and discussion

Electricity industry carbon emissions in China power industry

The intensity of carbon emissions refers means amount of carbon emitted per unit of power

generation. Fig 1 depicts carbon emissions as well as emission intensity of the electricity indus-

try over the past twenty years.

As shown in Fig 1, carbon emissions have grown from 19126.82×104 tonnes in 2000 to

62528.64×104 tonnes in 2020, with a 226.91% increase in 2020 compared to the 2000 level. The

growth rate per year is 10.81%. This growth is mainly due to China’s high-speed economic

development over the past two decades, which has led to carbon emissions increased rapidly.

However, Fig 1 also depicts the emission intensity decreased from 1.73 tonnes/108 kWh to

1.17 tonnes/108 kWh over the same period, indicating a decrease of 32.4%. This is mainly due

to improvements in coal quality and reductions in energy consumption in thermal power

plants. Power generating enterprises should strictly implement national energy efficiency and

emission reduction policies, including targets such as generating unit energy consumption,

water consumption, and emissions. The assessment of these factors should also be strength-

ened. Power generating units with high energy consumption and pollution should be
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restricted from investing in small fossil-fuel generators and encouraged to invest in efficient

cleaning units and renewable energy units. Additionally, the implementation of energy conser-

vation policies and technologies has also make a critical part in promoting the descend of car-

bon emission intensity.

Decomposition of electric power industry carbon emission in China power

industry

To better understand the transformation of carbon emissions in the electricity industry, we

utilized the LMDI model to analyze the carbon emissions. The data were input into formulas

(1) to (9), and the findings are presented in Fig 2. As the carbon emission factor remains con-

stant in practical application, it is assumed to be equal to zero.

According to the analysis presented in Fig 2, several factors have been found to impact car-

bon emissions in the period from 2000 to 2020. Economic scale, electricity consumption,

energy structure all have a positive effect on emissions, while the effect between power genera-

tion efficiency and power consumption is negative. The electricity industry structure factor

become negative from positive. As the magnitude of effect increases, the overall effect on car-

bon emissions increases in the same time.

Fig 1. Variation of carbon emission and intensity from 2000 to 2020.

https://doi.org/10.1371/journal.pone.0302068.g001
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That also indicate the energy structure, electric power consumption scale, and economic

scale contribute to the raise of carbon emissions. While, power generation efficiency, the ratio

of consumption to generation, electricity industry structure promotes the carbon emissions

reduction.

The continuous increase in economic size is one of the main drivers of carbon emissions

growth in China’s electricity industry. From 2001 to 2020, the contribution of economies of

scale to carbon emissions showed an upward trend, with a cumulative contribution of 114.91%.

The impact of power consumption factors on carbon emissions is another significant driver,

although its influence is less pronounced compared to economies of scale. From 2000 to 2020,

the cumulative contribution of power consumption factors to carbon emissions was 85.17%.

Although energy structure has a positive impact on carbon emissions changes, its influence

is much smaller compared to economies of scale and power consumption. From 2000 to 2020,

the cumulative contribution of energy structure factors to carbon emissions changes was only

0.94%, showing a downward trend. This suggests that the impact of energy structure changes

on carbon emissions in China’s electricity industry is weakening.

The electricity industry structure effect shifted from positive to negative from 2000 to 2020,

indicating that with the adjustments made in the electricity industry, this factor has started to

reduce carbon emissions.

Fig 2. Carbon emission decomposition from 2000 to 2020, China.

https://doi.org/10.1371/journal.pone.0302068.g002
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Improving power generation efficiency is a crucial factor in reducing the growth of carbon

emissions in the electricity industry and plays a decisive role in energy-saving and emission-

reduction efforts in China. During the period from 2000 to 2020, changes in power generation

efficiency resulted in a cumulative contribution of -19.15% to carbon emissions, showing an

overall upward trend. This emphasizes that improving power generation efficiency is a decisive

factor in reducing carbon emissions in China’s electricity industry.

