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Abstract

In this paper, the Integrated Nested Laplace Algorithm (INLA) is applied to the Epidemic

Type Aftershock Sequence (ETAS) model, and the parameters of the ETAS model are

obtained for the earthquake sequences active in different regions of Xinjiang. By analyzing

the characteristics of the model parameters over time, the changes in each earthquake

sequence are studied in more detail. The estimated values of the ETAS model parameters

are used as inputs to forecast strong aftershocks in the next period. We find that there are

significant differences in the aftershock triggering capacity and aftershock attenuation

capacity of earthquake sequences in different seismic regions of Xinjiang. With different cut-

off dates set, we observe the characteristics of the earthquake sequence parameters

changing with time after the mainshock occurs, and the model parameters of the Ms7.3

earthquake sequence in Hotan region change significantly with time within 15 days after the

earthquake. Compared with the MCMC algorithm, the ETAS model fitted with the INLA algo-

rithm can forecast the number of earthquakes in the early period after the occurrence of

strong aftershocks more effectively and can forecast the sudden occurrence time of earth-

quakes more accurately.

Introduction

Earthquakes, as the most destructive natural hazard, can have devastating consequences. Point

process modeling can be used to better understand potential interactions between earthquakes

and spatial features, temporal features, and the effects of other covariate effects. Each earth-

quake event can be viewed as a point related to space (latitude and longitude coordinates),

time of occurrence, and magnitude. Anwar (2009) [1] and Ye (2015) [2] combined a multi-

type Strauss process and geospatial covariates combined to describe earthquake sequences.

Siino et al. (2017) [3] used the Gibb mixing model to describe seismicity in Greece, showing

the interaction of seismicity at different spatial scales (multiscale structure), characterizing the

spatial heterogeneity of the process. All the above modeling approaches are used to describe
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the evolution of earthquake occurrence in both spatial and temporal dimensions. As for the

Cox process model [4], which can often be used to characterize environmentally driven pro-

cesses (Møller et 2003) [5], the log Gaussian Cox process (LGCP) is a special case of the Cox

process used to characterize that the rate of occurrence of certain earthquakes will be deter-

mined by a potential random field. Bayliss (2020,2022) [6, 7] used synthetic and real data from

California earthquakes to characterize the intensity of spatial variability in earthquake loca-

tions through a log-Gauss-Cox process model and evaluates the performance of models of

varying complexity consisting of different components to determine which elements are most

useful for describing the distribution of earthquake locations.

After the occurrence of a moderate-to-strong earthquake, the characterization of the after-

shock sequence after the main earthquake plays a key role in determining the type of earth-

quake sequence and forecasting the likelihood of strong aftershocks. The rate of decay in event

rate during aftershock sequences and the ability to stimulate aftershocks can be characterized

by the statistical parameters of the sequences. Therefore, obtaining accurate and reliable earth-

quake sequence parameters is an important reference value for quickly determining the type of

earthquake sequence, studying the characteristics of the seismic source region, and forecasting

subsequent earthquakes. In 154 regions of China, Haikun Jiang (2007) [8] examined the fea-

tures of the ETAS model parameters in the early period of the aftershock of moderate-to-

strong earthquake sequences. The study focused on comparing the relative sizes of the two cru-

cial parameters, p and α, which have distinct physical meanings and are crucial to the model’s

operation. The study also discussed the practical issues of the aftershock sequence’s decay in

event rate and the probability that one event will cause an aftershock. Similarly, estimating the

likelihood of earthquakes is the core of earthquake forecasting research and is important for

earthquake risk management, especially during sustained earthquake sequences. The epi-

demic-type aftershock sequence model (ETAS) is widely used to model earthquake sequences

[9–11] and also provides an effective tool for forecasting the spatiotemporal evolution of

short-term aftershock clusters [12]. The ETAS model is the current benchmark for operational

earthquake forecasting [13], showing that the ETAS model was then the best model for fore-

casting short-term seismic activity. In recent years of research, Yaghmaei-Sabegh S et al [14]

modeled the hierarchical structure of aftershock sequences using the epidemic-type aftershock

sequence (ETAS) model and compared it with the RJ model. In this paper, they also used a

smoothing-based approach to incorporate the statistical modeling of aftershocks into the

framework of Probabilistic Seismic Hazard Analysis (PSHA) [15], which is used to determine

the probability that a given level of ground motion will be exceeded over a given time horizon

and is a fundamental tool in many seismic design codes. The results show that the ETAS

model with higher PGA values better simulates the behavioral patterns of aftershock sequences

with branching structure than the RJ model that only considers primary aftershocks. The

ETAS model, also known as the Hawkes process in statistics, is a self-excited point process

model that describes a sequence of earthquakes that occur in space-time and space-time. Each

occurrence of the event triggers the probability of a sub-event occurring, and at the same time,

this triggering function decays in space-time [16].

