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Abstract

Background and objective

Diabetic neuropathy (DN) is a complex type of diabetes. The underlying cause of diabetic

nephropathy remains unclear and may be due to a variety of pathological conditions result-

ing in kidney failure. This study examines the protective effect of the methanolic extract of

Spilanthes filicaulis leaves (MESFL) in fructose-fed streptozotocin (STZ)-induced diabetic

nephropathy and the associated pathway.

Methods

Twenty-five rats were equally divided randomly into five categories: Control (C), diabetic

control, diabetic + metformin (100 mg/kg), diabetic + MESFL 150 mg/kg bw, and diabetic +

MESFL 300 mg/kg bw. After 15 days, the rats were evaluated for fasting blood glucose

(FBG), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phos-

phatase (ALP), urea, uric acid, serum creatinine, reduced glutathione (GSH), superoxide

dismutase (SOD), catalase (CAT), and lipid peroxidation (MDA). Gene expression levels of

cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response ele-

ment-binding (CREB), cFOS and the antiapoptotic protein Bcl-2 were examined.

Results

We observed that MESFL at 150 and 300 mg/kg bw significantly downregulated the protein

expression of cAMP, PKA, CREB, and cFOS and upregulated the Bcl-2 gene, suggesting

that the nephroprotective action of MESFL is due to the suppression of the cAMP/PKA/

CREB/cFOS signaling pathway. In addition, MESFL increases SOD and CAT activities and
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GSH levels, reduces MDA levels, and reduces renal functional indices (ALP, urea, uric acid,

and creatinine).

Conclusion

Therefore, our results indicate that MESFL alleviates the development of diabetic nephropa-

thy via suppression of the cAMP/PKA/CREB/cFOS pathways.

Introduction

Diabetes mellitus (DM) is a chronic condition that is characterized by a lack of insulin, high

blood sugar levels, dyslipidemia, and impaired nephrotic function. Previous studies have

shown that prolonged high blood sugar levels can lead to irreparable damage to several impor-

tant human organs, including the eyes, kidneys, and heart [1]. Diabetes-related nephropathies

(DN) are one of the leading complications associated with diabetes. The incidence of DN is ris-

ing rapidly in tandem with the diabetes epidemic [2]. Approximately 25 to 50% of people with

diabetes develop renal dysfunctions [3]. Diabetic nephropathy has been linked to increased

renal dysfunction and mortality [4]. For this reason, the primary objective of DN treatment

remains to treat hyperglycemia [5]. Oral hypoglycemic agents used in DM management thera-

pies must improve pathophysiology and inhibit glucose production in the liver. Furthermore,

the hypoglycemic agents used to treat DN are adipogenic agents [6]. Synthetic oral hypoglyce-

mic agents are highly toxic [7].

Dysregulation of biochemical pathways occurs due to increased blood glucose levels, accu-

mulation of reactive oxygen species (ROS) and excessive production of reactive oxygen species

that cause tissue injury [8, 9]. Factors that contribute to DN progression but are not limited to

include hyperglycemia, ketoacidosis, hypertension, and obesity. However, the precise mecha-

nism remains unclear. Oxidative stress plays a role in the development of diabetic nephropathy

[10]. In addition, ROS play a critical role in DN pathogenesis. However, the mechanisms

underlying several abnormal physiological activities in DN pathogenesis are complicated. It is

crucial to understand these pathways to identify novel therapeutic approaches to enhance

patient outcomes.

Spilanthes filicaulis (Schumach. & Thonn.) C.D.Adams syn. (Acmella caulirhiza Delile) is a

shrubby plant of the family Asteraceae that is often discovered in tropical and subtropical

areas, including India, Malaysia, America, Africa, and West Africa [11]. Spilanthes filicaulis
spp. is applied in the following ways: snakebite treatment (Ghana) using the aerial part of the

plant [12], emetic treatment using its leaves [13], intestinal diseases and diarrhea treatment,

chest pain, eczema, guinea worm, and toothache treatment using the whole plant [14].