The ratio of power dissipation to generation factor has the smallest impact on carbon emis-

sions variation, with a cumulative contribution of only -0.01%. However, it remains a decisive

factor in reducing carbon emissions in the electricity industry.

Prediction model

The prediction results of STIRPAT model. Based on the history data and the STIRPAT

predict model, the stepwise regression method of SPSS was employed to remove the genera-

tion scale factor and economic scale factor due to collinearity issues. The resulting model is

presented below:

lnC ¼ 0:986lnb2 þ 0:954lnb3 þ 0:986lnb4 � 4:754 ð29Þ

And the comparison with the actual value for the same period is shown in Table 1.

Table 1 illustrates the comparison between actual carbon emissions and the predicted val-

ues. The maximum error observed is 0.52%, the minimum error is 0.02%, and the average rela-

tive error is 0.23%.

Regarding the scenario assumptions derived from the improved STIRPAT model:

Table 1. The predicted carbon emissions and the data error table (STIRPAT model).

Year Predicted data(104 tonnes) Actual data(104 tonnes) Relative errors

2001 19988.62 20054.12 0.33%

2002 22216.20 22331.42 0.52%

2003 25631.04 25626.95 0.02%

2004 28591.48 28550.22 0.14%

2005 32350.35 32236.67 0.35%

2006 36782.36 36752.81 0.08%

2007 40499.31 40589.72 0.22%

2008 39848.95 39909.51 0.15%

2009 41027.76 41041.13 0.03%

2010 44171.03 44178.79 0.02%

2011 50044.48 50005.59 0.08%

2012 49644.98 49722.86 0.16%

2013 53640.75 53581.55 0.11%

2014 53259.98 53129.10 0.25%

2015 52461.88 52324.50 0.26%

2016 53874.52 53713.52 0.30%

2017 56743.98 56979.11 0.41%

2018 60290.79 60518.84 0.38%

2019 61558.01 61778.46 0.36%

2020 62528.64 62232.34 0.47%

https://doi.org/10.1371/journal.pone.0302068.t001

PLOS ONE carbon emission in China’s electricity industry on the dual carbon background

PLOS ONE | https://doi.org/10.1371/journal.pone.0302068 May 17, 2024 9 / 17

https://doi.org/10.1371/journal.pone.0302068.t001
https://doi.org/10.1371/journal.pone.0302068


1. Electricity consumption factor: China’s electricity consumption has exhibited slow growth

over the years. Based on the average growth rate of the past 10 years (6.39%), this value is

considered as the benchmark data.

2. Generating efficiency factor: The improvement rate in China’s power generation efficiency

has decelerated. Using the average growth rate of the past 20 years (-1.9%) as the bench-

mark data, the target value under efficient emission reduction conditions is set at the maxi-

mum rate observed (-3.87%). Conversely, the lowest growth rate in nearly 10 years (-0.37%)

represents an inefficient emission reduction state.

3. Energy intensity: Recent years have witnessed an accelerated adjustment in China’s power

structure. Based on the average growth rate of the past 10 years (-1.71%), this value is con-

sidered as the benchmark data. The target value for efficient emission reduction conditions

is set at the maximum rate observed (-4.52%), while the lowest growth rate in nearly 10

years (-0.18%) represents an inefficient emission reduction state.

The results of these analyses are presented in Table 4.

The prediction results of logistic model. Based on the history data and the logistic pre-

dict model, we can derive the forecast formula for carbon emissions below:

C ¼
111350

1þ 4:57e� 0:1061t
ð30Þ

Formula (30) allows us to predict and calculate the total amount of carbon emissions from

2000 to 2020. A comparison with the actual values is presented in Table 2 and Fig 3.

Table 2 reveals several key findings. The maximum error observed between the actual val-

ues and the estimated values is -19.57% in 2007. On the other hand, the minimum error is 0%

in 2001. The average relative error is 8.72% from 2001 to 2020. These results indicate that logis-

tic predict model demonstrates a high level of accuracy.

