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Abstract

Malignant melanoma (MM) is a malignant tumor associated with high mortality rates and

propensity for metastasis. Despite advancement in treatment, the incidence of MM continue

to rise globally. GPR168, also known as MrgprF, is a MAS related GPR family member. The

low expression of GPR168 has also been reported in many malignant tumors including MM.

In the study, the statistical analysis from The Cancer Genome Atlas (TCGA) revealed a sig-

nificant down regulation of GPR168 in melanoma compared to normal melanocytes, under-

scoring its importance in MM. The aim of the present study is to investigate the affect of

GPR168 overexpression and elucidate its molecular mechanisms in MM cells. In addition,

we used mouse melanoma B16-F10 cell line and xenograph tumor model to explore the

function of GPR168 in melanoma. Our findings demonstrate that GPR168 overexpression

could inhibit B16-F10 cell proliferation, migration, and xenografts tumor growth. Further,

mechanistic studies revealed that GPR168 affected B16-F10 progress through Akt signal

pathway with the decreased expression of p-Akt, p-GSK-3β, β-catenin, Myc, CyclinD1 and

CDK4. In order to validate these findings, a rescue experiment was formulated employing

GPR168 polyclonal antibody (Anti-GPR168 pAbs) to block GPR168 functionality. The addi-

tion of Anti-GPR168 pAbs into the culture medium restored both cell proliferation and migra-

tion. In conclusion, the overexpression of GPR168 in mouse melanoma B16-F10 cells

suppressed proliferation and migration through the Akt signaling pathway. These findings

collectively propose GPR168 as a promising novel tumor suppressor in MM, suggesting its

potential as a therapeutic target in future interventions.
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Introduction

Malignant melanoma (MM) is a type of skin cancer caused by the abnormal proliferation of

melanocytes. Over the recent years, there has been a notable global surge in the incidence of

MM [1, 2]. Advanced age and Caucasian race are the two main factors of MM according to

epidemiological data from United States. Additionally, tanning has also been indicated as a

risk factor [3]. Although melanoma accounts for about 1% of all skin cancers, it caused 90% of

skin cancer deaths due to its high invasiveness [4]. MM has the characteristics of rapid prolif-

eration, anti-apoptosis, unlimited replication, and significant increase in melanin content [5].

Early detection of melanoma is crucial in situ, because it is “curable” at early stage and the

treatment of this stage is mostly surgery, but it is difficult to treat after metastasis [6]. The

5-year survival rate for patients after early surgery is 95%, while the median survival time for

advanced patients after surgery is only 2 to 8 months, and the 5-year survival rate is less than

5% [6–9]. With the in-depth development of MM research in the past decades, the prognosis

of MM patients has been greatly improved, but its high invasiveness and metastasis are the

main causes leading to treatment failure [4].

The mechanism of MM was found to be complex, involving epithelial-mesenchymal transi-

tion and angiogenesis in the tumor microenvironment, invasion of melanoma cells and degra-

dation of extracellular matrix [9, 10]. Advanced MM mainly involves lymph node and brain

metastases, which determine the staging, treatment options and prognosis evaluation of MM

[11, 12]. In addition, cumulative alternations in multiple genes and signaling pathways are also

the main reason. Most MM have potential mutations occurring mainly in components of the

phosphoinositide kinase (PI3K/Akt) signaling pathways and mitogen-activated protein kinase

(MAPK) [6, 13]. The AKT pathway is a signaling pathway involved in phosphatidylinositol,

which is activated by receptor tyrosine kinases (RTKs) and G protein coupled receptors

(GPCRs), leading to the increased conversion of phosphatidylinositol-(3,4)-P2 (PIP2) to phos-

phatidylinositol-(3,4,5) P3 (PIP3), as well as high level of phosphorylation on Akt proteins [6].

The MAPK pathway is composed of three protein kinases, MAP3K-MAP2K-MAPK, which

transmit upstream signals to downstream response molecules through sequential phosphoryla-

tion [13]. Both of these signaling pathways are related to the proliferation, migration and carci-

nogenesis of MM [13–16]. However, there is still much work remaining to be done to improve

the earlier detection of lethal MM, due to lack of reliable diagnostic biomarkers.