Although, evidence of its usage in folkloric medicine for managing diabetes exits, few studies

have reported the antidiabetic potential of Spilanthes filicaulis. Recently, Ojo et al. [15]

reported the antioxidant, anti-diabetic, and anti-inflammatory activities of the ethyl acetate

fraction of S. filicaulis leaf. Furthermore, S. filicaulis aqueous extract had complete mucosal

cytoprotection in HCl/EtOH-induced gastric lesions in male Wistar rats [16]. Ethanol extract

of Spilanthes filicaulis leaf also attenuated abnormal on liver biochemical indices inn carbon

tetrachloride induced hepatic damage in Wistar rats [17].

Other pharmacological activities of Spilanthes filicaulis investigated on animal models

include antidiarrheal, antimicrobial, anthelminthic, antioxidant, etc. [18–20]. Currently, it is

thought that the genus Spilanthes spp. is active due to five constituent groups: alkamides,
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coumarins, flavonoids, terpenoids, and polysaccharides. In general, extracts from Spilanthes
spp. are employed more often than isolated substances in the pharmaceutical, medical, tradi-

tional, and cosmetic industries. This suggest why Spilanthes spp. extract performs better than

isolated molecules. Given the quantity of chemicals present in an extract from a medicinal

plant, it appears highly probable that pharmacokinetic potentiation or pharmacodynamic aug-

mentation will occur. The bioavailability of the biomolecules that reach the target sites to pro-

vide the necessary pharmacological impact is what determines whether the presence of plant

secondary metabolites in an extract is adequate to exert a pharmacological effect. Ojo et al.

[21] reported the presence of 13-octadecenal, ar-tumerone, tetrasoxane, oxirane, and oleic

acid, 4-hydroxy-3-methylacetophenone, 2-methyl-Z,Z-3,13-octadecadienol, 1-monolinoleoyl-

glycerol trimethylsilyl ether, cis-13-octadecenoic acid, and 3,11-tetradecadien-1-ol in Spi-
lanthes filicaulis Leaf methanol extract, via GC-MS studies. Among these compounds, alpha-

caryophyllene and piperine had the potential of inhibiting dipeptidyl peptidase-IV (DPP-IV)

activity [21]. In addition, Ilondu et al. [22] reported the presence of listed phytochemicals,

including flavonoids, phenols, glycosides, alkaloids, steroid glycosides and terpenes, in ethano-

lic extracts of Spilanthes filicualis leaves. Furthermore, the antidiarrheal activity of S. filicaulis
leaf decoction used in traditional medicine and the antibacterial and anti-adhesive properties

of these plants may be due to the presence of flavonoids [18, 20, 23–26].

Cyclic adenosine monophosphate (cAMP) is a type of nucleotide that is formed when two

phosphoric acids are condensed and excreted by ATP. This nucleotide is a key secondary mes-

senger in numerous feedback mechanisms and in the transduction of cell signals. It is the

main activating factor of protein kinases A (PKA) and exchange protein (Epac) [27, 28]. Fur-

thermore, PKA activates cAMP-responsive element-binding protein (CREB), which serves as

a regulator to control gene transcription, including the production of Cyclin D1 and Cyclin

C-Jun [29]. Thus, the cAMP/PKA/CREB/cFOS pathway is a common intracellular pathway

that performs an essential function in the development of DM [30, 31]. This suggests that

inhibiting this pathway could be a viable approach to reduce damage to kidney cells in DN

pathological conditions. Hence, there is need to examine the influence of botanicals on cAMP/

PKA/CREB/cFOS signaling among diabetics, with the aim of obtaining evidence that could be

used to elucidate the pathophysiology of DN. Therefore, this study examined the effect of Spi-
lanthes filicaulis leaves on streptozotocin-induced diabetic nephropathy and its influence on

cAMP/PKA/CREB/cFOS signaling.

Materials and methods

Plant material

Spilanthes filicaulis plants were obtained from a local farm settlement in Iwo-Oluponna (7˚ 350

34.7˚N 4˚ 110 27.5˚E), Osun state, and the leaves were manually obtained. Authentication and

identification of the plant was conducted at the Department of Pure and Applied Biology,

Bowen University, Iwo Osun state with herbarium number BUH035.

Chemicals

All chemicals and reagents used were of analytical grade, and the Streptozotocin used was pro-

cured from Glentham Life Sciences Ltd., Corsham, United Kingdom.