The prediction results of GM(1,1) model. Based on the history data and the GM predict

model, we can derive the model formula can be representing as follows:

Ĉð1Þðk � 1Þ ¼ cð0Þð1Þ þ 623620
� �

e� 0:0450k � 623620; k ¼ 1; 2; . . . ;n ð31Þ

Using formula (31), we can predict and calculate carbon emissions from 2000 to 2020. A

comparison with the actual values is presented in Table 3 and Fig 4.

Table 3 reveals several key findings. The maximum error observed between the actual val-

ues and the predicted values is -33.35% in 2002. Conversely, the minimum error is 0% in 2001,

and the average relative error from 2001 to 2020 is 7.05%. These results indicate that the GM

(1, 1) model demonstrates higher precision compared to the Logistic model.

Comparison of prediction models. Based on the predictions, it is evident that the results

obtained from the three methods are inconsistent. Moreover, as time progresses, the differ-

ences between the predictions become more pronounced (Fig 5 and Table 4). Fig 5 reveals that

the STIRPAT model with efficient emission reduction status predicts the slowest growth in

carbon emissions, while the STIRPAT model in inefficient emission reduction status predicts

the steepest growth. The predictions from the logistic method and the STIRPAT model in

benchmark status fall in between. Notably, when the STIRPAT model is in inefficient emission

reduction status, its prediction closely aligns with that of the GM model.

The reason behind these discrepancies is that the STIRPAT model, in its inefficient emis-

sion reduction status, solely relies on historical data to predict future emissions, assuming all

factors influencing carbon emissions remain constant. This approach fails to consider the

quantitative measures implemented by the country and government to reduce carbon
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emissions. Consequently, predictions based solely on historical data may result in overestima-

tions of future carbon emissions.

Similarly, the GM model also relies solely on historical data to predict future emissions,

assuming constant factors. While this assumption holds some validity in the short to medium

term, significant changes in factors can occur in the long term. Therefore, GM model could be

more suitable in short- to medium-term predictions, especially when the future is uncertain.

The GM model’s prediction appears as the second steepest due to the absence of consider-

ations for the country’s energy policy and quantitative measures for carbon emission

reduction.

Conversely, the prediction curve of the STIRPAT model with efficient emission reduction

status lies at the bottom. This is primarily because the model incorporates a broader range of

Table 4. The predicted carbon emissions with different model(104 tonnes).

Logistic GM STIRPAT

Benchmark Efficient reduction Inefficient reduction

2021 71949.54 69663.86 62511.47 62511.47 62511.47

2022 74606.75 72870.52 64143.16 61139.94 66096.22

2023 77169.88 76224.78 65817.44 61533.39 69886.54

2024 79630.21 79733.45 67535.43 61929.37 73894.22

2025 81980.82 83403.62 69298.25 62327.90 78131.71

2026 84216.59 87242.72 71107.09 62729.00 82612.21

2027 86334.06 91258.55 72963.15 63132.67 87349.65

2028 88331.44 95459.22 74867.65 63538.95 92358.75

2029 90208.38 99853.26 76821.86 63947.83 97655.11

2030 91965.83 104449.55 78827.08 64359.35 103255.20

https://doi.org/10.1371/journal.pone.0302068.t004

Table 2. The predicted carbon emissions and the data error table (Logistic model).