With the increase of MM patients, an in-depth research on melanoma has become an

urgent need for medical workers around the world [4]. Through literature exploration, numer-

ous pan-cancer biomarkers have been identified, showing consistent dysregulation across vari-

ous forms of human cancer [17]. By using comprehensive bioinformatic analysis, combined

with MM related datasets available from other web-sources, we identified that GPR168, a

member of GPR family related to MAS, was decreased in MM. Therefore, we decided to

explore the function of GPR168 in the B16-F10 mouse melanoma cell line, elucidate the

molecular mechanism, and propose a potential therapeutic approach for MM.

Materials and methods

Construction of plasmids

The CDS region of GPR168 was obtained by PCR method with the primers:

F-5’ATGTGTCCTGGTATGAGCGAG3’,

R-5’TCAGGATGCGTTCCCAGAGG3’.
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The PCR product was cloned into the vector pCDH-CMV-MCS-EF1-copGFP-T2A-Puro

(pCDH-Vec) to construct the plasmid pCDH-CMV-MCS-EF1-copGFP-T2A-Puro-GPR168

(pCDH-GPR168), and it was further verified by sequencing.

Cell culture and transfection

293T and B16-F10 cell lines (stored at Shanxi Bethune Hospital, Shanxi, China) were cultured

at 37˚C in a 5% CO2 atmosphere. 293T were cultured in DMEM-High glucose medium

(Hyclone, America) and B16-F10 cell lines were cultured in RPMI-1640 Modified medium

(Hyclone, America). These cell lines were cultured in medium supplemented with 10% fetal

bovine serum and 1% penicillin-streptomycin. Following the manufacturer protocol (BGI Bei-

jing China), virus was generated from 293T cells and B16-F10 cells were infected twice with

viral supernatants containing 4 μg/ml polybrene at 48 h and 72 h, respectively.

Quantitative real-time PCR (RT-qPCR)

mRNA expression was determined by quantitative real-time PCR (RT-qPCR). Total RNA

from cells was isolated by TRizol RNA isolation reagents (Takara, Beijing, China) and one

microgram of the total RNA was used to synthesize the first-strand cDNA using TaqMan

reverse transcriptase kit (Takara Bio, Beijing, China). One microgram cDNA was subjected to

RT-qPCR using FastStart Universal SYBR Green Master Mix (Roche, Switzerland) to detect

the relative expression. Reactions were performed in triplicate. β-actin was used as internal

control for normalization among cell samples. All the gene specific-primers used for RT-qPCR

are listed in Table 1.

Western blotting

Cells were harvested and prepared in the Cell Lysis Buffer (Beyotime, Shanghai, China) and

the protein concentration was measured by Bio-Rad Protein Assay Kit (Bio-Rad, CA, USA).

Then the supernatants were boiled at 95˚C for 15 min, which were separated by electrophore-

sis and transferred to polyvinylidene fluoride membrane (Millipore). Primary antibodies used

in this study were as follows: β-actin (CWBIO, 1:5000), Akt (Proteintech, 1:1000), p-Akt (Pro-

teintech, 1:1000), GSK-3β (Proteintech, 1:1000), p-GSK-3β (Proteintech, 1:1000), CyclinD1

(Abcam, 1:1000), Myc (Proteintech, 1:1000), β-catenin (Proteintech, 1:1000), CDK4 (Protein-

tech, 1:1000). The secondary antibodies conjugated with horseradish peroxidase goat anti-

mouse IgG (CWBIO, 1:20000) or horseradish peroxidase-cojugated goat anti-rabbit IgG

(CWBIO, 1:20000). After washing six times for 10 min each with TBST buffer, the membranes

Table 1. Sequences for the primers used in RT-qPCR.