In a Bayesian framework, Bachl et al. proposed a method for approximating the parameter

posterior via the R-Inlabru package based on the Integrated Nested Laplace Approximation

(INLA) method (Rue 2018) [17]. The INLA method is an efficient alternative to the MCMC

method used to compute Latent Gaussian Models (LGMs) (Robert 2014) [18]. When it comes

to fitting model parameters, the primary distinction between these two approaches is that the

INLA method is quicker because it employs a deterministic approximation, while the MCMC

method is based on simulation. The INLA algorithm’s drawback is that it is unable to handle

completely non-linear problems. Because of its higher computational cost, the MCMC method
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finds it difficult to achieve modeling in the presence of strongly correlated parameters, a situa-

tion that will arise in many applications and for which the INLA method is intended to assist.

The INLA algorithm has demonstrated its benefits in several research regions, e.g., disease

mapping [19, 20], genetics [21], public health [22], ecology [23], and forecasting seismicity

[24].

The Xinjiang seismic zone has five major seismic zones and is one of the most seismically

active regions in China. At the same time, Xinjiang is a remote and poor region in China, the

urban and rural economy is backward, houses, structures, and other infrastructure are poor,

resulting in several casualties and large economic losses during strong earthquakes. Since

1996, more than 10 consecutive earthquakes of magnitude 6 or above occurred in Gashi-

Atushi and other places, which aroused the attention of the relevant experts in China. Gao

Yalan (2023) [25] constructed an ARIMA forecasting model to forecast the trend of crustal

change based on the deformation data at the whole point of time of the Jinghe seismic station

monitoring in the past ten years in Xinjiang region, to explore the kinematic law of crustal

deformation in Jinghe. The Markov chain method was employed by Zhang Linlin (2012) [26]

to forecast the magnitude 1 to 4 earthquakes that occurred in various Xinjiang regions between

2000 and 2004. The method is practical and effective for use in earthquake forecasting, and the

forecasting parameters were regularly verified and adjusted using the region’s earthquake data.

To accurately understand the range of strong seismic activity in Xinjiang, we first consider

applying the LGCP model to describe complex earthquake sequences and further analyze the

spatial distribution of seismicity in Xinjiang. Second, we will characterize the sequence param-

eters of moderate-to-strong earthquakes in Xinjiang from 2009 to 2023 in various regions and

over time using the ETAS (Epidemic Type Aftershock Sequence Model) and INLA (Integrated

Nested Laplace Algorithm). In conclusion, a daily retrospective analysis of earthquake fore-

casting following significant seismic events in Xinjiang is conducted. This analysis is useful in

assessing the pattern of upcoming seismic activity.

Research models and methods

Epidemic Type Aftershock Sequence (ETAS) modeling

The temporal ETAS model is a labeled Hawkes process model [27] whose labeling variable is

the magnitude size of the earthquake. The model consists of three components: a background

rate term(a representation of earthquakes induced by past earthquake activity), a triggering

event rate term, and a magnitude distribution independent of space and time. It is usually con-

sidered that the magnitude distribution of an event is independent of the spatial and temporal

distributions, then the ETAS conditional density is usually expressed as the product of the

Hawkes process model and the magnitude distribution π(m), which is expressed in the follow-

ing form:

lETASðt;mjHtÞ ¼ lHawkesðtjHtÞpðmÞ ð1Þ

In seismology, the magnitude distribution π(m) for is usually the G-R distribution [28], and

the G-R distribution (magnitude-frequency distribution) is commonly of the form: lg N(m) =

a − bm, which the exponent b is usually near 1 [29]. Focus will be placed on the Hawkes part of

the model, which is the conditional density of the Hawkes process for a given historical process
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Ht:

lHawkes tjHtð Þ ¼ mþ
X

ðth ;mhÞ2Ht

Keaðmh � M0Þ
t � th
c
þ 1

� �� p

ð2Þ

In the formula, the time evolution of earthquakes is influenced by five parameters: μ, K, α,

c� 0 and p� 1. The parameter μ represents the background seismicity rate, p denotes how

fast or slow the aftershock sequence decays, c denotes the time for when the frequency of after-

shocks peaks after the mainshock, K denotes the degree of activity of the aftershock, α denotes

the ability to trigger a secondary aftershock, and M0 is the minimum completeness magnitude

such that mh�M0.