Year Predicted data(104 tonnes) Actual data(104 tonnes) Relative errors

2001 19988.62 19988.62 0.00%

2002 22216.20 21788.10 1.93%

2003 25631.04 23707.54 7.50%

2004 28591.48 25747.47 9.95%

2005 32350.35 27907.03 13.73%

2006 36782.36 30183.85 17.94%

2007 40499.31 32573.91 19.57%

2008 39848.95 35071.44 11.99%

2009 41027.76 37668.90 8.19%

2010 44171.03 40356.94 8.63%

2011 50044.48 43124.53 13.83%

2012 49644.98 45959.05 7.42%

2013 53640.75 48846.47 8.94%

2014 53259.98 51771.67 2.79%

2015 52461.88 54718.69 4.30%

2016 53874.52 57671.06 7.05%

2017 56743.98 60612.23 6.82%

2018 60290.79 63525.88 5.37%

2019 61558.01 66396.28 7.86%

2020 62528.64 69208.69 10.68%

https://doi.org/10.1371/journal.pone.0302068.t002
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influential factors, providing a better representation of the country’s policy as well as the envi-

ronmental effect feedback mechanism. Consequently, the prediction curve appears flatter,

making this approach more suitable for medium- to long-term predictions.

Fig 5 demonstrates that using the logistic model, carbon emissions in China’s electric

industry are projected to flatten out and gradually peak around 2030. Meanwhile, employing

the STIRPAT model in benchmark status, carbon emissions in China’s electric industry are

expected to plateau by 2030, following a peak during the 2021–2030 period. These results pro-

vide valuable insights for guiding the path of China’s electric industry in achieving the dual

carbon goal.

Results discussion

From 2000 to 2020, carbon emissions experienced a significant increase, rising from

19,126.82×104 tonnes in 2000 to 62,528.64×104 tonnes in 2020. This represents a growth of

Fig 3. The predicted carbon emissions and the actual from 2000 to 2020, China.

https://doi.org/10.1371/journal.pone.0302068.g003
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226.91% compared to the 2000 level, with an average annual growth rate of 10.81%. However,

carbon emission intensity decreased at the same period, declining from 1.73 tonnes/108 kWh

to 1.17 tonnes/108 kWh, a reduction of 32.4%. This reduction can be attributed to the imple-

mentation of energy-saving measures, emission reduction policies, and technologies.

The LMDI analysis reveals that among all the factors analyzed in this research, the economy

scale has the most notable influence on carbon emissions in the electricity industry. Both the

scale of electric power consumption as well as energy structure have notable effects on carbon

emissions. Conversely, power generation efficiency as well as the ratio of consumption to gen-

eration have a negative impact, while the electricity sector structure changes from positive to

negative. Chen et al. [26] indicated that the economic activity effect was the most significant

driver on CO2 emissions in all provinces in China, which is consistent with the research in this

article.

The STIRPAT model predicts the slowest carbon emission growth in the efficient emission

reduction scenario, the steepest growth in the inefficient emission reduction scenario, and an

intermediate result when using the logistic method and the STIRPAT model in the benchmark

status. Notably, the prediction from the STIRPAT model in the inefficient emission reduction

scenario closely aligns with the prediction of the GM model.

Conclusions and policy implications

Conclusions

The paper studied the electricity industry carbon emissions and in China power industry and

emission decomposition of electric power industry carbon emission, and draws the following

conclusions:

Table 3. The predicted carbon emissions and the data error table (GM model).

Year Predicted data(104 tonnes) Actual data(104 tonnes) Relative errors

2001 19988.62 19988.62 0.00%

2002 22216.20 29625.46 33.35%

2003 25631.04 30989.13 20.90%

2004 28591.48 32415.58 13.37%

2005 32350.35 33907.68 4.81%

2006 36782.36 35468.47 3.57%

2007 40499.31 37101.10 8.39%

2008 39848.95 38808.88 2.61%

2009 41027.76 40595.27 1.05%

2010 44171.03 42463.89 3.86%

2011 50044.48 44418.52 11.24%

2012 49644.98 46463.13 6.41%

2013 53640.75 48601.85 9.39%

2014 53259.98 50839.02 4.55%

2015 52461.88 53179.16 1.37%

2016 53874.52 55627.02 3.25%

2017 56743.98 58187.56 2.54%

2018 60290.79 60865.96 0.95%

2019 61558.01 63667.65 3.43%

2020 62528.64 66598.30 6.51%

https://doi.org/10.1371/journal.pone.0302068.t003
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Fig 4. The predicted carbon emissions and the actual from 2000 to 2020, China.

https://doi.org/10.1371/journal.pone.0302068.g004

Fig 5. The predicted carbon emissions with different model.

https://doi.org/10.1371/journal.pone.0302068.g005
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1. The factors that affect carbon emissions between 2000 and 2020 are economic scale, elec-

tricity consumption, energy structure, power generation efficiency and ratio of power dissi-

pation to generation.