Gene Sequence (50–30) Application

GPR168-F GTGTCCTGGTATGAGCGAGG RT-qPCR

GPR168-R AGGGGTCCTCTTGATGGAGA RT-qPCR

β-actin-F TTGCTGACAGGATGCAGAAG RT-qPCR

β-actin-R ACATCTGCTGGAAGGTGGAC RT-qPCR

Cyclin D1-F TGTCTTACCACCGCCTCAC RT-qPCR

Cyclin D1-R CTCCTCTTCCTCCTCCTCCT RT-qPCR

CMY-F ATCACAGCCCTCACTCAC RT-qPCR

CMY-R ACAGATTCCACAAGGTGC RT-qPCR

CDK4-F CAGTTTCTAAGCGGCCTGGA RT-qPCR

CDK4-R TCCTCCTTGTGCAGGTAGGA RT-qPCR

https://doi.org/10.1371/journal.pone.0302061.t001
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were incubated at 37˚C for 2 h with horseradish peroxidase conjugated secondary antibodies

raised against rabbit or mouse IgG, and followed by analyzing with the MiniChemi imaging

systems (Beijing, China).

Cell proliferation and migration assays

The proliferation ability of B16-F10 cells was evaluated by Cell Counting Kit-8 (CCK-8) and

growth curve assays [18, 19]. The 1000/well cells were planted in a 96-well cell culture plate.

After cell adhesion, 10 μL of CCK-8 (BBI, Shanghai, China) reagent was added to each well,

and OD values were detected at 450 nm at 0 h, 3 h, 6 h, 9 h, 12 h and 15 h, respectivelly. In the

growth curve assay, 2000 cells were planted in each well of the 24-well plate [20, 21]. The cells

from each well were then trypsinized and determined using automatic cell analysis counter,

which was repeated three times a day for each group.

The migration ability of B16-F10 cells was evaluated by transwell and wound healing assays

[22]. For transwell assay, cells in serum-free medium were planted on the uncoated insets and

incubated using 24-well chemotaxis chambers (Corning cell culture inserts, 8 μm pore size).

Medium supplemented with 10% fetal bovine serum acted as chemo-attractant, which was

added to the bottom wells. After 24 hours of incubation, removed the non-migrating cells and

stained the migrating cells to the lower surface with cresyl violet (Sigma, USA). Stained cells in

the entire fields were counted under microscope. For wound healing assay, cells were planted

in a six-well plates at 1×106 cells/well in 2 mL of culture medium [20, 22]. After 12 h, a wound

was scratched with the tip on the adherent cell monolayers and imaging was performed at 0 h,

12 h, 24 h and 48 h at 8–12 positions along each well.

Immunofluorescence staining

Cells were fixed with 4% paraformaldehyde for 20 min, permeabilized with 0.1% Triton X-100

PBS and blocked by 10% goat serum. The cells were incubated by primary antibody Ki67

(Bioss, 1:100) at 4˚C overnight and probed with fluorescence-conjugated secondary antibodies

(Bioss, 1:200) at room temperature for 2 h. Finally, the cells nuclei were stained with DAPI

(Beyotime, China). Five randomly selected fields/samples were imaged on a fluorescence

microscope and quantified.

Xenograph tumor model in nude mice

A total of 10 male 6-week-old nude mice were randomly divided into two groups to construct

the tumor xenografts of MM. The mice of control group were injected with 1x106 pCDH-Vec

B16-F10 cells, while the mice of experimental group were injected with the same amounts of

B16-F10 cells with GPR168 overexpression (see method 2.2). Tumor sizes of mice were mea-

sured every 3 days for 30 days using caliper. The tumor volume was calculated by the following

formula: tumor volume = (length) × (width)2 × 0.5. When a tumor reached ethical limits, all

mice were killed, and the tumors were collected and weighed.

Immunohistochemical staining

Xenograft tumors were collected and fixed with 4% formaldehyde overnight, sectioned at

5 μm after paraffin-embedded, deparaffinized by xylene, rehydrated with gradient ethanol,

and subjected to antigen retrieval. Antigen retrieval was performed by placing the slides at

95˚C for 20 min in a microwave oven and allowed to cool for 1 h at room temperature. The

slides were again washed three times with TBS, and nonspecific binding was blocked by pre-

incubation with 5% BSA for 30 min at room temperature. Slides were then incubated for 2 h at
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4˚C with primary antibody Ki67 (Bioss, 1:100) in the blocking buffer. After washing the slides

three times with TBS, sections were subsequently treated with HRP-labeled second antibody

(CWBIO, 1:200) for 40 min. Diaminobenzidine was used as a chromogen followed by slight

hematoxylin counterstaining. The slides were then dehydrated, cleared with xylene and

mounted with dibutyl phthalate xylene. The positive signals were imaged under microscope.