In this paper, we will use the INLA algorithm as a tool for fitting this model, which entails

decomposing the log-likelihood of the Hawkes process into multiple parts and then returning

the exact log-likelihood function as the sum of these parts. The general idea is to use the Inte-

grated Nested Laplace Approximation (INLA) method to infer the model parameters by

approximating individual components linearly to the posterior. The INLAbru package pro-

vides both the linearization and the posterior mode query internally. (This is an open-source

package builds on the R-INLA package to provide suggested bayesian inference methods for

point, count, and geographic sample data using integrated nested laplace approximations.

Apply INLA to a variety of issues, including earthquake forecasting [6, 7], at the following

URL: https://github.com/inlabru-org/inlabru.) We only need to provide the Hawkes log-likeli-

hood function:

LðyjHÞ ¼ � LðT1;T2Þ þ
X

ðti ;miÞ2H

log lðtijHti
Þ

H ¼ fðti;miÞ : ti 2 ½T1;T2�;mi 2 ðM0; Þg

ð3Þ

LðT1;T2Þ ¼
R T2

T1
lðtjHtÞdt

¼ T2 � T1ð Þmþ
X

ðti ;miÞ2H

R T2

T1
Keaðmi � M0Þ t� ti

c þ 1
� �� pdt

¼ T2 � T1ð Þmþ
X

ðti ;miÞ2H

Keaðmi� M0Þ
R T2

T1

t� ti
c þ 1

� �� pdt

¼ T2 � T1ð Þmþ
X

ðti ;miÞ2H

Keaðmi� M0Þ c
p� 1

maxðti;T1Þ� ti
c þ 1

� �1� p
�

T2 � ti
c þ 1

� �1� p
� �

¼ L0ðT1;T2Þ þ
X

ðti;miÞ2H

LiðT1;T2Þ

ð4Þ

The above integral can be understood as the sum Λi(T1, T2) of the number of background

events Λ0(T1, T2) and the number of triggered events ti per event. The method requires

approximating the integral linearized functions Λ0(T1, T2) and Λi(T1, T2), and in order to fur-

ther improve the accuracy of the approximation, for each integral Λi(T1, T2), we consider a fur-

ther partition of the integration interval [max(T1, ti), T2] into Bi time boxes
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ðtðbiÞ0 ; . . . ; tðbiÞBi ; tðbiÞ0 ¼ maxðT1; tiÞ; t
ðbiÞ
Bi ¼ T2Þ, so that the integral becomes:

LðT1;T2Þ ¼ L0ðT1;T2Þ þ
X

ðti ;miÞ2H

XBi � 1

j¼0

Liðt
ðbiÞ
j ; tðbiÞjþ1Þ ð5Þ

The Hawkes log-likelihood function is then expressed in the following form:

LðyjHÞ ¼ � L0ðT1;T2Þ �
X

ðti ;miÞ2H

XBi� 1

j¼0

Liðt
ðbiÞ
j ; tðbiÞjþ1Þ þ

X

ðti ;miÞ2H

log lðtijHti
Þ ð6Þ

Based on the INLA algorithm

The following section outlines a specific methodology for implementing the ETAS model

based on the Bayesian INLA algorithm and utilizing the R-Inlabru package. The technical

method is very different from earlier ETAS model implementations. Specifically, no clustering

algorithm is used in the computational approach to allocate observations to the triggering

component of the background rate or intensity. Moreover, the user does not need to explicitly

program the algorithm but only needs to provide the approximation function for the three

parts of the log-likelihood and build the different log-likelihood components, making it an

effective alternative to the Bayesian-based approach of existing ETAS models.