2. The cumulative contribution of economies scale, power consumption factors and energy

structure are 114.91%, 85.17% and 0.94%, which contribute to the increase of carbon emis-

sions, the cumulative contribution of power generation efficiency and ratio of power dissi-

pation to generation factor are -19.15% and -0.01%, which promotes the carbon reduction.

3. STIRPAT model, Logistic model and GM(1,1) model are used to predict carbon emissions,

the average relative error between actual carbon emissions and the predicted values are

0.23%, 8.72% and 7.05%, which indicates that STIRPAT model is more suitable for

medium- to long-term predictions.

Policy implications

Without changes in the developmental pattern of the electricity industry in China, a continu-

ous increase carbon emission can be expected. It is crucial to transition from a high-consump-

tion and high-investment raise mode to a focus on low-carbon and environmental protection.

Government departments at all levels should collaborate, take responsibility, and

strengthen supervision to effectively implement efficiency policies. Leveraging the carbon

emissions exchange mechanism can help achieve green, low-carbon development at a low

cost. Additionally, the government should enhance energy-saving knowledge and promote the

concept of low-carbon power through educational institutions, communities, and industry

associations. Raising awareness of energy saving and environmental protection within society

and continually reducing electric consumption intensity in the industry are crucial.

Efforts should be directed towards the development of large-scale new energy power sector,

such as wind and solar power, as well as clean energy sources like nuclear power. It is essential

to build a new power system centered around new energy. This includes planning and con-

structing a new energy supply and consumption system. The concentration and distribution

of new energy, both onshore and offshore, should be promoted, along with on-site utilization

and long-distance transmission, to establish a new pattern of diversified development and uti-

lization of new energy.

The development of transformative power generation technologies should be prioritized.

The application of key technologies and major equipment should be vigorously promoted to

enhance the efficiency and quality of new energy power generation. Simultaneously, efforts

should focus on improving the efficiency of coal-fired power generation and reducing unit car-

bon emissions through comprehensive upgrading and transformation technology. This

includes the promotion of key technologies for flexible transformation of coal-fired power

units that adapt to low load and frequent variable load operation.

Supporting policies and institutional mechanisms are crucial for building a new type of

power system. Establishing an electricity market system that aligns with the new power system

and fostering a unified, open, competitive, safe, efficient, and well-governed national electricity

market system is essential. It is also necessary to create an independent and innovative technol-

ogy research and development system that effectively supports the research and application of

key technologies required for the construction of the new power system. Strengthening multi-

directional integration of scientific and technological research and development, promoting

cross-domain and cross-industry collaborative innovation, and fostering "cross-border inte-

gration" between the new power system and other fields are important. Building a green, low-
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carbon, and competitive power industry system, constructing new power demonstration zones

in areas that embody the characteristics of the new power system and fast energy clean trans-

formation, and focusing on breakthroughs and comprehensive promotion are key steps in

promoting the comprehensive construction of the new power system. Furthermore, improving

the advanced and efficient governance system of the power industry, enhancing the guiding

role of power planning, leveraging market mechanisms, strengthening industry supervision,

clarifying responsibilities of all parties, and exploring the establishment of a credit-based regu-

latory mechanism are vital.

Supporting information

S1 File.

(PDF)

S2 File.

(PDF)

S3 File.

(ZIP)

S4 File.

(ZIP)

Author Contributions

Investigation: Hong-qing Zhu.

Methodology: Ze-qun Ding, Hong-qing Zhu.

Resources: Wei-ye Zhou, Zhi-gang Bai.

