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Abstract

In this work, a Python framework for characteristic feature extraction is developed and

applied to gene expression data of human fibroblasts. Unlabeled feature selection objec-

tively determines groups and minimal gene sets separating groups. ML explainability meth-

ods transform the features correlating with phenotypic differences into causal reasoning,

supported by further pipeline and visualization tools, allowing user knowledge to boost

causal reasoning. The purpose of the framework is to identify characteristic features that

are causally related to phenotypic differences of single cells. The pipeline consists of several

data science methods enriched with purposeful visualization of the intermediate results in

order to check them systematically and infuse the domain knowledge about the investigated

process. A specific focus is to extract a small but meaningful set of genes to facilitate causal

reasoning for the phenotypic differences. One application could be drug target identification.

For this purpose, the framework follows different steps: feature reduction (PFA), low dimen-

sional embedding (UMAP), clustering ((H)DBSCAN), feature correlation (chi-square, mutual

information), ML validation and explainability (SHAP, tree explainer). The pipeline is vali-

dated by identifying and correctly separating signature genes associated with aging in fibro-

blasts from single-cell gene expression measurements: PLK3, polo-like protein kinase 3;

CCDC88A, Coiled-Coil Domain Containing 88A; STAT3, signal transducer and activator of

transcription-3; ZNF7, Zinc Finger Protein 7; SLC24A2, solute carrier family 24 member 2

and lncRNA RP11-372K14.2. The code for the preprocessing step can be found in the

GitHub repository https://github.com/AC-PHD/NoLabelPFA, along with the characteristic

feature extraction https://github.com/LauritzR/characteristic-feature-extraction.

Introduction

Single-cell measurement is a powerful technology since it provides the plurality of gene expres-

sion based on cell level. This plurality enables us to get an insight into the variation of expres-

sion within tissue and to apply statistical methods. Using these methods makes it possible to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0302045 April 17, 2024 1 / 36

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Rasbach L, Caliskan A, Saderi F,

Dandekar T, Breitenbach T (2024) An orchestra of

machine learning methods reveals landmarks in

single-cell data exemplified with aging fibroblasts.

PLoS ONE 19(4): e0302045. https://doi.org/

10.1371/journal.pone.0302045

Editor: Razieh Sheikhpour, Ardakan University,

ISLAMIC REPUBLIC OF IRAN

Received: November 6, 2023

Accepted: March 27, 2024

Published: April 17, 2024

Copyright: © 2024 Rasbach et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All data is available

from the database https://www.ncbi.nlm.nih.gov/

geo/query/acc.cgi?acc=GSE130973 (accession

number GSE130973).

Funding: This study was supported by Deutsche

Forschungsgemeinschaft (DFG), (Grant

492620490 – SFB 1583 /INF) awarded to TD and

AC, and by Land Bavaria (contribution to DFG grant

324392634 - TRR 221/INF) awarded to TD.

Competing interests: No authors have competing

interests.

https://orcid.org/0000-0003-4615-1915
https://github.com/AC-PHD/NoLabelPFA
https://github.com/LauritzR/characteristic-feature-extraction
https://doi.org/10.1371/journal.pone.0302045
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0302045&domain=pdf&date_stamp=2024-04-17
https://doi.org/10.1371/journal.pone.0302045
https://doi.org/10.1371/journal.pone.0302045
http://creativecommons.org/licenses/by/4.0/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973


distinguish between tissue(phenotypic)-inherent expression variation and variation causing

significantly different cell phenotypes. However, this detailed measurement naturally generates

a massive amount of data. Due to the number of samples and the potential big size of each

sample, it is challenging to identify the significant causes differentiating the phenotypes with-

out augmenting the analysis with suitable mathematical analysis tools to process the data and

automate as much of the investigations as possible. For applying such mathematical tools,

including machine learning (ML) techniques, which are useful for analyzing big data, the mea-

surements need to be modeled by a corresponding framework.

In such a framework, we can model each single cell as a data point in a multi-dimensional

vector space where the dimension equals the number of measured genes/features. Depending

on the measure for the expression of each gene in a cell (e.g., transcription (RNA counts) or

translation (proteins)), the corresponding data point can be located accordingly. Visualization

of the data is one helpful approach to make the encoded measurement information in the

high-dimensional vector space accessible to human researchers. For this purpose, several tools

have been developed to embed the data points from the high-dimensional space into a plane

according to similarity in the expression pattern [1, 2]. The rationale is that cells with a similar

expression pattern (or generally similar feature values) should show similar phenotypic behav-

ior and vice versa. In other words, the phenotypically different cells should have a bigger differ-

ence in their expression pattern (or in general feature values) than cells from the same

phenotype. In the mathematical model, cells with only minor changes in the expression pat-

tern should be located close to each other, while the distance between cells from other pheno-

types is supposed to be big. Consequently, with a suitable projection from the high-

dimensional vector space into the plane, clear clusters in the plane might indicate distinct dif-

ferent expression patterns that are assumed to map to phenotypes. Examples could be different

tissue differentiated from stem cells, heterogeneous tumor tissue with corresponding tumor

subtypes, or different immune cells.

Once these clusters are defined, the next question is this: What are the significant differ-

ences in the feature space (single-cell expression data) that made the clustering algorithms gen-

erate their results? The corresponding explanation might reveal the causes for the cells

developing different phenotypes. To find features (expression of genes) that carry the signifi-

cant information for cluster differences, various feature selection methods have been devel-

oped. Please see the introduction of Caliskan et al. (2023) [3] for an exemplary compilation.

However, all such methods identify features correlating with the difference between the

clusters.

Extending previous work [3], we here introduce a new data analysis concept to really

understand which minimal gene sets objectively (meaning with a defined mathematical frame-

work instead of a human manually selecting them via, e.g., intuition from all differentially

expressed genes) separate which different clusters and why this is the case (causal reasoning).

To achieve this, (i) unlabeled feature selection objectively determines groups, including mini-

mal gene sets separating different groups. (ii) Next, ML explainability methods facilitate trans-

forming the features correlating with phenotypic differences into causal reasoning since these

tools make the feature values that made the ML decide to assign a cell a phenotype more trans-

parent. This insight into the expression values can be used as a starting point for causal reason-

ing by human researchers. (iii) This is further supported by additional pipeline and

visualization tools allowing user knowledge to be integrated, which further boosts causal rea-

soning and explainability.

In order to find options to influence a cell’s behavior in a desired manner, like a therapy, it

might be one helpful approach to identify the causality for the difference since this may pro-

vide options to turn one phenotype into another. Small and meaningful results provided by
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such methods support researchers in finding these causes, thus enabling an explanation of the

mode of action. A plurality of methods for feature selection, each working with different math-

ematical selection mechanisms relying on different assumptions, provides different meaning-

ful and small gene selections. If finding an explanation for the separated phenotypes from one

gene selection is challenging, different alternatives might be useful.

This procedure can be enriched with techniques from ML explainability, e.g., SHAP [4] or

LIME [5]. The concept of explainability helping to identify causal relations works as follows in

our framework: If we train a model based on labels associated with the clusters and the selected

genes and the model can classify the cells with a high accuracy based on the selected genes,

then the corresponding genes provide the relevant information about the phenotypic differ-

ences. However, the rules of how exactly gene expression values allow for a classification are

hidden in the model. We can support the extraction of such rules by facilitating the analysis of

causalities for the different cell behaviors with the ML explainability since these methods aim

to make the learned rules more transparent. These methods visualize which the most impor-

tant gene expression values for a decision are, i.e., based on the expression profile of the cell,

what made the model classify a cell as it did. Consequently, such techniques facilitate the analy-

sis of gene expression patterns (like genes that are always highly expressed and others lowly)

characteristic of a cluster or phenotype.

Our technical aim is to provide a software pipeline that purposefully combines all these

data analytic tools within one modularized platform to visualize results and information for

single-cell analysis. These visualizations allow the extraction of significant differences in

expression profiles to facilitate finding explanations for phenotypic behavior. The modulariza-

tion is generated by providing a clear input and output for each method whose implementa-

tion we provide in our GitHub repository. Consequently, each stage of our pipeline (1 to 9,

defined below) can be filled with suitable methods for the concrete task described in this stage.

Furthermore, we would like to showcase its application.

In our showcase, we will analyze single-cell data provided by Solé-Boldo et al. (2020) [6]

(the RDS file is available via the GEO database: https://www.ncbi.nlm.nih.gov/geo/query/acc.

cgi?acc=GSE130973), who analyzed human skin fibroblasts from a sun-protected area of

healthy ‘young’ donors (25 and 27 years old) and healthy ‘old’ donors (53, 69, and 70 years

old) using single-cell RNA sequencing and found age-related changes in fibroblast subpopula-

tions [6], using the conditions ‘young’ and ‘old’.

Comparing these two conditions allows the discovery of changes in gene expression that

might be caused by chronological aging. This is especially interesting, as Garmany et al. (2021)

recently reported a healthspan-lifespan gap of about 9.2 years [7]. Thus, individuals will live

about one-fifth of their lifetime suffering from morbidities [7]. Furthermore, 79% of the overall

years are lived with disability, and 71% of the worldwide annual deaths are due to chronic dis-

eases. The majority of chronic disease-related deaths (80%) can be attributed to four common

conditions: diabetes, cardiovascular diseases, chronic respiratory diseases, and cancer [7], all

of which are associated with aging [8].

With the predicted global increase of ‘aging’ (countries with more than 10% of the popula-

tion being 70 years of age or older) or even ‘advanced aging’ (more than 20% of the population

�70 years of age) [7], understanding aging and age-related changes, and subsequently finding

possible treatments or even cures for aging is of utmost importance. Thus, especially intrinsic

aging, which is not due to external factors, is of great research interest.

Solé-Boldo et al. (2020) obtained all skin fibroblasts from the typically sun-protected ingui-

noiliac region of male Caucasian donors [6]. Since the authors intended to focus on intrinsic

aging, they ensured that none of the donors had received UV therapy or showed any signs of

sun exposure, such as tanned skin or actinic skin damage [6]. Additionally, the medical records
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of the donors were carefully reviewed, focusing on any skin diseases or conditions that could

affect the skin, and all donors underwent a full body skin examination by a dermatologist [6].

None of the donors had a history or showed signs of systemic or inflammatory skin disease

[6]. Therefore, changes in gene expression between the ‘young’ and the ‘old’ samples are most

likely due to chronologic, intrinsic aging and not caused by external factors, including UV

exposure, which is the most important external cause of skin aging (extrinsic aging) [7, 8].

Different fibroblast subtypes, such as papillary fibroblasts (located in the superficial papil-

lary dermis) and reticular fibroblasts (located in the reticular dermis), not only differ in their

morphological characteristics but also exhibit distinct characteristics, including proliferation

rates, their abilities to produce and respond to growth factors and cytokines, and their expres-

sion of extracellular matrix (ECM) components [6]. In their skin samples, Solé-Boldo et al.

(2020) identified several cell clusters, including four fibroblast clusters (#1, #2, #3, and #9 in

their publication, identified by the archetypal markers DCN, COL1A2, LUM, PDGFRA, and

VIM) containing distinct fibroblast subtypes with distinct functional roles [6]. The four fibro-

blast subpopulations showed differential mesenchymal, secretory, and pro-inflammatory

annotations, which became reduced with age [6].