The INLAbru package is built on the R-INLA package and can provide easier Bayesian

inference methods for spatial point processes, counting, gridding, and geographic sampling

[30]. We will use this package to build and run the following models to fit actual observations

using the LGCP model, which can accommodate data including points, counts, geographic

samples, or distance sample data, and which provides methods for fitting spatial density sur-

faces and estimating abundance, as well as for mapping and forecasting. Similarly, we will

decompose the log-likelihood function of the Hawkes process into multiple parts implemented

separately using the INLAbru-based method proposed by Naylor et al (2023) [31], linearly

approximating each single component and applying the Integrated Nested Laplace Approxi-

mation (INLA) method to infer the model parameters, a brief description of which is devel-

oped below.

We will fit the above ETAS model using the INLA algorithm, whose approximate form for

the log-likelihood function has been given in the section above:

~Lðy; y∗Þ ¼ � ~L0ðy; y
∗
Þ �

Xn

h¼1

XB

i¼1

~Lhðbi; y; y
∗
Þ þ ~SLðh; y; y∗Þ ð7Þ

The method combines three Poisson model implementations on different datasets in the

INLAbru package, where INLA is referenced to implement the Poisson model only for compu-

tational efficiency. Specifically, the internal log-likelihood used by INLA for the Poisson model

will be utilized to obtain an approximation of the log-likelihood of the ETAS model.

The generic Poisson model (which is located at xi, counts as ci, and exposures as E1, . . ., En)

in the INLAbru package will have its log-likelihood function expressed as:

LPðyÞ / �
Xn

i¼1

exp f�f ðxi; y; y
∗
Þg ∗ Ei þ

Xn

i¼1

�f ðxi; y; y
∗
Þ ∗ ci ð8Þ

An alternative Poisson model is used for each log-likelihood component, whose log-likelihood

is given by the above equation, with appropriate counts and exposures chosen. Table 1 gives

PLOS ONE Spatiotemporal characteristics of earthquake sequence parameters and forecasting of aftershocks in Xinjiang

PLOS ONE | https://doi.org/10.1371/journal.pone.0301975 May 16, 2024 5 / 20

https://doi.org/10.1371/journal.pone.0301975


an approximation of the three components of the log-likelihood function and the alternative

Poisson model it uses to represent it.

We only need to create datasets with counts ci, exposures ei, and information about events

xi, where this information represents the different log-likelihood components, and provide the

functions log Λ0(x), log Λ0(bi, h), and log λ(x), and the linearization, as well as the retrieval of

the posterior distributions of its parameters, are performed automatically from within

INLAbru.

It is worth noting that the INLA method is designed for latent Gaussian models so that all

parameters in the fitted model should obey a normal distribution. However, this does not hold

for some ETAS model parameters, and to overcome this problem a transformation based on a

probabilistic integral transform will be used: Given a continuous random variable X with

cumulative distribution function (CDF) FX(-) which is uniformly distributed in (0,1):

Y ¼ FXðXÞ

Y � Unif ð0; 1Þ;X ¼ F� 1
X ðYÞ

ð9Þ

Briefly, the approach is to treat each parameter as having a standard normal distribution and

then convert it to the target distribution. Suppose that θ has the starting distribution of the

CDF Fθ() and that we wish to convert it to η(θ) has the target CDF FY(-), converted to:

ZðyÞ ¼ F� 1
X ðFyðyÞÞ ð10Þ

We can consider a set of constraint parameters θμ, θK, θα, θc and θp having standard normal

prior distributions, representing μ, K, α, c and p, respectively, and then convert them to the

desired prior distributions. Using the above approach, different priors can be considered for

implementation, while the choice of different priors can also affect the convergence ability of

the algorithm.

Research data

Earthquake activity in Xinjiang is characterized by high intensity, high frequency, and wide

distribution, which makes it a major area of strong seismic activity in mainland China. For

this reason, the Xinjiang region will be the focus of this paper’s investigation. The geographic

location of the selected study region is between 73˚400E and 96˚180E, and between 34˚250N
and 48˚100N. Xinjiang is located in the front zone of the collision between the Indian Ocean

Plate and the Asian-European Plate, and there are five major seismic zones, which are the

Altai seismic zone, the North Tianshan seismic zone, the South Tianshan seismic zone, the

West Kunlun Mountain seismic zone, and the Altun Mountain seismic zone, respectively,

from north to south. According to the statistics of China Seismological Network, since 2009, a

total of 2905 earthquakes have occurred in Xinjiang region, of which 12 earthquakes reached

magnitude 6 and above, with the largest magnitude reaching 7.3 (Hotan, February 12, 2012).

Table 1. Approximations of the log-likelihood for each of the three components and their alternative Poisson models.