Experimental animals

Twenty-five healthy male Wistar rats weighing 140–170 g were procured for the purpose of

this study. The rats were housed in decontamination cages under specific conditions and were
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acclimatized for one week, with access to rat feed (pellet) and uncontaminated water. In com-

pliance with the criteria and guidelines indicated in the National Institute of Health (NIH)

guidelines for the care and usage of laboratory animals, an ethical approval number was pro-

vided (BUAC/BCH/2023/0002B).

Spilanthes filicaulis methanolic extract preparation

The manually obtained leaves were air-dried and mashed. The extraction of the sample was

obtained by immersion of a known mass of the leaf powder (34.7 g) in 70% methanol (300 ml)

in an airtight beaker, which was left to stand for 72 hours. Filtration of the extract was per-

formed using a muslin cloth, with further concentration using a water bath and oven at 70˚C

[15].

Animal grouping. The animals were categorized into five groups, with five animals in

each category. Group allocation is indicated below.

Group A: Normal control (nondiabetic, received feed and distilled water daily).

Group B: diabetic control (untreated, received just feed and water daily).

Group C: Diabetic + Metformin (100 mg/kg body weight)

Group D: Diabetic + S. filicaulis methanolic extract (low dose of 150 mg/kg).

Group E: Diabetic + S. filicaulis methanolic extract (high dose of 300 mg/kg).

Induction of type-2 diabetes. The diabetic animals in groups B, C, D, and E were induced

with diabetes intraperitoneally using STZ (STZ) at a low dose of 40 mg/kg body weight pre-

pared in citrate buffer at pH 4.5 after the administration of fructose for two weeks prior to

induction. The induction was performed after the animals were fasted for 12 hours; thereafter,

the fasting blood glucose level was determined using a glucometer. Blood samples were

obtained from the tail end of the rat using a lancet, and animals with fasting blood glucose lev-

els greater than 250 mg/dl after 48 hours were considered diabetic. The experiment was con-

ducted for a duration of 14 days [32]. The rat care procedures were approved by the

Department of Biochemistry, Bowen University animal ethics committee, and the study was

authorized with the identification number BUAC/BCH/2023/0002B.

Animal sacrifice and sample collection. Animal euthanasia was performed by placing

the animals under anesthesia using 3 ml of ketamine, which was administered intramuscularly.

An incision was made on the abdominal cavity, and the skin was reflected to expose the

abdominal and thoracic region. Blood samples were obtained in plain samples from the right

ventricle of the heart using a syringe and were left to stand at room temperature undisturbed

for approximately 30 minutes before centrifugation at 3000 r.p.m. for 5 minutes. The obtained

serum was labeled appropriately for further biochemical analysis. The liver was procured care-

fully and weighed, after which homogenization was performed using ice cold phosphate buffer

in a mortar and pestle. Centrifugation of the homogenates was performed at 5000 r.p.m for 10

minutes, after which the supernatant was obtained and stored in the refrigerator for further

biochemical analysis.

Determination of biochemical parameters

The standard procedures adopted were as described for fasting blood glucose [33], catalase

[34], superoxide dismutase (SOD), reduced glutathione (GSH) [35], malondialdehyde (MDA)

[36], alkaline phosphatase (ALP) [37], aspartate aminotransferase (AST), and alanine
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aminotransferase (ALT) [38]. Other procedures adopted were as described for creatinine [39],

urea [39], and uric acid [40]. Serum insulin concentration determination was achieved based

on the method described by [32], which used an ELISA kit from Sweden in a multiple plate

ELISA reader (Winooski, Vermont, USA). The homeostasis model assessment of insulin resis-

tance (HOMA-IR) and homeostasis model assessment of the β-cell score (HOMA-β) were cal-

culated through the Eqs (1) and (2) described by [32].

HOMA � IR ¼
½insulin U=Lð ÞX blood glucose mmol=Lð Þ

22:5
ð1Þ

HOMA � b ¼
20 X insulin U=Lð Þ½ �

blood glucose mmol=Lð Þ � 3:5½ �
ð2Þ

Converting factors for units: insulin (1 U/L = 7.174 pmol/L) and blood glucose (1 mmol/

L = 18 mg/dL).