Institutional review board statement

The study was conducted according to the guidelines of the Declaration of Helsinki, and

approved by the Ethics Committee of Shanxi Medical University (2017(050)).

Statistical analyses

Data were presented as mean ± SEM. p values were calculated by either unpaired or paired

two-tailed Student’s t test, *P<0.05, **P<0.01, and ***P<0.001. All analyses were performed

using GraphPad Prism software. All the experiments were performed at least three times.

Results

GPR168 was weakly expressed in melanoma

We applied Cross-Value Association Analysis (CVAA) to large-scale pan-cancer transcrip-

tome data generated by The Cancer Genome Atlas (TCGA). [17] Numerous new Differentially

Expressed Genes (DEGs) have been discovered, and GPR168 is one of them. To investigate the

potential roles of GPR168 in tumorigenesis, we examined the expression profile of GPR168 in

human tissues using RNA sequencing data retrieved from the GTEX database (http://www.

gtexportal.org), and showed that GPR168 is ubiquitously expressed in most human tissues. At

same times we found that GPR168 expression is diminished in majority of cancer types when

compared to their respective normal tissues, except GBM (glioblastoma) and head and neck

squamous cell carcinoma (HNSC) (Fig 1A). Furthermore, we investigated the correlation

between GPR168 and clinicopathological features of MM. The GPR168 expression between

melanoma and normal tissues samples was analyzed using microarray data sets from the

TCGA cohorts downloaded from CEPIA (http://gepia.cancer-pku.cn/). In cohorts, the expres-

sion of GPR168 was significantly lower in melanoma compared to normal skin tissues (Fig

1B). Then, cBioPortal web (1089 melanoma patients) was used to analyze the relationship

between GPR168 gene and melanoma patients (https://www.cbioportal.org/). The results

showed that the Diploid accounts for 57.2%, the Shallow Deletion accounts for 27.1% and the

Gaina accounts for 10.7% (Fig 1C). All the statistical data showed that GPR168 played an

important role in MM. Subsequently, we used the B16-F10 cell line in vitro and xenograph

tumor model in vivo to explore the function of GPR168. Analysis of mRNA and protein

expression levels of GPR168 in B16-F10, compared with mouse melanocytes cells, revealed a

similarly low expression of GPR168 in B16-F10 (Figs 1D–1F and S1).

Overexpression of GPR168 inhibited B16-F10 proliferation and migration

We then enhanced GPR168 mRNA expression with independent lenti-viral, and validated the

overexpression efficiency by comparing relative mRNA expression levels in

pCDH-GPR168-targeted B16-F10 cell lines with that in scramble pCDH-Vec control cells.

The RT-PCR and western blot results demonstrated that the B16-F10 cell line with stable

GPR168 expression was successfully constructed (Figs 2A–2C and S2). As expected, the CCK-

8 assay results showed that GPR168 overexpression inhibited the proliferation of B16-F10 cells

by 35% compared to the control group (pCDH-Vec) (Fig 2F). Growth curve assay showed that
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pCDH-GPR168 reduced the proliferation of B16-F10 cells by 40% compared to control on day

six (Fig 2G). The mutual verification of these results showed that stable overexpression of

GPR168 inhibited the proliferation of B16-F10 cell in vitro. Furthermore, we investigated the

impact of GPR168 on cell proliferation by affecting the cell cycle. Ki67, an antigen related to

proliferating cells, implicates in mitosis and is essential in cell proliferation, which is used clini-

cally to label proliferating cells [23, 24]. The Immunofluorescence results for Ki67 further con-

firmed that GPR168 overexpression influenced the reduced expression of Ki67 (Fig 2D). The

statistical results showed that the proportion of Ki67 positive in the control group was 38%,

Fig 1. GPR168 was weakly expressed in melanoma. (A) GPR168 is lowly expressed in most cancers except GBM (glioblastoma) and head and neck squamous cell

carcinoma (HNSC). (B) The expression of GPR168 was lower in melanoma compared to normal tissues, and the microarray data sets from The TCGA cohorts was

downloaded from CEPIA. (C) Putative copy-number alterations of 1089 melanoma patients from Genomic Identification of Significant Targets in Cancer (GISTIC),

related database was indicated from web cBioPortal (cBioPortal for Cancer Genomics). (D-F) Western blotting and RT-qPCR results showed the protein expression (D, E)

and the relative GPR168 mRNA (F) in mice melanoma cell line B16-F10, compared to normal melanocytes cells (normalized to ß-actin), respectively. *P< 0.05,