Part Object Approximate Surrogate log λP Number of data points Counts and Exposures

Part 1 Λ0(x) exp{log Λ0(θ, θ*)} 1 1 ci = 0, ei = 1

Part 2
Pn

i¼1

PBh
i¼1
Lhðbi; hÞ

Pn
i¼1

PBh
i¼1

exp log Lhðbi; hÞ log Λ0(bi, h)
X

h

Bh
ci = 0, ei = 1

Part 3
Pn

h¼1
log lðxhÞ

Pn
h¼1

exp log lðxhÞ log λ(x) n ci = 1, ei = 0

https://doi.org/10.1371/journal.pone.0301975.t001
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The earthquake catalog used in this study is provided by the National Seismic Cataloging

System (NSCS) from January 1, 2009, to July 2, 2023, by the China Earthquake Network Cen-

ter (CENC). At the same time, assessing the completeness of the earthquake catalog magnitude

is an essential step in any earthquake activity analysis. The completeness magnitude of an

earthquake catalog is defined as the smallest magnitude at which 100 percent of an earthquake

is detected within a spatiotemporal volume. Its correct estimation is critical because too high a

value can lead to under-sampling and thus discard available data, while too low a value can

lead to erroneous values of seismic activity parameters and thus biased analysis with incom-

plete data. In this paper, we will use the maximum curvature method (MAXC) [32] is a fast

and direct method to estimate the completeness magnitude of an earthquake. It is defined by

calculating the maximum of the first derivative of the cumulative magnitude frequency distri-

bution curve, which usually matches the corresponding magnitude of the earthquake with the

highest frequency in the non-cumulative magnitude frequency distribution. The magnitude

frequency distribution, which can effectively show the probability density distributions of

earthquakes with different magnitudes and the cumulative probability density distributions of

earthquakes with different magnitude lower bounds, is the most easily comprehensible image

for earthquake catalogs. The magnitude time distribution describes the magnitude over time,

and the magnitude frequency distribution describes the G-R relationship [33]. The magnitude

frequency distribution, which can effectively show the probability density distributions of

earthquakes with different magnitudes and the cumulative probability density distributions of

earthquakes with different magnitude lower bounds, is the most easily comprehensible image

for earthquake catalogs. The magnitude time distribution describes the magnitude over time,

and the magnitude frequency distribution describes the G-R relationship.

log
10
N ¼ a � bðM � McÞ ð11Þ

where N is the number of earthquakes of magnitude Mc or higher, the a value is the yield of

the earthquake, and the b value describes the relative proportion of the number of earthquakes

of different magnitude sizes in the earthquake catalog. From the cumulative frequency distri-

bution (Cum. FMD) and non-cumulative frequency distribution (Non Cum. FMD) in Fig 1, it

can be seen directly that the completeness magnitude is 3.0.

Descriptive analysis of earthquake sequences in Xinjiang region based on

the LGCP model

In this paper, the earthquake sequences occurring in Xinjiang region during 2009-2023 will be

described based on the LGCP model, and the constructed model is as follows:

logðuðsÞÞ ¼ b0 þ zðsÞ þ ε ð12Þ

In Eq 13, β0 is the intercept term; ε is the error term; and the spatially varying Gaussian ran-

dom field z(s) explains the spatial variations in the model that are not explained by the deter-

ministic component. In this way, the Gaussian random field models the spatial structure by

explaining the spatial correlation between observations, where the Gaussian field is specifically

defined as follows:

zðsÞ � GaussianFieldð0;SÞ ð13Þ

Its mean is 0 and variance is S. The calculation of the covariance is more complicated, instead

of calculating all the values independently, it is better to use the standard correlation function

to describe the correlation between points, using the Matern correlation function [34] can be
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used to define the covariance, which is denoted as:

S ¼ CovM ¼ s2CorrM ð14Þ

where σ2 is the variance parameter and CovM and CorrM are the Matern covariance and cor-

relation functions, respectively. The Matern correlation function is specified as [35].