Gene expression study

Isolation of total RNA. Total RNA was extracted from kidney tissues using the Quick-

RNA miniPrep™ Kit from Zymo Research. DNA contamination was eliminated after DNAse I

treatment (NEB, Cat: M0303S). The total RNA concentration was measured at 260 nm. The

purity of the RNA was determined at 260 nm and 280 nm by an A&E spectrophotometer

(A&E Lab, UK).

cDNA conversion

Reverse transcriptase reaction was used to transform one (1) microgram (DNA-free RNA)

into cDNA with the use of a cDNA synthesizing kit using ProtoScript II First-Strand technol-

ogy (New England BioLabs). The reaction temperature was set to three different conditions:

65˚C for 5 min, 42˚C for 1 h, and 80˚C for 5 mins [33, 41].

PCR amplification and agarose gel electrophoresis

A polymerase chain reaction was used to amplify the gene of interest using NEB (OneTaqR 2X

Master Mix) with the following primers (Inqaba Biotec, Hatfield, South Africa). PCR amplifi-

cation was performed in a 25 μl reaction mixture containing cDNA, primers (forward and

reverse SEE BELOW Table 1) and Ready Mix Taq PCR master mix. Under the following con-

ditions: initial denaturation at 95˚C for 5 min, followed by 30 cycles of amplification (denatur-

ation at 95˚C for 30 s, annealing for 30 s and extension at 72˚C for 60 s) and a final extension

at 72˚C for 10 min. The amplicons were resolved on a 1.0% agarose gel. The GAPDH gene was

used to normalize the relative level of expression of each gene, and quantification of band

intensity was performed using ImageJ software [33, 42].

Histopathological examination of the kidney tissues

A standard laboratory protocol for paraffin embedding was used to treat the formalin-pre-

served kidney tissues of the male rats. Tissue sections (4 mm) were fixed to slides, deparaffi-

nized in p-xylene, rehydrated in ethanol (100, 80, 70, and 50%) and rinsed with water. Slides

were stained for 5 min in hematoxylin, rinsed with water, counterstained in eosin, mounted in

dibutylphthalate polystyrene xylene, cover-slipped, and viewed at x 100 with a Leica slide scan-

ner (SCN 4000, Leica Biosystems, Wetzlar, Germany).
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Statistical analysis

The results are expressed as the mean ± SEM (n = 5). The means were analyzed using a one-

way analysis of variance followed by a Duncan Multiple Range post hoc Test (DMRT) at

p< 0.05 using GraphPad version 8.0 (GraphPad Software, Inc., San Diego, California, USA).

Results

Effects of the methanolic extract of Spilanthes filicaulis leaves on the

biochemical parameters of STZ-induced diabetic rats

Fasting blood glucose. The fasting blood glucose levels of the male Wistar rats used in

this study were elevated 72 hours (3 days) after the induction of diabetes with streptozotocin

with values up to 400 mg/dL. Throughout the duration of the experiment (15 days), the

untreated group maintained these elevated blood glucose levels. However, a substantial decline

in the fasting blood glucose levels was observed following the administration of the methanolic

extract of S. filicaulis at 150 mg/kg and 300 mg/kg (Table 2). Both doses yielded similar results

to the standard drug metformin (at 100 mg/kg). The blood glucose levels of the normal control

group remained stable throughout the experiment.

HOMA-IR and HOMA- β levels of diabetic rats administered MESFL. Table 3 shows

the serum insulin, HOMA-IR, and HOMA-β scores in the STZ-induced diabetic rats. Serum

insulin levels was significantly reduced in diabetic rats whereas metformin and MESFL admin-

istration increased the levels. HOMA-IR scores increased after the induction of T2D, in con-

trast, treatment with metformin and MESFL reduced the scores in all the treatment groups.

On the contrary, the HOMA-β score was reduced in diabetic rats whereas MESFL and

Table 1. Primer sequences.

Gene Forward Reverse

cAMP 5’- TACTCCGTGCTGTGGATGACTT -3’ 5’- TCTTGAACCGGAAAGGCTGTAT -3’

PKA 5’- CCGAACTTGGACCTTGTGTGG -3’ 5’- CGCACCTTCCCAGAGACGATT-3’

CREB 5’- CATTGCCCCTGGAGTTGTTAT-3’ 5’- CTCTTGCTGCTTCCCTGTTCTT-3’

cFOS 5’- CAGCCTTTCCTACTACCATTCCC-3’ 5’- CAGGAGATAGCTGCTCTACTTTGC-3’

Bcl2 5’- GCGTCAACAGGGAGATGTCA-3’ 5’- TTCCACAAAGGCATCCCAGC-3’

GAPDH 5’-CTGGAGAAACCTGCCAAGTATG-3’ 5’- GGTGGAAGAATGGGAGTTGCT-3’

https://doi.org/10.1371/journal.pone.0301992.t001

Table 2. Fasting blood glucose levels in fructose-fed streptozotocin-induced diabetic rats.