In mice, Salzer et al. (2018) observed age-related changes in fibroblast subpopulations [6, 9],

which also appeared to be influenced by the systemic metabolism [9]. Upon aging, the two

fibroblast subpopulations became less well-defined and gained adipogenic traits while their

expression of ECM genes was reduced [6, 9]. In human skin samples, fibroblast subpopulations

had already been identified in a chronically-sun-exposed skin region (dorsal forearm) in a het-

erogeneous group of donors [6, 10] and in the abdominal skin of a single female donor [6, 11].

Besides an age-related loss of cell identities, Solé-Boldo et al. (2020) also observed the

expression of skin aging-associated secreted proteins (SAASP) in old fibroblast subpopulations

[6]. As the specific age-related changes in fibroblasts were well-established, they focused on the

expression profiles of young fibroblasts, which showed strongly enriched classical fibroblast

functions related to the extracellular matrix (ECM) and collagen production [6].

The aging process of fibroblasts and the hallmarks of fibroblast aging have been thoroughly

categorized by Tigges et al. (2014) and include ECM-remodeling, which can be observed in

fibroblasts in culture and in situ, EGF insensitivity, increased protein secretion (SASP), and

cellular senescence [12]. Fragmentation of the dermal ECM and a decrease in collagen produc-

tion are also associated with skin aging [13]. Additionally, fibroblast dysfunction and the cor-

responding dermal ECM remodeling have been linked to age-related skin changes, such as the

formation of wrinkles [12].

For our example, we chose the fibroblast clusters of the single cell sequencing data pub-

lished and shared by Solé-Boldo et al. (2020) [6] for several reasons: Fibroblasts undergo age-

related changes and all four fibroblast clusters contain ‘young’ and ‘old’ cells, thus, differences

between ‘young’ and ‘old’ cells are most likely due to aging and not due to differences between

separate clusters. Since our ML method does not require the cells to be labeled according to

their condition or cell type, we use this example to check and demonstrate whether our algo-

rithm is able to distinguish between ‘young’ and ‘old’ cells solely based on the sequencing data

without additional information such as labels. Additionally, we analyze the genes that were

identified as particularly relevant to the differences between the two conditions, focusing on

their roles in aging and fibroblast aging.

With our ML method, we intend to contribute to the growing toolset of gene analysis meth-

ods by introducing a user-friendly approach that has the potential to uncover novel genes of

interest. As indicated by our previous proof of principle study, the PFA and mutual informa-

tion have demonstrated their capability to identify potentially interesting genes that might not

receive high rankings using other conventional techniques [3]. Therefore, we intended to
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enhance the usability, potentially allowing “a quick first glance” at potentially interesting addi-

tional genes. Moreover, we also tackle the far more challenging task of identifying the best fea-

tures without previously labeling groups, so the pipeline should also deliver this step. Finally,

as we use ML methods, we have a refined toolbox to deliver an explainability of our analysis–a

useful addition that is also integrated into our pipeline.

In this work, we present a single-cell analysis pipeline consisting of multiple parts that can

be extended in each stage with further methods:

1. Feature reduction: The intention is to reduce the dimensionality of the input feature space

to genes that carry the information. Our implantation uses the principal feature analysis

(PFA) [14] because of its interpretability since only genes that depend on the expression of

other genes and can therefore be seen as functions of other genes are removed. Thus, the

information they carry can be constructed by the other genes. There are other dimension

reduction techniques like autoencoder [15] or principal component analysis (PCA) [16]

that can be used at this stage. However, these methods provide a transformation of the orig-

inal genes, which is challenging for interpretation since one needs to take the fitted trans-

formation into account. There is evidence that clustering techniques, like UMAP [1] (‘curse

of dimensionality’) or MARS [15] (see the end of “Overview of MARS” in the Methods sec-

tion), benefit from feature reduction. However, performing a feature reduction before the

UMAP embedding is not strictly necessary. With our implementation, we can easily try its

effects on the embedding and evaluate if it benefits from feature reduction.

2. Embedding: The intention of this stage is to provide an embedding of the high dimensional

input vector space, where each gene (or, in general, each measured feature) of the single

cells is represented by a dimension, into a plane or three-dimensional space for the purpose

of visualizing similar expression patterns. An important property of the embedding is that

similar expression profiles are close in the low dimensional space. Thus, corresponding sin-

gle cells are clustered together if their expression is similar and far away if it is not similar.

In our implementation, we use the UMAP method for this purpose. Such a low-dimen-

sional space can be visualized, and thus, the user can have a first impression of whether the

data contains interesting information or not.

3. Labeling: With a density-based clustering algorithm, we can automatically associate each

cluster with a label. These labels will allow us to analyze characteristic genes that separate

the clusters/labels. In our implementation, we use DBSCAN [17] or HDBSCAN [18]. The

rationale is that a cluster is defined by a surrounding space where there are no data points

and consequently the density of data points differs significantly between clusters. A selec-

tion by coordinates is also possible, e.g., all data points within a box can be associated with

the same label. Furthermore, any other method that annotates/names/labels single cells can

be used here, e.g., Brbic et al. (2020) [15] (see “Overview of MARS”).

4. Cluster comparison with further labels: This stage is intended to perform either a sanity

check for known phenotypes or to identify interesting clusters in the case where nothing

about subtypes is known, like a heterogeneous tumor tissue. For example, we can sanity

check that the found clusters match known phenotypes or other phenotypic properties that

coincide each with high purity in separate clusters, meaning that the features (e.g., gene

expression) provide powerful information to separate the phenotypes. If not, the current

feature space (e.g., gene expression) might not contain relevant information regarding the

phenotypic differences of interest and could be extended purposefully or the embedding

might cluster according to other properties that are not known. In another example with

tumor tissue, we can check if some clusters identified from the pipeline so far have a high
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purity of additional labels, like adult or pediatric. Then, these clusters can be selected for

further analysis to get the expressional differences which might lead to better therapies by

finding and targeting more relevant genes. This stage is optional and is not necessary for

the rest of the pipeline, in particular, if no further properties than gene expression is avail-

able. However, it may be helpful in some cases, like investigating only differences between

interesting clusters or fine structures within one cluster (see Discussion for details).

5. Data splitting: Once interesting clusters are identified for the causal analysis of expres-

sional differences, we would like to ensure that the analysis is robust with respect to data

sampling. For this purpose, we have the option at this stage to split the data into subsam-

ples, use one for the analysis, and hold the others back for validation and explanation to

check that results based on the selected features/genes are independent of the used subsam-

ple and thus generic. This step is optional and requires a sufficiently large number of cells

in the investigated clusters such that the statistical properties of the subsamples do not

change too much due to a small sample size.

6. Feature selection related to labels/output function: After labels have been created and

selected for analysis, we further select genes that are not independent of the label and sort

out all others for further analysis. We use a chi-square test for this purpose.

In order to lower the number of selected genes in this step, removing redundancy in stage

1), e.g., with the PFA, might be beneficial. In case methods like PCA or autoencoder have

been used before the embedding stage, applying PFA to the gene expression data set prior

to gene selection by the chi-square test in this stage might help reduce redundancy and pro-

duce a smaller model of the phenotypic difference-generating genes. Consequently, we

could apply the workflow as presented in Caliskan et al. (2023) [3], where labels are given a

priori. However, the analysis could be performed with other methods of redundancy reduc-

tion or even without it.

7. Mutual information: In order to further reduce the feature/gene selection, mutual infor-

mation has been shown to be a useful concept for ranking genes whose expression shares

information about the labels/output function [3]. Mutual information asks: How much

information does one gain about the label given the expression value of the corresponding

gene? By taking only the best-ranked genes, we can balance model accuracy and model size

based on the selected genes.

8. Validation: In order to check that all our stages have not deleted important information

while selecting features/genes, e.g., by having set the threshold for the mutual information

too high or due to failure of some feature selection, we validate whether a model can learn

to separate clusters/predict the output function value based on the selected genes. If the

accuracy of the trained model is sufficiently high, we know our selection contains enough

information, which means that the corresponding relations between gene expression and

label (phenotypic difference) can be constructed from the selected information. In case we

have used data splitting, we can repeat just the validation step with the selected features on

other sets and check for comparable accuracy. If yes, we can say that our selection is robust

with respect to the sampling. In our Python implementation, we use standard Keras ML

models like MLP. If the accuracy is high enough, we can argue that we have all the necessary

information in our gene model. However, the opposite is not correct since model training

could fail due to, e.g., a bad hyperparameter selection. Furthermore, any procedure for gene

selection can be validated with that procedure. In our case, we use the ML framework from

Python as a well-developed framework for function approximation, which is the relation

between the genes and the corresponding output function, e.g., the label function that
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assigns each single cell a label. Explanation of this relation is of high interest since it might

encode the causal relations for the difference.

9. Explainability: In order to analyze the rules encoded in an ML model that allow us to con-

clude the corresponding output function value, like the cluster assignment, from the expres-

sion of the genes, we implement a model explainer like the SHAP framework or tree

explainer (only for decision tree). These techniques enable us to analyze if, e.g., some genes

are always highly expressed and others lowly if the model decides on a corresponding label.

These methods provide information on what is important for the model decision. Since the

model is only based on correlation and thus not necessarily a causal model, different imple-

mented methods may provide different approaches for explaining the causalities in case the

results of one method are challenging to interpret. If we used the data splitting before, we

can check whether we come to the same explanation/feature importance pattern indepen-

dent of the used subsample data set. A chain of explanation is not limited to the genes

extracted in the pipeline but can also serve as a starting point in a complex scenario to con-

struct a meaningful reasoning, including methods such as pathway analysis.

In summary, we combine (i) unlabeled feature selection and minimal gene sets, separating

different groups with (ii) ML and explainability methods and (iii) further pipeline and visuali-

zation tools, allowing user knowledge to be iteratively integrated.

Hence, we deliver a powerful framework that combines unsupervised learning, like UMAP

or autoencoder and feature selection, with supervised learning to validate findings and apply

tools from explainability to help us identify correlating genes and facilitate causal analysis of

phenotypic differences.

Furthermore, we bring well-established methods, like UMAP, together with new purposeful

extensions to analyze their results more deeply, e.g., getting differences between the UMAP

clusters with the chi-square test and mutual information in a modularized software platform

for easy application and further development.

Our work does not aim at cell annotation but provides a framework for analyzing the gene

expression differences between phenotypes given by a small and meaningful set of genes. We

assume that a phenotype is characterized by a similar expression pattern of the corresponding

single cells. However, our method is generic and can be used to provide a small feature set that

carries information about differences. Consequently, the set of gene expressions can also be

enriched by other features like methylation states or other epigenetic properties to enrich the

data model of a single cell apart from gene expression data.

We focus on visualization to identify interesting (sub)clusters, specifically highlighting the

characteristic genes.

Our implementation, provided with that work, is a minimal working implementation to

focus on the concept. Since we provide the code via a GitHub repository (links are given in the

Abstract), adaptions depending on use cases can be done easily, and the implementation can

be purposefully developed, like including further feature selections. The clearly defined inputs

and outputs facilitate the extension.