Supervision: Zhi-gang Bai.

Writing – original draft: Ze-qun Ding.

References

1. Xiao-ling Ge, Yang Wang, Hong-qing Zhu, Zequn Ding. Analysis and forecast of the Tianjin industrial

carbon dioxide emissions resulted from energy consumption. International Journal of Sustainable

Energy 36 (7), 637–653.

2. National Bureau of Statistics (NBS). International Statistical Yearbook 2013.China Statistics: Press

2013; Beijing.

3. Sheng Zhou, Qing Tong, Sha Yu, Yu Wang, Qi-min Chai, Xi-liang Zhang. Role of non-fossil energy in

meeting China’s energy and climate target for 2020. Energy Policy 51, 14–17.

4. Lin Zeng, Ming Xu, Sai Liang, Si-yu Zeng, Tian-zhu Zhang. Revisiting drivers of energy intensity in

China during 1997–2007: A structural decomposition analysis. Energy Policy 67, 640–647.

5. Hongqing Zhu, Xiaoling Ge, Yang Wang, Zequn Ding. Analysis and forecast of Tianjin’s industrial

energy consumption. International Journal of Energy Sector Management, 11(1),46–64.

6. National Development and Reform Commission (NDRC). China’s National Climate Change Pro-

gramme. Available at: (http://www.gov.cn/zwgk/2007-06/08/content_641704.htm)

7. National Development and Reform Commission (NDRC). The comprehensive work plan for energy sav-

ing and emission reduction in 13th Five-Year. Available from: (http://www.gov.cn/zhengce/content/

2017-01/05/content_5156789.htm)

8. National Development and Reform Commission (NDRC). China’s own national initiative to strengthen

climate change action—China’s own national contribution. Available from: (http://www.scio.gov.cn/

xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm)

PLOS ONE carbon emission in China’s electricity industry on the dual carbon background

PLOS ONE | https://doi.org/10.1371/journal.pone.0302068 May 17, 2024 16 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302068.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302068.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302068.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0302068.s004
http://www.gov.cn/zwgk/2007-06/08/content_641704.htm
http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm
http://www.gov.cn/zhengce/content/2017-01/05/content_5156789.htm
http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm
http://www.scio.gov.cn/xwfbh/xwbfbh/wqfbh/2015/20151119/xgbd33811/Document/1455864/1455864.htm
https://doi.org/10.1371/journal.pone.0302068


9. Sun H., Chen T., Wang C. N.. Spatial impact of digital finance on carbon productivity, Geoscience Fron-

tiers, 2023. https://doi.org/10.1016/j.gsf.2023.101674

10. Liu Y., Sun H., Meng B., Jin S., & Chen B. How to purchase carbon emission right optimally for energy-

consuming enterprises? Analysis based on optimal stopping model, Energy Economics, 2023, 124.

https://doi.org/10.1016/j.eneco.2023.106758

11. Junsong Jia, Lele Xin, Chengfang Lu, Bo Wu, Yexi Zhong. China’s CO2 emissions: A systematical decom-

position concurrently from multi-sectors and multi-stages since 1980 by an extended logarithmic mean

divisia index. Energy Strategy Reviews, 2023, (49):101141. https://doi.org/10.1016/j.esr.2023.101141

12. Xue Wang,Lu Li, Fusen Zhao. Decomposition Analysis of CO2 Emissions in Northeast China: Insights

From Investment Factors. FRONTIERS IN ENERGY RESEARCH. 2021(9), 1–13.

13. Wu X, Xu C, Ma T, et al. Carbon emission of China’s power industry: driving factors and emission reduc-

tion path. Environmental Science and Pollution Research, 2022, 29(52):78345–78360. https://doi.org/

10.1007/s11356-022-21297-5 PMID: 35690704

14. Liu Y, Jiang Y, Liu H, et al. Driving factors of carbon emissions in China’s municipalities: a LMDI

approach. Environmental Science and Pollution Research, 2022, 29(15):21789–21802 https://doi.org/

10.1007/s11356-021-17277-w PMID: 34767167

15. Maohui Liu, Xiaowen Deng, Shengnan Liu. Carbon emission analysis of Tianjin City based on LMDI

method and Tapio decoupling model. Environmental Pollution & Control 2022, 44(10):1397–1401.