Animals Initial (mg/dl) 72 h (mg/dl) 15 days (mg/dl)

Control 81.33 ± 4.93 83.33 ± 4.16 86.33 ± 7.57

STZ control 86.01 ± 2.00 436.24 ± 35.54 400.21 ± 29.62

STZ + metformin (100 mg/kg) 79.66 ± 6.43*# 501.02 ± 14.73*# 92.16 ± 12.17*#

STZ + MESFL (150 mg/kg) 83.66 ± 8.39*# 483.66 ± 20.21*# 95.33 ± 6.43*#

STZ + MESFL (300 mg/kg) 89.33 ± 8.61*# 400.33 ± 36.55*# 88.37 ± 10.54*#

Data are presented as the mean ± SEM of five rats in each group.

* Indicates significant differences from the diabetic control group (P value < 0.05);
# signifies significant differences from control animals.

Legends: STZ: streptozotocin; MESFL: Methanolic extract of Spilanthes filicaulis leaves

https://doi.org/10.1371/journal.pone.0301992.t002
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metformin increased the scores in the treated groups, which all compared well to the normal

control group.

Renal antioxidant activities of streptozotocin-induced diabetic rats administered a

methanolic extract of Spilanthes filicaulis leaves. As presented in Table 4, catalase and

superoxide dismutase (SOD) activities and reduced glutathione (GSH) levels in the diabetic

control group were significantly lower. However, the administration of metformin as well as

MESFL at doses of 150 mg/kg and 300 mg/kg resulted in a significant increase in catalase and

SOD activities and GSH levels. In contrast, the levels of MDA in the diabetic group were

higher than those in all other groups. A decrease in MDA levels was observed in diabetic rats

treated with the methanolic extract of Spilanthes, filicaulis and metformin.

Selected renal and metabolic function markers. Table 5 shows the selected renal and

metabolic function markers in diabetic rats. We noticed significant enhancement in the levels

of ALT, AST, ALP, serum creatinine, urea, and uric acid in streptozotocin-induced diabetic

rats. Administration of 150 and 300 mg/kg MESFL or metformin to diabetic rats revealed con-

siderable reductions in these parameters (Table 5).

The cAMP/PKA/CREB/cFOS pathway was suppressed in the renal tissues of diabetic

rats. As revealed in Fig 1A–1D, cAMP, PKA, CREB, and cFOS levels were significantly ele-

vated in the renal tissues of diabetic rats using RT–PCR. Administration of 150 and 300 mg/kg

Table 3. HOMA-IR and HOMA-β scores of streptozotocin-induced diabetic rats after administration of methanolic extract of Spilanthes filicaulis leaves.

GROUPS PARAMETERS

INSULIN (U/l) HOMA-IR HOMA-β

Control 15.41 ± 0.07e 7.02 ± 0.12ab 49.52 ± 1.24bc

STZ control 10.09 ± 0.56a 11.04 ± 0.55c 5.07 ± 0.02a

STZ + metformin (100 mg/kg) 13.23 ± 1.01b 6.31 ± 0.70a 36.65 ± 1.35b

STZ + MESFL (150 mg/kg) 14.05 ± 1.04c 6.40 ± 0.51a 58.02 ± 1.46c

STZ + MESFL (300 mg/kg) 14.47 ± 0.57cd 8.56 ± 0.71ab 38.12 ± 1.22bc

Data are expressed as mean ± SD (n = 5).
a-eValues with different letters along a column for a given parameter are significantly different (P <0.05) from each other.

*MESFL: Methanolic Extract of Spilanthes filicaulis leaves.