The application of our implementation using the skin fibroblast data set generated by Solé-

Boldo et al. (2020) [6] provided a selection of genes that might be of interest for further

research. Since they appear to be involved in aging-related changes in gene expression and

were identified by our method as being most relevant for discerning the differences between

both conditions (‘young’ and ‘old’), they might play important roles in the aging process.

Our method is generic and can be used to provide a small feature set that carries informa-

tion about differences. It is particularly useful in single-cell sequencing and other high-dimen-

sional data sets, including phenotypic information. It is unique because it provides
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visualization, checkpoints, and possibilities to use biological domain knowledge to recheck

and improve the clustering at each pipeline step. This will open numerous applications and

booster omics analyses, especially when fine structures of clusters are present.

Methods

Our pipeline consists of several methods, which are described below. In a nutshell, this is a

pipeline consisting of supervised and unsupervised machine learning. Moreover, it includes

stochastic methods for the purpose of single-cell analysis. Our main goal is to cluster single

cells according to their expression profile and to provide a small but meaningful set of genes

that contain the relevant expressional differences between these clusters. The rationale behind

our approach is that phenotypically similar cells have a similar expression profile. Since the

behavior of each single cell within a phenotype is similar, our rigorous definition of single cells

according to their expression profile and expressional difference might provide an additional

approach to finding treatments and drug targets to influence each phenotype in a desired

manner.

In the first step of our pipeline, we remove genes with a constant expression level across all

cells (since they provide no information because they are expressed the same for any pheno-

type in our data), and we remove redundancy. We use Algorithm 2 from the Principal Feature

Analysis (PFA) [14]. The main idea of the PFA is to consider expressions of genes as functions,

which have other genes as arguments. For example, we have a gene that is regulated by other

genes. Then, the expression level of the regulated gene can be seen as a function of the other

genes’ expression levels. Once we know these values and the dynamic according to which the

regulation takes place, we can provide the expression value as a function of the input/argument

genes. With the PFA, we can detect genes whose expression is just a function of other genes.

As those genes do not provide any further information, we are able to remove them, which

reduces the dimensions and complexity of the single-cell data. By retaining only genes whose

expression levels are independent of each other, we ensure that the information provided

about the differences between the clusters/phenotypes is non-overlapping and free of redun-

dancy. The main ingredients for the PFA are the following.

Discretization of expression ranges

An important step is to discretize the continuous gene expressions (binning) [14]. This step is

required to use the chi-square test for independence and mutual information later on because

the continuous expression levels of the genes need to be discretized due to the fact that the chi-

square test and mutual information can only be applied to discretized data or investigate the

correlation of events, respectively. For this purpose, we implement Algorithm 4 from Breiten-

bach et al. (2022) [14] in our pipeline. The essential parameter of this algorithm is min_n_data-

points_a_bin, defining the minimum number of data points, where each data point is the

measurement of the considered gene within one single cell that is assigned to a bin during this

process. Each bin is a discretized ordered category modeling the strength of the gene expres-

sion of the corresponding gene. For every gene expression, we determine the minimum value

m and maximum value M over all single-cells per gene (or in general feature). If M�m, the

expression of the corresponding gene is constant and this gene can be removed from the list of

genes later used for an explanation of phenotypic differences as the data of the gene without

any variation does not contain information that could explain variation in a label of single

cells. If M>m, we iterate over the data points in ascending order and assign at least the mini-

mum number of data points (min_n_datapoints_a_bin) to a bin. If one bin has at least min_-

n_datapoints_a_bin number of data points and the next value in the ascending order is equal
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to the current value, it is also assigned to the current bin until the following value is larger than

the current one. If there are fewer values left than min_n_datapoints_a_bin, they are all put

into the last bin opened. The selection of min_n_datapoints_a_bin is important for the com-

putation time and the transferring of information from the continuous expression values to

discrete expression levels/events. If the parameter is too large, this can result in a small number

of bins, and the structural properties of the original continuous data get lost, meaning a too

rough discretization of the continuous expression level into discrete expression levels of the

corresponding gene. If the parameter is too small, there is a risk of creating too many bins with

too few expected data points in an entry of the corresponding contingency table, see the expla-

nation for the chi-square test below, violating needed assumptions. More specifically, this can

result in dropping below the recommended threshold of five expected data points in a joint

bin [19] for the chi-square test of independence. Illustratively, the expected frequencies of the

corresponding contingency table with the joint events (e.g., gene A has expression x and gene

B has expression y) could fall below the threshold because the data points of a bin of one gene

(modeling a certain expression range) are split among the other bins of the other gene to

define the joint expected frequencies.

The chi-square test of independence

The mathematical model for the chi-square test of independence of two gene expressions

looks as follows.

We assume that we measure the expression of each gene in N2N single cells. The expression

value of each gene is modeled by the random variable Xi: O!Zi, i2{1,. . .,n}, n2N number of

genes. Illustratively, this random variable Xi takes the value of the corresponding gene i when-

ever this gene is measured in a single cell (or, in general, any feature of the cell). Consequently,

each measurement of expression values of genes in a single cell is a random experiment in

which the corresponding random variables modeling the corresponding genes take the corre-

sponding expression values. Due to the discretization of the expression level of each gene, Zi is

a set of bins zi
k; k 2 f1; . . . ;mig; mi 2 N number of bins in which the range of expression val-

ues is discretized for gene i. Illustratively, the space Zi is the space of possible discrete expres-

sion values of gene i based on the selected discretization (see “Discretization of expression

ranges”). Furthermore, each zi
k models a concrete range in which expression levels of gene i are

assigned to the discrete expression level k. Now, fix a gene i and a gene j, j2{1,. . .,n}. Within N
single cells, let Okl2N be the observed frequency that the expression level of gene i is in the bin

zi
k and that the expression level of gene j is in the bin zj

l ; l 2 f1; . . . ;mjg with

N ¼
Pmi

k¼1

Pmj
l¼1 Okl. By dividing the observed frequency by the number of all measurements N

(number of measured single cells), the corresponding probability that when measuring a single

cell, gene i of that cell is expressed on level zi
k and gene j of that cell is expressed on level zj

l is

defined by

P Xi ¼ zi
k ^ Xj ¼ zj

l

� �
≔

Okl

N
:

Furthermore, let PðXi ¼ zi
kÞ be the probability that the expression level of gene i is within

the bin zi
k, which is calculated by dividing the number of all single cells where the expression

value of gene i is within the bin zi
k by N,

P Xi ¼ zi
k

� �
≔

1

N

Xmj

l¼1
Okl:
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An analog definition for

P Xj ¼ zj
l

� �
≔

1

N

Xmi

k¼1
Okl:

Under the assumption that the expression of gene i is independent of gene j, the expected

frequency Ekl2R that the expression level of gene i is in the bin zi
k and that the expression level

of gene j is in the bin zj
l is given by

Ekl≔PðXi ¼ zi
kÞPðXj ¼ zj

lÞN:

The rationale is that, under the assumption of independence, from N single cells, gene j is

expressed in zj
l in the fraction PðXj ¼ zj

lÞ, and from this number, given by PðXj ¼ zj
lÞN, the

fraction of PðXi ¼ zi
kÞ single cells have expressed gene i in zi

k. However, this calculation holds

only true if the expression of gene j does not influence the expression of gene i where in this

case the fraction PðXi ¼ zi
kÞ does not depend on j.

If the expression of the genes is independent of each other, observed and expected frequen-

cies are supposed to be equal for all k2{1,. . .,mi} und l2{1,. . .,mj} or equivalently,

PðXi ¼ zi
k ^ Xj ¼ zj

lÞ ¼ PðXi ¼ zi
kÞPðXj ¼ zj

lÞ

for all k2{1,. . .,mi} and l2{1,. . .,mj} is supposed to hold. Due to noise from the measurement

and interplaying dynamics, these equalities might not be fulfilled exactly, even if the assump-

tion of independence is true. Assuming the expression of the genes is independent, variations

of (Okl−Ekl) around 0 are random due to noise or alternatively (Okl−Ekl)
2>0 even in the case of

independent expression.

Consequently, a statistical test is required to decide for independence based on a level of sig-

nificance, e.g., the chi-square test with the test statistic,

w2 ¼
Xmi

k¼1

Xmj

l¼1

ðOkl � EklÞ
2

Ekl

to decide if the deviation from observed and expected frequencies is likely to come from the

noise or rather is caused by the fact that the expression is not independent.

If Ekl�5 for all k2{1,. . .,mi} and l2{1,. . .,mj}, then
Okl � Eklffiffiffiffi

Ekl
p is sufficiently normally distributed,

please see, e.g., the Appendix of Breitenbach et al. (2022) [14], and thus the test statistic χ2 is

sufficiently well distributed according to a chi-square distribution with (mi−1)(mj−1) degrees

of freedom.

If χ2 is too big related to the added free varying terms and thus it is too unlikely (based on

an a priori fixed p-value) that variations come only from noise, we reject the hypothesis that

the expression of the two genes i and j are independent and assume that the expression of

genes is not independent.

Principal feature analysis

For the principal feature analysis, a dependence graph is constructed by Algorithm 2 described

in Breitenbach et al. (2022) [14], following the discretization procedure. The generation of the

graph works as follows. Each gene (in general feature) is assigned a node. The edges of the

dependence graph are constructed by applying the chi-square test of independence to all pairs

of genes, each based on the discretized expression range. The result of a chi-square test of inde-

pendence on two genes is then used to evaluate the independence of the two gene expressions.
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If the p-value of the chi-square test for independence–under the hypothesis that the genes are

independent–lies above a parameter α (in the current implementation 0.01), the gene expres-

sions are considered independent. In the other case, the hypothesis that they are independent

is rejected because a small p-value indicates that given the data and under the hypothesis of

independent gene expression getting the observed chi-square value is too unlikely, and we

should rather assume the opposite. In this case, the nodes that model the corresponding genes

in the dependence graph are connected by an edge. If the hypothesis of independence is not

rejected, the corresponding nodes are not connected by an edge.

This graph is then dissected using a minimal cut algorithm until only independent nodes

are left; see Breitenbach et al. (2022) [14] for details.

Due to the polynomial complexity of the minimal cut algorithm, we only treat a subset of

the dependence graph at a time. A parameter cluster_size allows us to define the maximum

size a dependence subgraph can have. Selecting cluster_size too large may result in longer

computation time as subgraphs are big. Selecting cluster_size too small may lead to a large

remaining dependence graph if no more genes can be removed from the remaining subgraphs,

which means more computation time until the entire dependence graph is processed as well.

The principal feature analysis dissects the dependence graph until only complete subgraphs

are left (meaning each gene is not independent of each other within such a graph). While the

original implementation of the PFA preserves that structure, we adapted the code such that we

break the graphs considering each gene being returned by the PFA as a dimension of the vec-

tor space where each dimension models the expression level of a gene for the next processing

step. The next step is embedding the single cells based on the reduced or original feature space,

which requires such a vector representation in our case.