16. Jia Dong, Cunbin Li. Scenario prediction and decoupling analysis of carbon emission in Jiangsu Prov-

ince, China. Technological Forecasting and Social Change 2022; 185:1–11.

17. Ge X L, Wang Y, Zhu H Q, Z Ding. Analysis and forecast of the Tianjin industrial carbon dioxide emissions

resulted from energy consumption[J].International Journal of Sustainable Energy,2017, 36,637–653.

18. Nan Zheng, Wanqing Chen, Simin Chen, Jinchun Chen, Han Chen, Xiaofan Lin. Research on Carbon

Emission Prediction Method of Power Systems Considering Unit Coal Consumption. 6th IEEE Confer-

ence on Energy Internet and Energy System Integration; 2022,2666–2670.

19. Zhu H, Ge X, Wang Y, Z Ding. Analysis and forecast of Tianjin’s industrial energy consumption. Interna-

tional Journal of Energy Sector Management, 2017, 11(1):46–64.

20. Yonggui He, Jianghao Yu. Study on the Change Trend of Carbon Emissions and Its Influencing Factors

in Hebei Province. Environmental Science and Technology 2018; 41(1):184–191

21. Feng R, Lihong G. Study on Transition of Primary Energy Structure and Carbon Emission Reduction

Targets in China Based on Markov Chain Model and GM (1, 1).Mathematical Problems in Engineer-

ing,2016,(2016-12-7), 2016, 2016:1–8

22. Junsong Jia, Hongbing Deng, Jing Duan, Jingzhu Zhao. Analysis of the major drivers of the ecological

footprint using the STIRPAT model and the PLS method—A case study in Henan Province, China. Eco-

logical Economics, 2009, 68(11):2818–2824 https://doi.org/10.1016/j.ecolecon.2009.05.012

23. Hua Chen, Shao-gui Deng, Yi-ren Fan. Application of homotopy alternative iteration method in double

exponential fitting. Computer Engineering and Applications 2007; 43(25):204–205.

24. National Bureau of Statistics (NBS). China Electric Power Yearbook 2001-2021.China Statistics Press,

Beijing.

25. National Bureau of Statistics (NBS). China Energy Statistic Yearbook 2001-2021.China Statistics

Press, Beijing.

26. Jianfeng Chen, Junsong Jia, Lin Wang, Chenglin Zhong, Bo Wu. Carbon Reduction Countermeasure

from a System Perspective for the Electricity Sector of Yangtze River Delta (China) by an Extended

Logarithmic Mean Divisia Index (LMDI). Systems, 2023, 11(3):117. https://doi.org/10.3390/

systems11030117

PLOS ONE carbon emission in China’s electricity industry on the dual carbon background

PLOS ONE | https://doi.org/10.1371/journal.pone.0302068 May 17, 2024 17 / 17

https://doi.org/10.1016/j.gsf.2023.101674
https://doi.org/10.1016/j.eneco.2023.106758
https://doi.org/10.1016/j.esr.2023.101141
https://doi.org/10.1007/s11356-022-21297-5
https://doi.org/10.1007/s11356-022-21297-5
http://www.ncbi.nlm.nih.gov/pubmed/35690704
https://doi.org/10.1007/s11356-021-17277-w
https://doi.org/10.1007/s11356-021-17277-w
http://www.ncbi.nlm.nih.gov/pubmed/34767167
https://doi.org/10.1016/j.ecolecon.2009.05.012
https://doi.org/10.3390/systems11030117
https://doi.org/10.3390/systems11030117
https://doi.org/10.1371/journal.pone.0302068