CorrM ¼
21� n

GðnÞ

ffiffiffiffiffi
2n
p d

0:5r

� �n

Kn

ffiffiffiffiffi
2n
p d

0:5r

� �

ð15Þ

Fig 1. The G-R relation distribution (FMD) of the earthquake catalog in Xinjiang region during 2009-2023, with triangles and circles

representing non-cumulative and cumulative frequency distributions.

https://doi.org/10.1371/journal.pone.0301975.g001
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In the formula, d is the distance between two observation points, Γ(x) and Kν represent the

gamma function and Bessel function, ν, r and σ are the smoothing, range, and standard devia-

tion parameters of the random field, respectively. In this paper, we can describe the Gaussian

random field by the range as well as the standard deviation parameter, so we need to set the

PC prior [36] so that Pr[r< 0.01 = 0.01], which is to avoid the value of the range is too small,

which will lead to overfitting; meanwhile, Pr[σ> 0.1] = 0.01, which is to prevent the standard

deviation from being too high, and these parameters need to be adjusted according to the

actual problem.

LGCP model fitting results and analysis

We consider all earthquakes occurring in the Xinjiang region from 2009 to 2023 as response

variables, which are fitted based on the logarithmic Gaussian Cox process model (LGCP) and

using the INLA algorithm.

First, the parameter estimates (range, standard deviation) of the intercept term as well as

the Gaussian random field in the LGCP model can be obtained, as shown in Table 2. Among

them, the mean value of the standard deviation parameter is 1.121, and its confidence interval

is (0.459, 2.763), since zero is not included in the interval can indicate that the earthquakes in

Xinjiang region have spatial aggregation. In addition, the fitted mean value of the range

parameter will correspond to a smaller spatial autocorrelation value, and its fitted mean value

of 1.995 can indicate that the occurrence of any earthquake will have a smaller effect on the

occurrence of other earthquakes with latitude/longitude exceeding 1.995 degrees. Secondly,

the spatial distribution pattern of earthquakes can be obtained through the posterior mean

results of spatial random fields of LGCP model. Only the posterior fitting results of 10 regions

in Xinjiang are listed here, as shown in Table 3. Table 3 is arranged from top to bottom accord-

ing to the posterior mean from largest to smallest. The higher the posterior mean is, the higher

rate of earthquakes in the region. On the contrary, it means that no earthquake has been

recorded in the region or few earthquakes have been recorded in the region. It can be clearly

Table 2. LGCP model: Range and standard deviation parameter fitting results for intercept term and random field.

LGCP model parameter Mean Variance 0.025quant 0.975quant

Range 1.995 0.096 0.208 2.424

Standard deviation 1.121 0.053 0.459 2.763

Intercept -7.664 0.257 -8.169 -7.160

https://doi.org/10.1371/journal.pone.0301975.t002

Table 3. LGCP model: Spatial random field posterior mean fitting results of 10 regions in Xinjiang.

Region Mean Variance 0.025quant 0.975quant

Kizilsut 0.007178 0.001486 0.004911 0.010854

Kashgar 0.002697 0.000753 0.001549 0.004441

Bortala 0.002160 0.000741 0.001059 0.004242

Hotan 0.000562 0.000262 0.000201 0.001208

Yili 0.000390 0.000676 0.001358 0.003935

Bayingolin 0.000345 0.000196 0.000115 0.000833

Tacheng 0.000325 0.000211 0.000100 0.000875

Changji 0.000296 0.000186 0.000084 0.000788

Kami 0.000206 0.000147 0.000048 0.000583

Altay 0.000198 0.000140 0.000046 0.000569

https://doi.org/10.1371/journal.pone.0301975.t003
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seen from Table 3 that there are significant differences in the spatial distribution of earth-

quakes in Xinjiang. The posterior mean of Hotan, Kashgar, Kizilsut, Yili, and Bortala is higher

than that of other regions, indicating that these regions have the highest frequency of corre-

sponding earthquakes.

In this section, the LGCP model is used to study the spatial distribution characteristics of

earthquakes in Xinjiang. The following focuses on the top five regions ranked by the spatial

random field posterior mean in Table 3 and the regions with high seismicity such as Hotan,

Kashgar, Kizilsut, Yili and Boltala.

Research results and analysis

Results of fitting ETAS model based on INLA and goodness-of-fit test

Fitting results of ETAS model parameters in different regions of Xinjiang. The earth-

quake sequences occurring in the following five regions were selected through the combina-

tion of latitude-time, longitude-time, and epicenter distribution plots: the 2012 Hotan region

Ms6.0 (which includes the August 2012 Ms6.2, the February 2014 Ms7.3, the July 2015 Ms6.5,

and the June 2020 Ms6.4), the 2016 Kizilsut region Ms6.7, 2012 Yili region Ms6.0 (which con-

tains November 2012 Ms6.6), 2020 Kashgar region Ms6.4, 2017 Bortala region Ms6.6, and

brief information on the occurrence of the mainshock for the selected earthquake sequences of

the five regions (M0=3.0) is shown in Table 4 below (containing coordinate information,

mainshock magnitude, and time of occurrence).