*HOMA-IR (Homeostatic model assessment of insulin resistance): [(Fasting serum insulin in U/l *fasting blood glucose in mmol/l)/22.5]

*HOMA-β (Homeostatic model assessment of β-cell function: [(Fasting serum insulin in U/l *20/fasting blood glucose in mmol/l-3.5)]

*Conversion factor: Insulin (1U/l = 7.174pmol/l)

https://doi.org/10.1371/journal.pone.0301992.t003

Table 4. Renal antioxidant marker of streptozotocin-induced Wistar rats after oral administration of methanolic extract of Spilanthes filicaulis leaves.

PARAMETERS GROUPS

Normal Control Diabetic Control Diabetes + Metformin Diabetes + MESFL (150 mg/kg) Diabetes + MESFL (300 mg/kg)

Catalase (mmol/min/mg protein) 34.36±3.13b 15.32±0.44a 25.54±5.54b,c 26.79±3.15b,c 30.79±1.04b

GSH (μmol/mL) 59.65±2.85b 45.50±0.83a 75.09±11.12d 89.98±6.71e 63.60±0.37b,c

SOD (mmol/min/mg protein) 2.64±0.22b 1.22±0.04a 2.19±0.38b 2.30±0.25b 2.32±0.13b

MDA (μmol/mL) 1.69±0.25b 2.76±0.06a 1.67±0.59b 1.25±0.11b 1.21±0.71b

Data are expressed as the mean ± SD (n = 5).
a-eValues with different superscripts are significantly different along the row.

Legend: MESFL: Methanolic Extract of Spilanthes filicaulis leaves.

MDA: malondialdehyde, SOD: superoxide dismutase, GSH: reduced glutathione,

https://doi.org/10.1371/journal.pone.0301992.t004
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MESFL significantly downregulated these effects. These results compared well with those of

the metformin-treated group.

Effect of Spilanthes filicaulis methanolic extract on Bcl-2. Fig 2 shows that Bcl2 exhib-

ited a significant (p< 0.05) reduction in the kidneys of diabetic rats, which indicated apoptotic

cell damage in kidney tissues with the progression of DM. Treatment with metformin and

MESFL, however, could significantly (p< 0.05) upregulate the less-expressed Bcl2 in the kid-

ney of diabetic rats.

Histopathology of the kidney tissues

As shown in Fig 3A, there was a normal histoarchitecture of the nephrocytes in the control

rats, while in the STZ-induced diabetic rats, the kidney tissue showed a thickened basement

membrane and degenerated glomerulus (Fig 3B). Administration of the methanolic extract of

Spilanthes filicaulis or metformin preserved the basement membrane and degenerated glomer-

ulus (Fig 3C–3E).

Discussion

Diabetes mellitus (DM) is often associated with a fatal condition called diabetic nephropathy,

which is the most common reason for terminal-stage renal failure. Approximately 15% to 25%

of type 1 diabetic patients and 30% to 40% of type 2 diabetic patients with DM have diabetes

nephropathy [43]. Type 2 diabetes mellitus (T2DM) disrupts various metabolic processes in

the body, leading to a wide range of symptoms [44]. The management of T2DM focuses on

alleviating these symptoms, particularly hyperglycemia [45].

In this study, we administered a combination of fructose and low-dose streptozotocin to

experimental rats. The combination led to hyperglycemia with glycemic imbalance, renal dys-

function, and apoptosis. According to Wilson and Islam [32], fructose and streptozotocin-

induced type 2 diabetes serves as an effective experimental paradigm for examining the antidi-

abetic effects of various drugs. Fructose and streptozotocin cause T2DM by selectively destroy-

ing pancreatic β-cells [32]. We observed an increase in fasting blood glucose (FBG) levels after

Table 5. Effect of the methanolic extract of S. filicaulis leaves on selected renal and metabolic function markers in streptozotocin-induced Wistar rats.