Embedding with UMAP

After the redundancy is minimized and the remaining genes contain information that is indepen-

dent of each other, we want to project those genes from a high-dimensional space into a plane. We

remark that in this step, no discretization of the expression levels is required. Due to this projec-

tion, we are able to visualize the gene expression of the cells. We assume that single cells with a sim-

ilar expression pattern are phenotypically similar and, as such, show similar behavior as well as

cluster accordingly in the plot. Once we are able to group phenotypically similar cells distinctly

from other phenotypes into a plane, thus visualizing these groups, we can superimpose the clusters

with other phenotypic labels. Thus, we can visually check for interesting patterns where it might be

useful to get the difference between these clusters with interesting patterns distilled from the several

thousands of genes in a small and meaningful set of genes. These differences could be the start of a

causal reasoning for the differences and how to influence cell fates such that we can influence their

development into a cluster belonging, meaning expressing different phenotypic properties.

For the purpose of projecting the high-dimensional space in which gene expression is

encoded into a plane for visualizing interesting structures, we use the Uniform Manifold

Approximation and Projection (UMAP) [1] method. UMAP takes the high-dimensional cell

data and optimizes the arrangement of the data points in the plane such that single cells that

are close together in the high-dimensional space, meaning having a similar expression pattern,

are also close in the plane. Analogously, what is far away in the high-dimensional space is also

far away from each other in the plane. Mathematically, this is done by optimizing the following

objective, called cross entropy,

XN

i¼1

XN

j¼1

pijlog
pij

qij
þ ð1 � pijÞlog

1 � pij

1 � qij

" #
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where xi2Rn, i2{1,. . .,N} are the data points in a high dimensional space Rn, the measure for

being close is given by,

pijj ¼ e�
dðxi ;xjÞ� ri

si ;

d(�,�) is a metric (e.g., Euclidean distance), ρi is the distance to the nearest neighbor and σi is

set such that

Xk

j¼1

e�
dðxi ;xjÞ� ri

si ¼ log
2
ðkÞ

with fixed k being the number of nearest neighbors for each data point.

Illustratively spoken, each data point i is the measurement of a single cell where the corre-

sponding expression values of the genes are modeled by the vector xi, where each dimension is

assigned a gene. The distance measure d(xi, xj) is a proxy for the similarity of expression pat-

terns because if the expression of the corresponding genes is similar (e.g., the cells have the

same phenotypic behavior), then the distance is small, while in cases of cell i and cell j have dif-

ferent phenotypic properties, the distance is supposed to be big.

With such a set of parameters, the pi|j ranks the nearest neighbors, canceling out the depen-

dence on the distance between points, making the map “uniform”. Furthermore, we symme-

trize

pij ¼ pijj þ pjji � pijjpjji

and set

qij ¼
1

1þ ajjyi � yjjj
2b
2

where yi2Rd, i2{1,. . .,N} are the corresponding vector representations of the data points

xi2Rn, i2{1,. . .,N} in the low-dimensional space Rd (e.g., plane) and a, b are chosen with a

least square fitting to the curve

1; if jjyi � yjjj2 < c

e� jjyi � yjjj2 � c; otherwise

(

where c (min-dist) is the desired separation in the low dimensional space where ||�||2 repre-

sents the Euclidean distance. The above objective is minimized if qij (meaning which pair i, j is

close in the low-dimensional vector space) is chosen similarly to the corresponding pij (which

pair i, j is close in the high-dimensional vector space), meaning that the topology of the data

points (each pair i, j) of being close or far in the high-dimensional is reflected in the low-

dimensional vector space as well.

Alternatively, there is also the t-SNE method [2] implemented in our pipeline, which works

similarly to UMAP.

By first removing redundant genes using the PFA, we reduce the dimensionality of the

input space. This can be an important step in order to counteract the curse of dimensionality.

Reducing the input space reduces the complexity and allows the UMAP method to achieve

faster and possibly more accurate results [15, 20].
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Labeling of the clustering

After UMAP leaves us with a two-dimensional representation of the cells, we now aim to auto-

matically assign labels to the cluster, resulting from the UMAP embedding/clustering, with

some suitable method to process the clusters subsequently in our pipeline. Clustering allows us

to identify and label groups of cells with a high similarity with regard to their feature space

(gene expression values). Similarity means that their expression pattern has placed them in a

neighborhood with each other in the original feature space (all expression values). Hence, the

UMAP method has plotted them together in the plane, at the same time separating them from

those not in a neighborhood, i.e., with a different expression pattern. Consequently, there are

density variations/drops (data points per area) between the different clusters of single cells,

projected by UMAP into a plane, defining the clusters. This is the case because the clusters are

separated, meaning that there are areas where there are no cells, resulting in a density of zero.

For the next processing step, we use the Density-Based Spatial Clustering of Applications with

Noise (DBSCAN) [17] algorithm to identify the clusters separated by density drops while not

having to assume spatial properties or characteristics regarding the shape of the clusters.

DBSCAN introduces a criterion using a minimum number of samples (cells) and a radius ε
to define a minimum density of cells per area a cluster should have. Clearly, the spaces with no

cells around the clusters (density equals 0) are below such a threshold.

The algorithm starts by picking a cell at random. If that cell has the minimum number of

cells in its radius, their entirety is considered a cluster. It then repeats this process with each

cell in the cluster. Once no more cells are added to the cluster, DBSCAN opens up a new clus-

ter outside of the previous ones. When DBSCAN is finished, each cell is assigned a label. This

label either assigns them to a cluster or marks them as noise.

As an alternative, we consider the Hierarchical Density-Based Spatial Clustering of Applica-

tions with Noise (HDBSCAN) [18] algorithm. HDBSCAN is very similar to DBSCAN. It uti-

lizes hierarchical clustering in order to become more robust to noise and to density variations

within a cluster as well as between clusters since we are not sensitive in this case if a density

drops below the criterion of DBSCAN describing the number of cells within a circle with

radius � potentially causing several labels within one cluster, which could be rather due to

noisy variations and thus not desirable or due to a fine structure within a cluster, which can be

further analyzed with the subsequent pipeline. HDBSCAN only requires the minimum num-

ber of samples (cells) within a cluster for its criterion.

Identify relevant genes for separating labels

The output of the previous step leaves us with labels for our cell data. We can consider the

function that assigns each cell a label/cluster as a function where the expression levels of genes

are the arguments. Next, we would like to generate (“learn”) the function that provides the

label of a single cell given the expression level of relevant genes. For this purpose, we can select

at least two labels for which we would like to get relevant genes from whose expression levels

we can assign a single cell to one of the selected clusters. For this purpose, we use a chi-square

test of independence between two features where the label is considered as one feature and the

second one is the expression level of a gene.

For the discretization, we again use Algorithm 4 from Breitenbach et al. (2022) [14] with

the same setting as in the PFA selection stage. This time, the binning is applied to the gene

expressions and the label. As the label is already discrete, the algorithm handles this automati-

cally. The considerations for min_n_datapoints_a_bin hold as discussed above, while we rec-

ommend the same value as used for the PFA if possible. The chi-square test of independence

allows us to check for statistical independence between a gene and the label. When applied to
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each combination of gene and label, we are able to separate between genes that are statistically

independent of the label and those that are not.

As those unrelated genes do not provide any further information, we can safely remove

them. This is an important step as it not only reduces the dimensions even further but also

leaves us with a set of genes that are relevant to the cluster differences, allowing for a better

understanding of the data.

Mutual information

In the last step, we can calculate the mutual information each remaining gene shares with the

labeling. The mutual information models the information about the label knowing the expres-

sion value of the gene and vice versa. For a mathematical definition and more explanation,

please see Caliskan et al. (2023) [3]. The purpose of the calculation is to balance between the

size of the gene set modeling the difference between the labels (phenotypes) and the accuracy

of the classification that is possibly based on the selected genes. When ranking the genes

according to mutual information that they have in common with the labels and selecting genes

above a threshold of mutual information, significant information for the difference is lost at a

certain threshold. Consequently, the corresponding function mapping the expression levels of

these genes to the labels becomes more and more an approximation the higher the threshold

is. The results of the mutual information calculation show us how relevant a gene is to a cluster

difference and allow for further reduction of genes with very low mutual information. A small

set of meaningful genes improves explainability.

Validation

In order to validate the results, we chose to append a validation script. Using this script, we

would like to evaluate whether the resulting set of genes contains enough information about

the difference between the detected clusters of interest. For example, the threshold for mutual

information was not too high, and not too many important genes were cut out. The validation

uses machine learning on the gene expressions of the selected genes in order to predict the

labels. If the accuracy of the classification is high, it means that our gene selection provides rel-

evant information to separate the labels (phenotypic differences). For this purpose, we chose a

Multi-Layer Perceptron Classifier, but it is possible to use other classification methods. First,

the data set is split into training and test sets. The classifier is then trained and evaluated. Due

to the stochastic training method, this process is repeated for a predefined number of sweeps.

The output is the mean of the accuracy scores of all sweeps. If the classifier achieves a suffi-

ciently high accuracy, and also compared to a model accuracy based on all available genes it

does not have a significant drop, it means that the gene set captures enough information for a

model to learn the relations between gene expressions and cell clusters. The reverse does not

hold, as a poor model accuracy might be due to a suboptimal choice of model or hyperpara-

meters for this purpose. In our case, we use the ML methods as an easy-to-use framework to

generate a function connecting input with output and thus to prove the existence of such a

function with sufficient accuracy based on our gene selection.

Explainability

For further explainability of the resulting genes, we provide two ways of visualizing the impact

of genes on the label decision. The first method utilizes the Shapley Additive Explanations

(SHAP) [4] framework: https://github.com/slundberg/shap. SHAP is able to compute Shapley

values from game theory based on a model and data. In our case, we train a Multi-Layer Per-

ceptron Classifier using the genes detected by the pipeline as features. The SHAP
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KernelExplainer uses a special weighted linear regression in order to compute the Shapley

values. The results are visualized for each possible label, please see the Results section for an

illustration. The combination of the value on the x-axis and the color shows how gene

expression influences the classification. The color implies if the corresponding gene is

highly or lowly expressed. The values on the x-axis (SHAP values) show how much and in

which direction the concrete value of the expression (encoded in the color) of the corre-

sponding gene influences the classification for a certain single cell. A negative SHAP value

implies that a gene’s expression level of the corresponding single cell supports the decision

of the ML model against the respective label. A positive SHAP value implies the opposite,

meaning that the corresponding expression value of the gene rather pushes the model to

decide to classify the corresponding single cell into the corresponding class. The higher the

absolute SHAP value, the higher the impact on the decision. If we next consider all single

cells in the plot, we can derive some rules, like if gene X is highly expressed (many single

cells/data points have a high value), then the model classifies a single cell to the correspond-

ing phenotype (high SHAP value).

As an alternative second method, we train a Decision Tree. The tree structure, which repre-

sents the rules learned, is essentially based on two parameters: defining the maximum depth of

the tree to be trained and the minimum number of samples required for the tree to form a new

leaf. With these two parameters, we can prune the tree structure to the simplest one where clas-

sification still has sufficient accuracy. After the training, the tree structure is plotted. This

allows for another approach to determine the relation between certain gene expressions and

the classifier’s decision. The procedure works as follows: If the rule (expression of gene below a

displayed threshold) is fulfilled, take the right branch, or else the left branch. By applying this

instruction, we can construct relations about the expression level of genes and how these rela-

tions are connected to a label (phenotypic difference between two cell types). For an illustra-

tion, please see the Results section.