**P< 0.01, ***P< 0.001, t-test.

https://doi.org/10.1371/journal.pone.0302061.g001
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Fig 2. Overexpression of GPR168 inhibited B16-F10 cell proliferation and migration. (A-C) The efficiency of pCDH-GPR168 (GPR168

overexpression) was verified by RT-qPCR (A) and western blotting (B, C), compared to scramble pCDH-Vec. (D, E) GPR168 overexpression inhibited

cell proliferation in B16-F10 cells by Ki67 Immunofluorescence assay. Scale bar is 100 μm. (F, G) Result of CCK-8 assay (F) and Growth Curve (G)

showed that overexpression of GPR168 significantly inhibited B16-F10 cell proliferation. (H, I) overexpression of GPR168 decreased the migration ability

of B16-F10 by transwell assay at OD570. Scale bar is 100 μm. (J, K) Wound healing assay showed that overexpression of GPR168 inhibited the migration

of B16-F10 cells. Scale bar is 100 μm. *P< 0.05, **P< 0.01, ***P< 0.001, t-test.

https://doi.org/10.1371/journal.pone.0302061.g002

PLOS ONE GPR168 functions as a tumor suppressor in mouse melanoma

PLOS ONE | https://doi.org/10.1371/journal.pone.0302061 May 28, 2024 7 / 15

https://doi.org/10.1371/journal.pone.0302061.g002
https://doi.org/10.1371/journal.pone.0302061


compared to 26% in the experimental group with a significant difference (P = 0.0004) (Fig 2E),

suggesting that GPR168 overexpression inhibited the proliferation of B16-F10 cells.

The transwell assay and wound healing assay were used to perform the migration test. The

results showed that GPR168 overexpression inhibited the migration of B16-F10 cells. The sta-

tistical results of the number of cells passing through the chamber showed significant differ-

ences between the two groups (P = 0.007) (Fig 2H and 2I). Wound healing assay also showed

the similar results. The statistical analysis showed that the wound was closed by 38% at 48 h by

pCDH-GPR168, compared to the wound closure of 19% by pCDH-Vec (P<0.0001) (Fig 2J

and 2K). All the results showed GPR168 overexpression in B16-F10 cells dramatically

decreased the cell migration.

Overexpression of GPR168 inhibited the growth of xenograft tumors

To assess the function of GPR168 in MM progression in vivo, the xenograph tumor model was

constructed. After 30 days, tumor tissues were collected. The results showed that in the

pCDH-GPR168 group, the size, volume and weight of melanoma were smaller compared to

those in the control group (Fig 3A–3C). The Ki67 IHC in the MM tumor tissues showed signif-

icant difference while the H&E staining results showed no significant difference between the

experimental group and the control group. These findings displayed that the GPR168 overex-

pression inhibited cell proliferation in vivo (Fig 3D). The statistical results showed that the pro-

portion of Ki67 positive in the experimental group was 21% and that in the control group was

35%, with a statistically significant difference between the two groups (P = 0.0071) (Fig 3E).

Taken together, our findings demonstrate that GPR168 overexpression in B16-F10 melanoma

cells led to the suppression of tumor growth in nude mice.

GPR168 functions through Akt signaling pathway

The cell experiments in vitro and xenograph tumor model in vivo showed that overexpressed

CPR168 in B16-F10 cells inhibited the proliferation and migration. Then we wanted to explore

GPR168 mechanism in B16-F10 melanoma cells. It is reported that MM is mainly caused by

MAPK and PI3K/Akt signaling pathways [4]. MAPK signaling pathway is involved in regulat-

ing many important cellular physiological processes of tumor, such as cell growth, differentia-

tion and adaptation to environmental stress [16, 25]. The AKT signaling pathway associated

with proliferation, migration and carcinogenesis of cancer cells [26, 27]. Recently, it has been

reported that MrgprF (GPR168) acts as a tumor suppressor in cutaneous melanoma by

restraining Akt signaling [28]. Therefore, the RT-qPCR and western blot were performed to

determine the expression of some markers in these signaling pathways. The results showed

that mRNA expression of β-catenin, Myc, CycinD1 and CDK4 were significantly reduced in