Parameters GROUPS

Normal Control Diabetic Control Diabetic +Metformin Diabetic +MESFL (150 mg/kg) Diabetic +MESFL (300 mg/kg)

Serum ALP (U/L) 14.30±1.59a 28.90±1.18b 19.30±3.27a,c 9.57±3.11d 17.44±0.10a,c

Kidney ALP (U/L) 23.15±3.90a 51.36±0.32b 21.11±4.45a 20.61±2.22a 17.78±2.78a,c

Serum ALT (U/L) 21.66±2.31a 54.01±2.22b 35.19±5.51c 26.23±1.61a 32.38±0.94c

Serum AST (U/L) 40.29±3.96a 51.17±1.92b 40.63±10.01a 25.60±2.65d 36.83±3.92a,c

Serum creatinine (mg/dL) 0.26±0.04a 2.29±0.10b 0.90±0.30a 1.10±0.20c 1.09±0.26c

Kidney Creatinine (mg/dL) 2.24±0.00a 7.46±0.00b 2.98±0.00a,c 2.98±0.75a,c 1.87±1.12d

Serum Urea (mg/dL) 130.57±9.33a 210.06±12.81b 133.42±3.99a 127.33±9.54a 118.01±6.24a,c

Kidney Urea (mg/dL) 122.38±0.00a 278.29±19.77b 136.07±1.52c 128.47±12.17a 126.93±9.12a

Serum Uric Acid (mg/dL) 3.62±0.31a 9.73±0.26b 3.76±0.69a 4.02±0.46c 3.08±0.09a

Kidney Uric Acid (mg/dL) 9.78±0.83a 18.74±0.23b 11.15±1.19c 12.05±0.44d 10.81±0.02a,c

Data are presented as the mean ± SEM (n = 5).
a-dValues with different letters along a given row for a given parameter are significantly different (Duncan multiple range post hoc, p<0.05) from each other.

*MESFL: Methanolic extract of S. filicaulis *ALP: Alkaline Phosphatase

*ALT: Alanine aminotransaminase *AST: Aspartate aminotransaminase

https://doi.org/10.1371/journal.pone.0301992.t005
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administration of low-dose streptozotocin. This may be attributed to the selective cytotoxicity

of STZ on β-cells [32]. The decrease in serum FBG levels observed in the MESFL-treated and

metformin-treated groups compared to the control group supports the idea that the medicinal

properties of MESFL may be mediated by secondary metabolites [46].

Fig 1. cAMP, PKA, CREB, and c-Fos gene expression in rats in each group. The expression of cAMP (Fig 1), PKA (Fig 1B), CREB (Fig 1C), and c-Fos

(Fig 1D) was analyzed by RT–qPCR. Data are presented as the mean ± SEM (n = 5). *p< 0.05 compared with the normal control group. #p< 0.05

compared with the diabetic control group. GAPDH was used as a loading protein.

https://doi.org/10.1371/journal.pone.0301992.g001
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T2DM is as a results of insulin resistance and partial destruction of pancreatic β-cells [46,

47]. The administration of MESFL lowered the blood glucose while also elevating insulin levels

in the serum. The improvement in insulin secretion by MESFL results in a reduction in blood

glucose level, as other studies have documented various natural products produce their nor-

moglycaemic effect [48]. The diabetic control group had elevated HOMA-IR and reduced

HOMA-β scores, indicating partial pancreatic β-cell dysfunction and insulin resistance, as pre-

viously documented [46, 47]. MESFL ability to reverse HOMA-IR and HOMA-β scores sug-

gests reduced insulin resistance and regeneration of β-cells.

Fig 2. RT–PCR analysis of Bcl2 in the kidneys of diabetic rats. Data are presented as the mean ± SEM (n = 5).

*p< 0.05 compared with the normal control group. #p< 0.05 compared with the diabetic control group. GAPDH was

used as a loading protein.

https://doi.org/10.1371/journal.pone.0301992.g002

Fig 3. Histological micrographs showing the effect of Spilanthes filicaulis and metformin in streptozotocin-induced

diabetic rat kidney tissues using a hematoxylin and eosin staining technique, A (Control), B (Diabetic Control), C

(Metformin) D (MESFL 150 mg/kg) and E (MESFL 300 mg/kg). Scale bar: 50 μm, magnification: 400x.

https://doi.org/10.1371/journal.pone.0301992.g003
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Recent studies have shown that the buildup of reactive oxygen species (ROS) in hyperglyce-

mic circumstances can lead to kidney damage [49, 50]. In particular, Kiritoshi et al. [51] dis-

covered a significant increase in the number of ROS in cells in the glomerulus. Alterations in

MDA and enzymatic antioxidants reveal oxidative stress in these cells. Furthermore, lipid per-

oxidation increases the risk of oxidative stress, which may lead to a reduction in enzymatic

antioxidants. In streptozotocin-induced diabetic nephropathy, superoxide dismutase (SOD),

catalases (CAT), and glutathione reduced (GSH) have been reported to be involved in previous

studies [49, 52]. MESFL or metformin treatment in diabetic rats significantly inhibited lipid

peroxidation and increased GSH, SOD, and CAT. These findings are in line with the report of

[49].