Combinations of stages

Of note, our pipeline (Fig 1) is designed to work even while skipping some steps, e.g., doing a

UMAP plot without previous PFA dimension reduction. However, such a step can provide a

different set of genes that are useful, e.g., in case no appropriate drug target is given in the pro-

vided set.

Furthermore, in our pipeline, the feature selection/reduction step before UMAP is not lim-

ited to PFA. Our modularized code can be easily extended with other methods. Even if the fea-

ture reduction generates a reduced space of transformed genes, like PCA or autoencoders do,

we can switch back to the space of original genes after the labeling, apply PFA, chi-square test

to identify label-related genes, and the validation and explainability, to get a small and mean-

ingful (with high explanative power) set of genes from the original set of genes to have a well-

interpretable result.

With this in mind, we describe the data preprocessing and the analysis of the biological

data used to showcase the application of the characteristic gene extraction pipeline.

1. Preparation. The preparation required for this analysis is a simplified and slightly mod-

ified version of the preparation steps required for the PFA described in Caliskan et al. (2023)

[3]. In our showcase, we analyze the data set generated by Solé-Boldo et al. (2020) [6], which

provides a Seurat object containing information on cell type and age group.

In the first preparation step (performed in R (version 4.2.0 [21]) using RStudio (“Prairie

Trillium” Release (9f796939, 2022-02-16) [22])), we split the data set into subclusters according

to condition (‘young’ or ‘old’).
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The subsequent PFA requires only the gene names and the respective conditions, both of

which are provided in the metadata of the Seurat object. The subsequent gene extraction steps

are performed in Python; detailed information on the required packages for the preparation

and version information can be found on GitHub (https://github.com/AC-PHD/NoLabelPFA,

https://github.com/LauritzR/characteristic-feature-extraction). Our preprocessed file con-

tained 21352 genes measured each in 15458 single cells.

As in our previously described simpler workflow requiring labeled groups and hence more

information [3], the resulting selection is then transformed into an input table containing

information on gene expression, the respective gene names, and labels according to the

conditions.

For the subsequent analysis, the tool temporarily sets aside the gene names and labels and

focuses solely on the counts data. Once the analysis is complete, the gene names and labels are

reintegrated to determine the associations and characteristics of the different genes and single

cells within the clusters.

The resulting output (preprocessed_data.csv, the gene expression data, and comparison_la-

bels.csv, the information regarding labels to compare with results from clustering in stage 4) is

required for the subsequent analysis.

2. Analysis. While in the workflow presented in Caliskan et al. (2023) [3] labels are

required to find relevant genes characteristic for the differences, the new pipeline (Fig 2) is

able to remove redundant genes without requiring the labels in advance. The reason is that the

first part of the PFA does not require information like a label. For our example, we set the PFA

parameters as cluster_size = 50 and min_n_datapoints_a_bin = 500.

The PFA results are used for a subsequent UMAP analysis, resulting in a UMAP embedding

based on the reduced feature space.

Both DBSCAN and HDBSCAN can be used for the subsequent cluster analysis. For our

analysis, we used the DBSCAN parameters eps = 1, min_samples = 15, and the HDBSCAN

parameter min_cluster_size = 15. Ideally, these analyses result in several clusters containing

only or mostly cells of one condition, even if the conditions of the original Seurat object over-

lapped since most conditions affect all cell types of a Seurat object. To select the clusters, the

cell labels are reconnected with the respective cells and visualized as a bar plot containing a bar

for each cell type, which is either split into two colors (for a “mixed group” of two conditions)

or is (mostly) of a single color for “clean clusters” of a high purity.

By selecting “clean clusters” containing mostly cells of one condition (e.g., a cluster of

mostly young cells and a cluster containing mostly old cells) and comparing these clusters

directly with each other, the relevant genes for the different conditions are found. Therefore,

the respective cluster numbers need to be selected for the “find_cluster_differences” steps, e.g.,

cluster 5, which contains mostly old cells, and cluster 8, which contains mostly young cells. In

other words, we select genes by whose expression profile we can clearly assign the correspond-

ing cell to a class. Since these classes coincide with the clear condition (here, a high purity of

either young or old; see Fig 4 in Results), we can assume that the identified genes also encode

important information for phenotypic differences.

Analogous to the previously described mutual information step [3], the get_mutual_infor-

mation step selects and ranks the genes apparently responsible for the differences between the

two clusters. We are aware that the pairwise mutual information between gene expression and

Fig 1. Schematic visualization of a possible sequence of steps performed during the analysis. Different

combinations of the steps are possible depending on the data set and research question. The * indicates that stage is

optionally and, depending on the data set and research question, might not be required to obtain a small and

meaningful data set.

https://doi.org/10.1371/journal.pone.0302045.g001
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label does not cover information that is captured in the combination of gene expression, e.g.,

two genes with each a low mutual information could have a big contribution to the label pre-

diction. However, according to our experience, the pairwise mutual information is a purpose-

ful approximation that provides working examples in a short computation time. An

alternative is to perform the validation step on each combination of genes, e.g., after or even

before the find_cluster_differences, to find a combination of genes based on whose expression

values a classification with a sufficient accuracy can be made. However, such an approach

might be hindered by the combinatorial effort. While only the top-ranked gene would have

been sufficient for separating the clusters correctly, we decided to consider the five top-ranked

genes for the next analysis steps, which gives more context and resulted in an accuracy of

100%. Therefore, the parameters were set to select five genes (n_highest_mutual_informa-

tion = 5) and analyze the difference between clusters 5 and 8 (clusters = [8,5]). For the tree

Fig 2. Visualization of the workflow extracting characteristic genes. Created with BioRender.com.

https://doi.org/10.1371/journal.pone.0302045.g002
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explainer, we have chosen min_samples_leaf = 10. To evaluate the impact of the respective

genes on the decision using SHAP, we applied the same parameter settings (n_highest_mutua-

l_information = 5, clusters = [8,5]).

The validation step gives information on the correlation between the number of selected

genes and the resulting prediction accuracy (similar to the validation in Caliskan et al. (2023)

[3]).

3. Enrichment analysis. To showcase a possible downstream analysis method, we per-

formed an enrichment analysis in R by analyzing the five top-ranked results using the cluster-

Profiler Package [23, 24] (version 4.4.2) and the C5 ontology gene set of the Molecular

Signatures Database (MSigDB) [25, 26]. The C5 collection contains various ontology gene sets,

which can be divided into Gene Ontology Biological Processes (GOBPs), Gene Ontology Cel-

lular Components (GOCC), and Gene Ontology Molecular Functions (GOMF).

Results

Our pipeline delivers its results in the following order:

i. unlabeled feature selection determines objectively groups, including minimal gene sets sepa-

rating different groups (clustering of Seurat objects; Fig 3)

ii. Next, ML explainability methods transform the features correlating with phenotypic differ-

ences into causal reasoning.

iii. This is further supported by additional pipeline and visualization tools (Fig 4), allowing

user knowledge to be integrated, which further boosts causal reasoning and explainability

(Figs 6 and 7).

The following section examines in detail the results achieved by the pipeline, integrating all

three steps. The potentially relevant genes resulting from the analyses of this pipeline are

Fig 3. Clustering of the Seurat object. (A) Clustering by cell types and ages. (B) Clustering by age.

https://doi.org/10.1371/journal.pone.0302045.g003
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visualized in Fig 6 and available in the S1 Data. Additionally, the complete results of this analy-

sis are available in the S1 Data. Users interested in more than the five top-ranked genes need

to adjust the value of “n_highest_mutual_information” accordingly.

The clustering of the Seurat object of the data set by Solé-Boldo et al. (2020) [6] (source of

the data: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE130973) in R shows that

Seurat objects of single-cell sequencing data usually cluster by cell type (Fig 3). While the cell

types are clearly separated, almost all cell types appear to contain cells of both conditions

(OLD and YOUNG).

For clusters that show no clear differences between two conditions (e.g., treated vs.

untreated, different tumor types, or, as in our workflow for demonstration purposes, ‘old’ and

‘young’ cells), our showcased method follows a different approach. The first step of the work-

flow is the previously described PFA [3], which removes redundant genes, resulting in a

smaller set of genes (keeping only 5413 genes of the 21351 genes), which are subsequently visu-

alized as a UMAP plot (Fig 3A).

The UMAP plot of the relevant PFA genes shows clear clustering (Fig 4B, visualized with

DBSCAN). While some of these clusters contain cells of both conditions (e.g., cluster 1 in Fig

4C), two clusters contain mostly cells of only one condition (e.g., cluster 5 and 8 in Fig 4C). If

the bars indicate the presence of more than one cell type, this might be due to the cell types not

being clearly separated by gene expression, and the differences in phenotype might be due to

other differences between the conditions, such as epigenetic effects like methylation or other

information that is not encoded in the current gene expression data set. Furthermore, a differ-

ent hyperparameter setting of the used embedding method, the feature selection method, or if

one is used at all, could also influence how single cells are clustered such that clusters coincide

with certain conditions. In the present case, clusters 5 and 8 contain a population of high

purity from each condition based on the methods and hyperparameters used.

Fig 4. Visualization of the selected PFA genes. (A) UMAP plot of the relevant PFA genes. (B) Clustering according to DBSCAN. (C) Composition of the

different clusters according to condition (OLD or YOUNG).

https://doi.org/10.1371/journal.pone.0302045.g004
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As an alternative to DBSCAN, it is also possible to use HDBSCAN, which also results in

clearly separated clusters (Fig 5A), which contain cells of both conditions (cluster 8 in Fig 5B)

or mostly cells of one of the conditions (e.g., cluster 2 and 3 in Fig 5B).

Visualization of clusters that are separated by the condition is an advantage of the compared

pipeline compared to the overlapping visualization of the conditions of the original Seurat

object (Fig 3B), which was specifically chosen for this showcase. For the validation step, we

have set the number_sweeps = 20. Choosing five genes resulted in a balanced accuracy of

100% for the training data and a balanced accuracy of 100% for the test data. If we choose five

random genes in each sweep, we obtain a balanced accuracy score of about 52% on the train

and test set. This clearly shows that a selected small number of genes carries precise informa-

tion to separate the classes that deviate from randomness. As a control, we validate on all avail-

able genes that have a non-constant expression level, providing also a balanced accuracy of

100% on the train and test set. The high accuracy both on all genes and our selected ones

shows that the five genes selected by our pipeline contain all the relevant information from the

total data set with regard to separating the corresponding clusters.

For the subsequent analyses, the results of the DBSCAN step (Fig 4B) were used, specifi-

cally, cluster 5 (mostly old cells, see Fig 4C) and cluster 8 (mostly young cells, see Fig 4C). In

the explainability analysis (Fig 6), we see that high expression of the characteristic genes is a

clear separator between fibroblasts from young and old humans since, in Fig 6A, high expres-

sion values make the model decide to classify a single cell into class 5 (condition “old”), which

is what the positive SHAP value means (x-axis). In addition, in Fig 6C (tree explainer), we see

that a decision for class 8 is based on the rule if the expression value of PLK3 is below 0.047. If

this is the case, a cell is classified with label 8 (condition “young”). If the expression value is

above 0.047, the decision tree decides for class 5 (condition “old”).