Akt signaling pathway (Fig 3F). The results of western blot showed similar results with the RT-

qPCR findings (Figs 3G and 3H and S3–S5). Meanwhile, it was also found that the expression

level of p-Akt and p-GSK-3β in pCDH-GPR168 was lower as compared to the negative control

group, whereas the expression levels of Akt and GSK-3β had no significant difference com-

pared to the control group (Figs 3G and 3H and S3–S5). In addition, the expression of CDK4,

CyclinD1 and Myc was reduced, which affected the cell cycle and cell differentiation [29–33].

The results showed that GPR168 inhibited cell proliferation and migration by Akt signaling

pathway. At last, we conclude a signaling pathway model for GPR168 function in B16-F10

cells (Fig 3I).

In order to validate the results, a rescue experiment was conducted (Fig 4A). Anti-GPR168

pAbs, performing as a nanobody to block the function of GPR168, was introduced into the

medium of pCDH-GPR168 B16-F10 cell line for cell culture at concentration of 100 ng/ml.
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Fig 3. Overexpression of GPR168 inhibited xenograft tumors growth in vivo. (A) The sizes of allogenic tumors at day 30 were smaller by

pCDH-GPR168, compared to those by pCDH-Vec. (B) GPR168 overexpression significantly reduced MM tumor growth in nude mice by

tumor volume examination from 0 to 30 day. (C) Overexpression of GPR168 significantly suppressed the weights of allogeneic tumors. (D, E)

the positive cells of Ki67 in allogenic tumor tissues. Scale bar is 100 μm, (E) Quantification for (D). (F) β-catenin, Myc, CyclinD1, CDK4 mRNA

expression in pCDH-GPR168 group and pCDH-Vec group cells (RT-qPCR). (G, H) Akt, p-Akt, GSK-3β, p- GSK-3β, β-catenin, Myc,

CyclinD1, CDK4 protein expression in pCDH-GPR168 group and pCDH-Vec group (Western blotting). (I) A signaling pathway model for

GPR168 function in B16-F10 cell line. β-actin as normalized protein. *P< 0.05, **P< 0.01, ***P< 0.001, t-test.

https://doi.org/10.1371/journal.pone.0302061.g003
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The control group was added with equal volume of PBS solution. After several generations of

cell culture, cell pellets were harvested for further study. The results of western blotting showed

that the expression of Akt and p-Akt in B16-F10 cells with pCDH-GPR168 had no significant

difference compared to the control group (Figs 4C and 4D and S6). Furthermore, the CCK-8

assay showed that the proliferation of the experimental group and the control group had no

significant difference (Fig 4B). The wound healing assay showed that the migration had no sig-

nificant difference between two groups (Fig 4E and 4F). The results provide further support

for the notion that GPR168 inhibits cell proliferation and migration by participating in the Akt

signaling pathway.

Discussion

Malignant melanoma (MM) is characterized by its high proliferation and propensity for metas-

tasis. Due to the limited effective treatment methods available for patients with advanced mela-

noma, the mortality rates remain exceedingly high, significantly impacting the quality of life for

patients. In recent years, there has been notable progress in the immunotherapy for MM.

Fig 4. A rescue experiment designed for GPR168. (A) A working model designed for rescue experiment, the Anti-GPR168 pAbs can block the GPR168 function and

resulted in the downstream repercussion. (B) CCK-8 assays after cultured in Anti-GPR168 pAbs medium (100 ng/ml), the result of two groups has no difference. (C, D)

Western botting analysis of Akt and p-Akt protein expression in GPR168 overexpression B16-F10 melanoma cells cultured in 100 ng/ml Anti-GPR168 pAbs medium,

pCDH-Vec was set as control. β-actin as normalized protein. (E, F) Wound healing assay results of pCDH-GPR168 group with PBS and pCDH-Vec group with

VHH-NKG2A medium, showed that the migration of two groups had no significant difference. Scale bar: 100 μm. (F) Relative width change (wound closure) comparing

the 48h width with 0 h starting width (%), quantification for (E). *P< 0.05, **P< 0.01, ***P< 0.001, t-test.

https://doi.org/10.1371/journal.pone.0302061.g004
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Various combination of approaches, including immunotherapeutic agents and molecular inhib-

itors targeting single or multiple pathway(s) have been employed for clinical control of MM [6].