In this study, damage to renal function was observed in diabetic rats induced by STZ, as

indicated by significant elevations in ALT, AST, and ALT, as well as urea, uric acid, and creati-

nine. These findings are in line with those observed in previous studies [49, 53, 54]. Treatment

with Spilanthes filicaulis (150 and 300 mg/kg bw/t) significantly reduced the progression of

diabetes nephropathy, as evidenced by a significant decrease in renal function markers (ALP,

uric acid, urea and creatinine).

The cAMP/PKA/CREB/c-FOS signaling pathway is one of the classical pathways presently

being studied. cAMP is a second messenger molecule. Levels of cAMP are affected by cAMP-

dependent protein kinase (PKA). PKA is composed of two regulatory subunits plus two cata-

lytic subunits. When cAMP binds to the regulatory subunits of PKA, it initiates a conforma-

tional shift that allows the catalytic subunits to be released and activated. This changes the

target protein by controlling cAMP response element-binding protein (CREB). The CREB

protein then phosphorylates the appropriate target protein molecules in the cell and regulates

gene transcription, resulting in the biological effects of the cAMP/PKA/CREB/c-FOS signaling

pathway [55–57]. In response to a variety of extracellular signals, cells generate cyclic AMP

(cAMP) by the catalytic dephosphorylation of ATP (adenosine triphosphate) through the

action of adenylyl cyclase enzymes. Studies have shown that the primary mechanisms of ade-

nylyl cyclase activation are the activation of G protein-coupled receptor (GPCR) and β-adre-

noreceptor (β-ADR) receptors, as well as glucagon receptors (GCGR) to heterotrimeric G-

proteins. Cyclic AMP (cAMP)-dependent protein kinase A (PKA) regulates a wide range of

cellular functions by reversibly phosphorylating key substrates [58, 59]. All of these pathways

are related to PKA, the regulatory kinase. cAMP controls gene expression by mediating the

phosphorylation of the CREB transcription factor at Ser-133, which is dependent on PKA.

CREB, a substrate of PKA, is phosphorylated and interacts with CRE in the nucleus to control

gene expression and protein synthesis [60]. In the kidney tissue of diabetic rats treated with

MESFL or metformin, cAMp/PKA/CREb/cFOS was reduced significantly. These findings sug-

gest a relationship between cAMP/PKA/CREB/cFOS signaling and diabetic nephropathy. The

results of this study revealed that MESFL downregulates the cAMP/PKA/CREB/cFOS signal-

ing pathway in kidney cells.

Bcl-2 is a protein that plays a critical role in the regulation of cell apoptosis, and upregula-

tion of its expression promotes cell survival [49, 61–64]. In this study, the downregulation of

renal expression of Bcl-2 in STZ-induced diabetic rats induced diabetic nephropathy. How-

ever, in diabetic rats treated with Spilanthes filicaulis or metformin, the expression of this pro-

tein was increased, encouraging cell survival. The results of this study are similar to those of

previous studies [33, 49, 54].

In this study, the histology of the kidney was investigated, and light microscopy following

the H and E technique revealed that the control rats that received distilled water presented a

normal histomorphology and that the nephrocytes were intact. In contrast, the kidney tissue

was affected in the STZ-induced rats, showing a thickened basement membrane and
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degenerated glomerulus [65]. However, in the metformin and methanolic extracts of Spi-
lanthes filicaulis-treated rats, these features were preserved.

Conclusion

This study shows that Spilanthes filicaulis alleviates oxidative stress and the development of

diabetic nephropathy via downregulation of the cAMP/PKA/CREB/cFOS signaling pathway

and upregulation of the antiapoptotic protein Bcl-2. These findings suggest that the protective

ability of S. filicaulis could be a result of antioxidant and renoprotective activities. Through

cAMP/PKA/CREB/cFOS signaling pathways, Spilanthes filicaulis may slow the progression of

diabetic nephropathy in rats. This study has limitation in that there are some parameters such

as level of urine was not detected.
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