Additionally, we performed an enrichment analysis using the five top-ranked genes. This

step only requires a list of the respective gene names as input, and the enrichment results can

help estimate the top-ranked genes. Since Solé-Boldo et al. (2020) analyzed single-cell data

derived from healthy donors of two age groups (“young” and “old”) [6], the results of the

enrichment analysis (Fig 7) ought to be associated with age-related changes. The most relevant

genes are associated with a biological process (“CYTOPLASMIC MICROTUBULE ORGANI-

ZATION”), three cellular components (“SPANNING COMPONENT OF PLASMA MEM-

BRANE”, “SPANNING COMPONENT OF MEMBRANE”, and “PHOTORECEPTOR

Fig 5. HDBSCAN can be used as an alternative to DBSCAN. (A) Clustering according to HDBSCAN. (B) Composition of the different clusters according to

condition (OLD or YOUNG).

https://doi.org/10.1371/journal.pone.0302045.g005
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INNER SEGMENT”) and 14 molecular functions, including “VASCULAR ENDOTHELIAL

GROWTH FACTOR RECEPTOR BINDING”, “EPIDERMAL GROWTH FACTOR RECEP-

TOR BINDING”, “P53 BINDING”, and “INSULIN RECEPTOR BINDING”. Some of the

results are associated with the cell cycle, or cellular senescence, which is among the Hallmarks

of Aging [27, 28]. Additionally, some of the results can be associated with other Hallmarks of

Aging [27, 28] or the Hallmarks of Fibroblast Aging [12].

Discussion

The novelty of the approach and comparison to alternatives

Our analysis resulted in a ranked list of several genes that appear to be essential for the correct

prediction of the condition, meaning that the separation of expression patterns indicates a

clear characteristic difference between young and old cells. Despite the original data showing

no clear clustering regarding the condition (young/old) due to the experimental setup for our

use case, the analysis steps resulted in several clearly separable clusters, containing mostly

young or mostly old cells, as well as “mixed clusters” containing cells of both conditions.

Since we compared ‘young’ and ‘old’ using all genes of the data set, the expression of the

single-cell genes of the clearly separated clusters of high purity of either young or old should

be involved in the age-related differences between all of the cell types. As demonstrated above,

the PFA approach in combination with DBSCAN (and alternatively HDBSCAN) was able to

obtain genes relevant for clustering according to condition and resulted in clusters containing

mostly cells of the same condition.

This showcases that our presented pipeline can separate cells of different conditions into

separate clusters for each condition and identify characteristic genes for the differences. As a

Fig 6. Gene expression and condition of the five top-ranked results. (A) SHAP values of cluster 5 (mostly old cells; compared to the

young cells, the gene expression is upregulated in the old cells). (B) SHAP values of cluster 8 (mostly young cells; compared to the old

cells, the gene expression is downregulated in the young cells). (C) The tree explanation visualizes the top-ranked result (in this showcase

PLK3) and the clustering for PLK3 expressing samples. 17.0% of the PLK3 expressing cells are among the cells of cluster 8 (mostly young

cells), and 83.0% of the PLK3 expressing cells are among the cells of cluster 5 (mostly old cells). Thus, PLK3 is upregulated in old cells.

https://doi.org/10.1371/journal.pone.0302045.g006
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new supplementary tool, this approach allows the researcher to focus on the general differ-

ences between the single-cell data of different conditions, in particular where conditions such

as a phenotypic property are given via additional labels, which can be infused into the label

comparison step.

We remark that a comparison of methods in the area of causal reasoning, both quantita-

tively and qualitatively, is challenging: First, in nature, there are several explanations possible

for the same observation, e.g., depending on where one starts explaining. Second, if a pheno-

type of a cell depends on the activation of two pathways with each several genes, one by one

organized in each pathway, then the expression profile of both pathways can be described by a

pair of genes, one gene from each pathway. This example demonstrates that any pipeline pro-

viding a small and minimal gene expression set cannot provide a unique solution in such a

Fig 7. Gene ontology enrichment analysis of the five top-ranked genes. The color gradients in A to C indicate the adjusted p-values.

(A) The resulting Gene Ontology Biological Processes (GOBP). (B) The resulting GO Cellular Components (GOCC). (C) The resulting

GO Molecular Functions (GOMF). (D) CNET plot visualizing the GOMFs that were associated with the five top-ranked genes.

https://doi.org/10.1371/journal.pone.0302045.g007
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case, while all results preserve all necessary information to explain the total gene expression of

both pathways. Third, since the former example demonstrates the issue of identifying a ground

truth for a difference and thus several equal solutions can co-exist, a quantification of the accu-

racy of different pipelines is also challenging.

Hence, we make no direct comparison of different tools compared to our pipeline but

rather aim at providing an additional view of the data with our tool, getting another set of

genes from which an explanation might come more easily. The presented pipeline identifies a

mathematical ranking of genes in the separating gene set.

Similarly, we do not favor any particular method for causal reasoning but rather believe

that our pipeline allows using an array of methods to give a strong basis to determine which

causal relations are there. Besides ML methods, we also actively incorporate user-specific

domain knowledge via our visualization tools.

In the following, we would like to show how our method differs from existing methods in

terms of mathematical methods since different methods rely on different assumptions that

might be more fulfilled on some data sets and on others less such that we get different results

with each method. Even if each result captures all necessary information for describing an

observation (assuming corresponding assumptions are sufficiently fulfilled), depending on the

experience of the users, some might find an explanation more easily from one result and some

from the other.

Related methods

Hancer et al. (2020) have reviewed various methods employing unsupervised learning and

unsupervised feature selection [29]. They highlight the importance of clustering as a typical

part of unsupervised learning, focusing on feature selection and describing and evaluating a

variety of different feature selection approaches [29]. Several of these approaches combine the

selection of features and clustering [29]. Nevertheless, all of these approaches have some draw-

backs. For instance, some require all features during the validation of the clusters despite hav-

ing selected a number of the most relevant features, while other promising approaches

combining clustering and eliminating redundant features have not been thoroughly experi-

mentally assessed [29]. Additionally, some approaches require that the number of clusters or

features is predefined; others do not perform proper clustering for data with unshaped (non-

gaussian) distribution, which is common in real-world data [29]. While approaches employing

sparse learning give promising results, they also require computational power and complex

matrix operations, and Hancer et al. (2020) emphasize the need for hybrid approaches inte-

grating filters to reduce the complexity of the data and wrappers for finding feature subsets

[29]. Our work aims to provide a framework combining different techniques with the focus of

finding explanations for phenotypic differences originating in the gene expression or in the

input feature set, respectively. Due to our modularized code architecture, provided via a

GitHub repository, our pipeline can be easily extended.

Shi et al. (2023) propose a novel approach to mitigate the challenges of unsupervised feature

selection, which often leads to information loss when relying solely on pseudo labels or no

labels at all. Their method leverages binary hash codes as weakly-supervised multi-labels,

which are autonomously learned to enhance the accuracy of feature selection [30].

While introducing labels during feature selection can improve the accuracy, our approach

differs in that it facilitates user interaction with the data and helps infuse their domain knowl-

edge into the labeling process, which marks interesting information for causal relations.

Other approaches, such as the unsupervised feature selection using flexible optimal graphs

(FOG-R and FOG-C), recently introduced by Chen et al. (2022), aim to improve and optimize

PLOS ONE An orchestra of machine learning methods reveals landmarks in single-cell data

PLOS ONE | https://doi.org/10.1371/journal.pone.0302045 April 17, 2024 24 / 36

https://doi.org/10.1371/journal.pone.0302045


the similarity matrix used for feature selection, resulting in a sparser projection matrix and a

better performance than other current unsupervised feature selection algorithms [31].

The process of feature selection is also being optimized, for instance, in the approach by Li

et al. (2022): multiple feature filters and single common feature filter [32]. Their unsupervised

2-D weight-based approach eliminates the need for additional hyperparameters and surpassed

contemporary methods [32].

Another optimization approach is to minimize redundancy, for example, by using Gong

et al.’s autoencoder with redundancy control (AARC) [33] or the principal feature analysis

(PFA) [3]. These approaches assume that features can correlate or be dependent and thus can

be regarded as redundant. Reducing this redundancy can improve the network structure and

increase efficiency [3, 33]. Since all of these methods reduce the feature space according to dif-

ferent mathematical rules based on different assumptions to work properly, the selection of a

feature selection method might depend on the concrete data set to provide remaining features

that allow a powerful causal explanation. In order to lower the effort to include further meth-

ods, our GitHub repository is structured in a modularized way, allowing an easy exchange of

the feature selection method that seems most reasonable to the user while nothing has to be

changed in the subsequent pipeline.

The variety of unlabeled clustering approaches has been discussed in detail by Hancer et al.

(2020) [29], and more recent approaches, such as those introduced by others, including Shi

et al. (2023) [30], Gong et al. (2022) [33], and Chen et al. (2022) [31]. Our method is unique so

far in terms of the combination of methods that are intended to provide detailed checkpoints

by visualization in the data processing from raw single-cell data to an explanation of pheno-

typic behavior. At each step and checkpoint, the user can infuse their domain knowledge

about biology and can actively control the intermediate results to optimize causal

explanations.

We highly appreciate the many approaches that have been developed and suggest combin-

ing different approaches in a similar manner as different data sets require different methods

that fit better to the given data structure. In our example, selecting only one gene would have

been sufficient for discerning between both clusters and using five genes resulted in a predic-

tion accuracy of 100%. Since these genes appear to be essential for the correct clustering, they

might be relevant for the differences between the two conditions–in our example, the differ-

ences in skin fibroblasts of a typically sun-protected area between younger and older men

whose separation of cells highly correlate with the two clusters investigated. As discussed

below, all of these five genes can be linked to aging, although they are not the first genes that

come to mind when thinking about aging. This demonstrates that our approach is a valuable

additional method for identifying potentially relevant genes, even with a ranking, possibly

resulting in genes that might be of greater relevance than currently assumed and thus resulting

in a better allocation of resources.

Critical evaluation of the achieved biological results

By comparing a cluster containing mostly young cells with a cluster containing mostly old

cells, the results of our showcase analysis should reveal age-related changes. However, the

method is also suitable for other analyses, e.g., for comparing treated and untreated cells or

resistant vs. responding tumor cells.

The resulting ranked list of relevant genes is based on the mutual information in the analy-

sis [3]. However, we combine here in our new powerful pipeline: (i) unlabeled feature selec-

tion, (ii) ML explainability methods transforming features correlating with phenotypic

differences into causal reasoning, with (iii) further pipeline and visualization tools.
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With this optimized pipeline, several biological implications can be derived by using our

pipeline directly on the single-cell sequencing data without further analysis and with a focus

on assessing individual high-ranked genes with the best information:

Since this approach pooled all single cells of the younger donors in one group and those of

the older donors in a second group, both groups contain several cell types. The changes in

gene expression will therefore reflect the changes that were deemed most relevant for the dif-

ferences between the two age groups according to the ML approach.