At the same time, clarifying the mechanism underlying MM pathology and progression is cru-

cial for improving the methods of new combination therapies to promote tumor remission and

prolong survival [34, 35]. In the study, GPR168 in B16-F10 cells and nude mouse melanoma

model not only provides preliminary data to investigate melanoma, but also provides insight for

the further treatment of human and animal melanoma. Although great progress has been made

in the diagnosis and treatment of MM, potential novel biomarkers that may provide new insight

into the prognostication of melanoma are still in urgent demand. Our group used comprehen-

sive integrative bioinformatics methodologies to identify new biomarkers of tumor progression.

Among the candidate tumor-associated novel biomarkers, GPR168, a member of the MAS-

related GPR family, was found to be down regulated in multiple tumors, including melanoma.

This led us to speculate that it might play a significant role in the development of MM, so we

conducted the following studies to investigate its potential functions.

GPCRs are membrane embedded receptors. They implicate in regulating pivotal biological

and pathological functions and have become valuable anti-cancer drug targets. In this study,

we found that GPR168 overexpression inhibited tumor cell proliferation and migration in
vitro, and nude mouse tumor growth in vivo, respectively. Importantly, Anti-GPR168 pAbs

blocked the function of GPR168 and restored the abilities of B16-F10 cell proliferation and

migration. These findings suggest that GPR168 acts as tumor suppressor in MM. Documented

findings have shown that the Akt signaling pathway is frequently activated in MM. Our find-

ings indicate that the absence of GPR168 in MM lead to constitutive activation of PI3K/Akt

signaling [36]. When the Akt signaling is activated by hormone receptors, it usually leads to

the increased phenomenon of cell proliferation and migration, while decreased phenomenon

of cell apoptosis. In the study, we found that GPR168 inhibited the phosphorylation of Akt,

resulting in the decreased of phosphorylation in GSK-3β downstream. The increased expres-

sion of GSK-3β could inhibit the activity of β-catenin. β-catenin cascades down to the nuclear

proteins Myc, CycinD1 and CDK4. CDKs are key regulators downstream of Myc, which stim-

ulate cell cycle transition from one phase to the next [37]. CyclinD1 and CDK4 are the check-

points of the G1/S phase of the cell cycle [38, 39]. GPR168 overexpression in MM caused the

changes of cell signaling pathways and affected the cell cycle. Taken together, our findings

indicate that GPR168 inhibited the proliferation and migration in B16-F10 cell lines through

the Akt signal pathway. However, human bioinformatics data used but only mouse data from

one cell-line included and no human data included in this study. Additionally, the precise

mechanism by how GPR168 preferentially binds and inhibits the PI3K complex remains

unclear. In future, elucidating the crystal structure, protein binding components, gene inter-

acting network, and the in vitro catalytic studies will be pivotal in deciphering the underlying

mechanism. Collectively, our findings identify GPR168 as a novel tumor suppressor in mouse

melanoma B16-F10 cells.

Conclusion

MM is a highly malignant tumor, and its global incidence is progressively rising each year.

Therefore, understanding the molecular mechanisms of melanoma is of great significance for

its accurate diagnosis, prognosis and treatment. In the present study, we found that GPR168

expressed in mouse melanoma B16-F10 cell is lower compared to normal melanocytes cells.

Based on these findings, we assume that GPR168 may function as cancer-suppressing gene.

Indepth investigation revealed that overexpression of GPR168 in B16-F10 cells significantly

inhibited the proliferation, migration of cells and xenograft tumors growth. Furthermore, our
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studies also showed that GPR168 have negative relationship with Akt signaling pathway,

whereas the Akt signal pathway is associated to cell proliferation and migration. In summary,

our findings suggest that GPR168 inhibits the proliferation and migration of B16-F10 and

xenograph tumor growth via Akt pathway.
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β-actin as normalized protein.
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