While it is possible that not all cell types within the two groups express all these genes, the

most relevant genes, ranked by mutual information, enable the algorithm to separate the cells

according to their cluster-belonging. However, since the clusters also have a high purity of

properties, young and old, the difference between these clusters should encode for general

expressional differences of aged cells.

According to the SHAP results (the ML explainability algorithm we used [4]), all of the five

top-ranked results (PLK3, CCDC88A, ZNF7, SLC24A2, and RP11-372K14) in the mutual

information were upregulated in the old cells, indicating that these genes might be relevant for

age-related changes. When analyzing new data or in a study examining age-related changes in

gene expression, these genes would now become the focus of further attention and subsequent

analyses. To demonstrate the relevance and significance of our methodology, we will now

assess these five highest-ranked potential genes of interest and their relation to aging.

The top-ranked Polo-like protein kinase 3 (PLK3) was deemed as the most relevant gene by

our ML method and appears to be upregulated in old age.

Although PLK3 is the least explored polo-like kinase [34], it might be relevant for aging, as

it is one of the 55 core senescence genes reported by Hernandez-Segura et al. (2017) [35]. In

their analyses, PLK3 was among the upregulated genes associated with G1 DNA damage

checkpoint and regulation of the mitotic cell cycle [35]. Therefore, upregulation of PLK3 in

the old single cells might indicate a higher number of senescent cells in the old samples, which

corresponds with the well-known age-related increase of senescent cells and senescent fibro-

blasts in aging skin, which further contribute to aging and inflammation via the senescence-

associated secretory phenotype (SASP) [36]. Since upregulation of PLK3 is associated with

DNA damage, DNA damage could be a causal relation that drives the aging process. If DNA

damage is a cause for aging in fibroblasts, it is necessary that a measure of DNA damage in the

cells of the cluster with cells from the young donors is smaller than in the cluster with the cells

obtained from the older donors. A measure for DNA damage could be, e.g., the number of

sites where the DNA has mutations. This example demonstrates how such an analysis can

guide useful experiments data-driven from the single-cell data to validate the hypothesized

relations targeted. Furthermore, it can be seen as a guided data collection as DNA damage can

be seen as a feature additional to the gene expression profile.

Due to the link between aging and inflammation, often referred to as “inflammaging” [37],

inflammation is among the critical areas of aging research defined by Kennedy et al. (2017),

which are also referred to as the seven “pillars of aging” [38] and are part of the expanded

“Hallmarks of Aging” [28]. Other areas of interest in aging research include but are not limited

to cellular senescence [27, 28], genomic instability [27, 28], the accumulation of DNA-muta-

tions [27], and adaption to stress [38].

PLK3 has also been associated with DNA repair [34] and has been examined regarding its

function in the response to different types of cellular stress and in oncogenesis [34, 39, 40]. In

aging mice, for example, Plk3 deficiency (in Plk3-KO mice) appears to accelerate tumor devel-

opment and results in more pronounced angiogenesis and larger tumor size, indicating a

tumor-suppressing function [41]. In human cells, PLK3 has garnered interest for its possible

effect on the treatment response in colon carcinoma, prostate cancer, and melanoma [34].
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Due to its participation in the stress response upon environmental stresses and oxidative

stress, it is assumed that PLK3 might be mainly involved in regulating the stress response, and

the inhibition of PLK3 has been shown to attenuate injury-induced apoptosis in a mouse

model of renal ischemia-reperfusion (I/R) injury [42]. However, besides regulating DNA dam-

age response and apoptosis, PLK3 has also been linked with cell cycle progression by regulat-

ing S phase entry [39, 41] as well as centrosomal function and the regulation of microtubule

dynamics, with its dysregulation resulting in cell cycle arrest and apoptosis [43].

Consequently, an in-depth investigation of PLK3 and its regulation during the aging pro-

cess might lead to a better understanding of the aging process and potential anti-aging inter-

ventions, making PLK3 an interesting target for subsequent laboratory research.

The second-ranked gene, Coiled-Coil Domain Containing 88A (CCDC88A), has also been

associated with cancer and aging [44, 45] and is involved in various biological processes,

including tumor angiogenesis, cancer migration and invasion, tumor metastasis, and epithelial

wound healing [44].

It is also known as Girdin (G alpha-interacting, vesicle-associated protein) and GIV and

interacts with STAT3 [46] and AKT [44].

The transcription factor signal transducer and activator of transcription-3 (STAT3) is a

central regulator of metastasis and is known to regulate genes that are involved in cancer

and wound healing [46]. Additionally, STAT3 has been reported as promoting a youthful

epigenetic state in articular chondrocytes [47], and interacting with STAT1 and thereby reg-

ulating senescence and inflammation, which might indicate its potential as a therapeutic

target for treating the senescence-associated inflammatory phenotype in obesity-related

type 2 diabetes [48].

In cancer and wound healing, STAT3 directly targets and upregulates CCDC88A, which

also enhances the activation of STAT3 via a positive feedback loop [46]. The upregulation of

CCDC88A during cancer progression and wound healing has been reported as being essential

for cell migration during both processes [46].

Since wound healing is impaired and delayed in elderly patients, understanding the age-

associated changes has been of great interest [49]. Due to CCDC88A being involved in wound

healing and interacting with STAT3, which appears to affect inflammation, examining the role

of CCDC88A in aged skin and during wound healing in aged skin might allow further insights

into age-related changes and impairments.

Vu et al. (2022), who analyzed single-cell sequencing data of young and aged mice and

compared wounded and unwounded skin, report that fibroblasts in unwounded skin only

showed minor age-related changes [49]. Therefore, observing the effects of different

CCDC88A expression levels in wound healing assays in skin samples of donors of different

ages might be of interest in subsequent analyses.

Besides being of interest due to its involvement in cancer and epithelial regeneration/repair

[46], the role of CCDC88A in cell aging has also garnered interest due to its function as a direct

downstream mediator of Akt signaling [45]. Lan et al. (2021) observed in human endometrial

microvascular endothelial cells (HEMECs) that the activation of CCDC88A, which is mediated

by Sirtuin 1 (SIRT1) and its deacetylation of Akt and PDK1, which subsequently activate

CCDC88A, results in delayed aging [45]. Both SIRT1 and Akt are involved in aging and have

already been shown to play essential roles in HEMEC aging [45]. SIRT1, along with all Sirtuin

isoforms, for example, is well-known as an attractive therapeutic target for aging-related dis-

eases and for its activation by the Sirtuin activating compound resveratrol, which can be found

in grapes and red wine [50]. Lan et al. (2021) suggest that SIRT1, Akt, and CCDC88A might be

potential therapeutic targets to treat HEMEC aging [45].
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The ranking of CCDC88A as the second-most relevant gene in our showcase-aging-analysis

indicates that the ML method can contribute to existing analysis methods while also highlight-

ing the potential importance of CCDC88A in aging.

Additionally, CCDC88A has been linked to brain tumor stem cell stemness, mTORC1 sig-

naling, DNA damage-induced cancer cell apoptosis, and cell cycle progression and appears to

affect the sensitivity of cancer cells to therapeutics [51]. Since CCDC88A appears to be essen-

tial for glioblastoma migration and invasion, and is associated with glioma malignancy, it has

also been suggested as a novel therapeutic target in malignant glioma [52]. Therefore, further

laboratory analyses regarding its expression and regulation upon aging are of great interest.

Like CCDC88A, the third-ranked result, Zinc Finger Protein 7 (ZNF7), has been associated

with glioblastoma [53]. The C2H2 ZNF protein ZNF7 is a member of the transcription factor

subfamily Krüppel-associated box (KRAB) ZNF subfamily of ZNF transcription factors, which

are characterized by having several C2H2 ZNF motifs and a KRAB repressor domain [53].

Despite being the largest family of transcription factors in higher eukaryotes, there is still little

known about the C2H2 zinc finger proteins [53, 54]. However, some of them have been associ-

ated with important functions during embryonic development as well as in cell cycle regula-

tion, cell proliferation, cell differentiation, and apoptosis [53]. In glioblastoma, ZNF7 has been

reported as a survival marker [53]. While Esteve-Codina et al. (2021) report that longer sur-

vival was associated with a high ZNF7 RNA expression, they also remark that further analyses

need to be performed, as a ZNF7 variant could not be detected with the antibodies used in

their analyses [53]. Additionally, ZNF7 has previously been reported as upregulated after the

induction of apoptosis [55] and has been associated with translational regulation and a poten-

tial role in systemic autoimmune arthritis [56]. Although ZNF7 has not explicitly been associ-

ated with aging yet, our results and its known associations indicate that further research

regarding its role and its potential functions in aging is warranted.

The fourth-ranked result, the upregulated solute carrier family 24 member 2 (SLC24A2),

encodes the K+-dependent Na+/Ca2+ exchanger NCKX2, which is a member of the NCKX

family and appears to be vital for motor learning and spatial working memory [57]. In a rat

model of chronic constriction injury (CCI), overexpression of SLC24A2 reduced the expres-

sion of inflammatory cytokines (tumor necrosis factor-α and interleukin (IL)-1β, and IL-6)

and appeared to reduce pain [57]. Zhou et al. (2020) report that an increased expression of

microRNA (miR)-135a-5p upon CCI downregulated SLC24A2. This results in a decrease of

SLC24A2 and NCKX2, which appears to be involved in the progression of neuropathic pain

(NP), a long-lasting refractory disease that often results from peripheral nerve injury and

occurs in up to 10% of the general population [57]. NP is frequently observed in patients with

AIDS, cancer, lumbar disc syndrome, or trauma [57]. Since selective regulation of NCKX2

expression or miR-135a-5p could relieve neuralgia, miR-135a-5p and its target, SLC24A2,

might be therapeutic targets for treating NP [57]. Additionally, miR-135a has been associated

with nervous system diseases, including malignant glioma, Alzheimer’s disease [57], which

was placed sixth among the leading causes of death for 2019 [58], and Parkinson’s disease [57],

which is the second most common neurodegenerative disease after Alzheimer’s disease [59].

In skin, SLC24A2 has been reported to be associated with skin color variation and it has been

hypothesized that it affects melanocyte stem cells, which might cause changes in skin color,

and might be involved in stress-related hair graying [60]. That it is among the top results of

our showcase analysis comparing ‘young’ and ‘old’ single cells also suggests the possibility of

SLC24A2 being involved in age-related skin changes and warrants further laboratory research.

Our mathematical approach allows us to identify differences between two conditions, such

as age-related changes in this showcase. This approach is not limited to genes but can also

detect changes in long non-coding RNAs (lncRNAs).

PLOS ONE An orchestra of machine learning methods reveals landmarks in single-cell data

PLOS ONE | https://doi.org/10.1371/journal.pone.0302045 April 17, 2024 28 / 36

https://doi.org/10.1371/journal.pone.0302045


The fifth-ranked result, the upregulated RP11-372K14.2 is among the top five results of the

ML-analysis. First of all, this demonstrates that, of course, we can compare here, besides pro-

tein expression via mRNA, any separating feature such as lncRNAs (or, for instance, metabo-

lite data or other features present).

Regarding the specific lncRNA, it has also been reported as one of the top five upregulated

lncRNAs in coronary artery disease (CAD) compared to healthy samples by Zhang et al.

(2021) [61] and might also be involved in chronic obstructive pulmonary disease (COPD)

[62]. It appears to be regulated by Forkhead box A1 protein (FOXA1), which has been associ-

ated with the activation of p16INK4a during cellular senescence [63]. Thus, it might also be

involved in aging or age-related changes and pathologies.

All of the five top-ranked results of our ML analysis can be associated with aging by com-

paring ‘young’ and ‘old’ cells, which indicates that the ML method applied in this analysis can

successfully indicate potential targets for aging research. Thus, this “first glance at potential

research targets” offers a convenient and efficient additional analysis approach for researchers.

This shows the potential use of our ML method as an additional approach for indicating

potentially relevant target genes starting from less distinctly separated clusters.

Embedding for higher dimensions than two

Besides the fact that not all information responsible for phenotypic differences might be

encoded in the gene expression data (e.g., methylation), some clusters might only be separable

in higher dimensions than two. For this purpose, the UMAP provides the option to also

embed in three or higher dimensions (but low dimension compared to the dimension of the

gene expression vector space) by the parameter n_components. Visualization might be chal-

lenging in this case of more than three dimensions; however, the DBSCAN or HDBSCAN can

still be applied. Consequently, one can always check in the “compare labels” step (stage 4) and

see if, e.g., clusters have been identified with a high purity of a phenotypic marker/property

that is worth analysis of the characteristic differences.

GO enrichment analysis

The result of the GOBP enrichment analysis, the GOBP Cytoplasmic Microtubule Organiza-

tion, based on our highest mutual information-ranked genes, indicates that the microtubule

might be affected by age-related changes. Microtubules play an important role in the forma-

tion of the spindle apparatus, also known as mitotic spindle, which is vital for cell division [64]

and thus the cell cycle. Besides being involved in cell migration, proliferation and differentia-

tion, microtubules also play a part in mitochondria transfer, during which they are cross-

linked with mitochondria via dynactin/dynein and kinectin/kinesin [64]. Additionally, the

GOMF Dynein Light Intermediate Chain Binding is also among the enrichment results and

has been associated with CCDC88A, which is also associated with the GOMF Insulin Receptor

Binding.

The impairment of the insulin receptor’s insulin binding ability, which is associated with

disruption of the brain glucose homeostasis and brain aging, as well as peripheral insulin resis-

tance, which is known as a typical feature of older age, highlight the importance of proper

insulin signaling and insulin sensitivity [65]. As a maintained insulin sensitivity has been

reported in the population of the oldest-old, while insulin resistance has been linked with an

increased risk for cognitive decline and dementia, including Alzheimer’s disease [65], Insulin

Receptor Binding could be of great interest in aging research. This is also confirmed by the

association of insulin sensitivity/reduction of insulin resistance as a favorable outcome for
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interventions targeting the Hallmarks of Aging “Disabled macroautophagy”, “Deregulated

nutrient-sensing”, and “Mitochondrial dysfunction” [28].

The vascular endothelial growth factor (VEGF) signaling family has also been associated

with Alzheimer’s disease [66], indicating a possible connection between the GOMF Vascular

Endothelial Growth Factor Receptor Binding and age-related disease, especially since the vas-

cular endothelial growth factor has already garnered interest as a potential therapeutic oppor-

tunity for the treatment of Alzheimer’s disease [67]. Furthermore, in mice, VEGF

overexpression as an intervention to target the Hallmark of Aging “Altered intercellular com-

munication” has been associated with improved health- and lifespan [28]. The PFA gene

CCDC88A, which is associated with the molecular function “Vascular Endothelial Growth

Factor Receptor Binding” is also associated with several other GO molecular functions, includ-

ing the GOMF Epidermal Growth Factor. Secretion of the epidermal growth factor (EGF) and

platelet-derived growth factor (PDGF) as part of the SASP can trigger activation and prolifera-

tion of progenitor cells [28], which further highlights the potential relevance of CCDC88A for

age-related changes.

Increasing the number of mutual-information-ranked genes from our total pipeline for

subsequent enrichment analyses can further increase the number of enrichment results, which

might lead to further insights. However, as here and previously described [3], a relatively small

number of PFA genes is already sufficient to distinguish between different groups or cell types

validated in stage 8 in terms of information content to separate the clusters.

As a next step after the enrichment analysis, it is possible to analyze omics data and changes

in protein expression to additionally check the in silico results [68]. This step, as well as the

additional analysis of another suitable data set, are a cost- and time-efficient preliminary step

before validating the results in vitro and in vivo. Nevertheless, when analyzing big data in bio-

medical research, the data quality and data integrity, as well as the comprehensiveness of the

metadata, can hugely affect the resulting analyses, which needs to be considered when reusing

a data set or publishing a data set [69].

Future research (investigate the fine structure of clusters)

The pipeline described here can be further developed and applied to analyze the fine structure

within clusters. Such a fine structure can originate in the fact that the gene expression data has

been collected over time or during a cell transition from one type to another. Due to this pro-

cess, a lot of intermediate steps could also be represented in the data set (not only the starting

and final state of the cell transition). These cells in the intermediate state might have only

minor differences from other cells. Consequently, the starting and the final cell states might

not build separated clusters in an embedding, but rather both will be connected by the inter-

mediate cell states. Such scenarios can be visualized by including the lifespan of a cell (experi-

mental time) or if a data set is composed of several measurements of different time points after

the starting time. Another option is to include the labels for the initial and final state cells (if

experimentally determinable) or even some intermediate cell states (if known) from some

annotation tools or other phenotypic characteristics known. Such labels can be included in the

UMAP plot; see, e.g., https://umap-learn.readthedocs.io/en/latest/plotting.html for further

details. If such labels/metrics are ordered within a cluster, it is a significant hint for some fine

structure.

Once such a fine structure is present, a question similar to the one studied in this work is

about which features/genes are of high predictive power to describe the fine structure within

the cluster and, thus, the cell development. The presented pipeline is immediately ready to be

applied in such use cases. After selecting only the single cells in the cluster with the fine
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structure of interest, one only has to define the correct output function where the label/metric

information can be given. Such information can be the two-dimensional coordinates in the

plane. This makes sense if, e.g., the initial states are located in one part of the cluster and the

final states in a different part (e.g., opposite). Then, the first two rows in the combined data set

in the find_cluster_differences are the output function (which then has two dimensions; set

the parameter number_output_functions accordingly). This method will find corresponding

important genes by which the coordinates can be predicted and thus might also contain the

relevant information to model the transition from the initial to the final state.

Furthermore, the one-dimensional output setting (number_output_functions = 1) can be

used when the fine structure in the cluster is given by a time label/metric (in case the time vari-

able takes continuous values), like a lifespan or a running time of the experiment. In this case,

the label data just needs to be replaced by time as an output function. While a label as the out-

put function is discrete, time as the output function is continuous. However, our current

implementation can deal with both kinds of output functions without any change. In the case

of discrete intermediate steps, the framework can be used by just using the corresponding

label representing the time order. The find_cluster_differences will then identify the genes that

can predict the initial, intermediate, and final states, which models the characteristic genes for

the transition.

In case the cluster describes a geometrical structure like a (bent) tube of the cells, in which

one assumes fine structure or has some label or metric that shows the fine structure (e.g., initial

state on one side and the final state on another side), one can fit a manifold to the cluster

parametrized by one or two parameters. An easy example is a linear model x ¼ x1

x2

� �
¼ vt þ c

where x1, x22R are the coordinates in the plane, v ¼ v1

v2

� �
; c ¼ c1

c2

� �
2 R2

are parameters to be

fitted, e.g., with a least-square method between the real coordinates of a data point y ¼ y1

y2

� �
2

R2
and its corresponding coordinates of the projection onto the manifold x1, x2. In this case,

the manifold is the line with respect to the parameters v and c. The parameter t2R is conse-

quently determined for each data point separately by the requirement to minimize the distance

between the real coordinates of a data point y and x in the Euclidean distance. Consequently,

for each data point to calculate t, which depends on the choice of v and c, we minimize the dis-

tance

1

2
ðy1 � x1ðtÞÞ

2
þ ðy2 � x2ðtÞÞ

2
� �

¼
1

2
ðy1 � v1t � c1Þ

2
þ ðy2 � v2t � c2Þ

2
� �

which determines t. By deriving this expression with respect to t, setting the resulting gradient

to 0 (characterization of the minimum of the distance function with respect to t), we obtain

t ¼
ðy1 � c1Þv1 þ ðy2 � c2Þv2

v2
1
þ v2

2

which replaces t in the least-square fitting and thus making the parameter t a function of the

optimization variables v and c. By such a procedure, the two-dimensional output function

(providing the coordinates in two dimensions) is replaced by a one-dimensional output func-

tion (t as the coordinate within the manifold), and the parameter t of each data point replaces

the corresponding label that was used in this present work. The find_cluster_differences can

then be used to identify the genes that predict the parameter t for each cell, which means that

we can describe the transition from the initial to the final state, which is encoded in the vari-

able t.
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A further option to transform a cluster into a manifold better fitting to its structure might

be to turn the Euclidian coordinates into polar coordinates, where each data point has a dis-

tance from a midpoint and an angle. This representation might be beneficial if the (fine-)

structure evolves from a midpoint since the genes are selected separately to describe the dis-

tance from the midpoint, modeling, e.g., steps of a development, and the angle, modeling, e.g.,

different cell fates.

Conclusion

In this work, unlabeled feature selection determines objectively minimal gene sets separating

groups and clusters. ML explainability methods transform the features correlating with pheno-

typic differences into causal reasoning, supported by additional pipeline and visualization

tools, allowing user knowledge to further boost causal reasoning.

A pipeline for extracting objective characteristic features has been developed, and its appli-

cation has been demonstrated with aging fibroblasts in the form of separating minimal gene

sets. The pipeline consists of several techniques from data analytics and machine learning with

the intention of identifying characteristic features for differences in phenotypic markers. For

this purpose, a particular focus was put on visualization and ML explainability methods to

check intermediate results with the pipeline and infuse domain knowledge about the biology

involved in the data analysis. Human knowledge and artificial intelligence boost and comple-

ment each other in this way. It was shown that in terms of aging, genes that are relevant for

important biological processes associated with the aging of humans and mice have been

identified.

The whole strategy is fully documented and made available, thus opening up further strong

application areas, e.g., regarding drug targets, applying the pipeline to heterogeneous tumor

single-cell data to investigate differences between phenotypic markers. Examples are treated

vs. untreated to study the mode of action or resistant vs. responding to find relevant genes

making up the resistance. Since our ML method can distinguish different cell types without

requiring further information, it is an uncomplicated and comfortable tool for analyzing dif-

ferences between different cell types or different conditions, revealing genes that are important

for distinguishing between the cell types or conditions. Due to the likely importance of the

genes identified by this in silico analysis method, our ML approach might contribute to saving

time and resources in both in vitro and in vivo research.
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