In this section, the model parameters of earthquake sequence activity in various regions of

Xinjiang will be studied using the ETAS model. We compare the relative magnitudes of model

parameters that are physically significant and play a controlling role and discuss physical issues

such as the rate of attenuation of seismic sequence activity rates and aftershock stimulation in

various regions.

Table 5 gives the fitting results of the ETAS model parameters after the occurrence of the

mainshock in these five selected regions. We found that there are obvious regional differences

in the fitting results of the model parameters of the earthquake sequences located in different

regions of Xinjiang, which may be due to the different magnitude sizes of the mainshock, dif-

ferent types of faults in each region, and different sequence types of aftershocks. The rate of

decay of the aftershock sequences and the ability to stimulate aftershocks can be characterized

by the model parameters of the sequences. Comparing the results of fitting the ETAS model

parameters of the earthquake sequences in different regions, the following sequence character-

istics can be obtained: (1) in terms of the ability of the mainshock to stimulate aftershocks and

Table 4. Summary information on the occurrence of mainshocks of selected earthquake sequences in five regions of Xinjiang.

Region Latitude(N) Longitude(E) Mainshock magnitude(Ms) Mainshock date(dd/mm/yyyy hh:mm:ss)

Hotan 39.4 81.3 6.0 09/03/2012 06:50:09

35.9 82.5 6.2 12/08/2012 18:47:12

36.1 82.5 7.3 12/02/2014 17:19:50

37.6 78.2 6.5 03/07/2015 09:07:46

35.7 82.3 6.4 26/06/2020 05:05:20

Yili 43.6 82.4 6.0 01/11/2011 08:21:28

43.4 84.8 6.6 30/06/2012 05:07:31

Kizilsut 39.3 74.04 6.7 25/11/2016 22:24:30

Bortala 44.3 82.9 6.6 09/08/2017 07:27:52

Kashgar 39.83 77.21 6.4 19/01/2020 21:27:55

https://doi.org/10.1371/journal.pone.0301975.t004
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aftershocks to subsequent earthquakes (determined by the values of alpha), we can observe

that the regional differences in alpha values are relatively significant, and if we rank the ability

of these five regions to trigger secondary aftershocks according to the size of alpha values: Yili

region > Bortala region > Kizilsut region > Hotan region > Kashgar region. In general, the

aftershock-triggering ability of Yili region is significantly higher than that of the other Xinjiang

four regions, and Kashgar region is the weakest. Moreover, we consider comparing the alpha

values of Xinjiang regions with the mean values of alpha in the ETAS model parameters in the

early post-earthquake phase of moderate-to-strong earthquake sequences in the Chinese main-

land region, and the distribution of the mean values of alpha in the range of 1.049 ± 0.316 [37].

Compared with the alpha values in Table 5, it can be seen that except for Kashgar region, the

alpha of other regions is higher than the average value of Chinese regions, and thus the ability

to stimulate aftershocks is stronger; (2) the p-value characterizes the speed of the sequence rate

of decay, if the p-value is large, the sequence rate of decay is fast, if the p-value is small, the

sequence rate of decay is slow. It can be found from Table 5 that the regional differences in p-

values are also relatively large, with Yili region having the fastest attenuation, Kashgar region

the second, Hotan region the third, and Kashgar region the third. Kashgar region is the second

fastest, and the lowest p-value in Hotan region indicates that the aftershock sequence in Hotan

region, which is located in the southernmost part of Xinjiang, has a longer duration.

Time-varying characteristics of earthquake sequence parameters. Due to the different

rates of tectonic movement of intraplate earthquakes, the duration of the earthquake sequence

in each region is different. Therefore, the parameters of the ETAS model obtained by fitting

will be different depending on the fitting cutoff time of the selected earthquake sequence. To

investigate the variation characteristics of earthquake sequence parameters with time in the

short term after the main earthquake, we take the Ms7.3 earthquake sequence in Hotan region

on February 12, 2014, as an example. We consider that the length of time for the parameters to

reach stability is affected under different earthquake completeness magnitudes, the earthquake

completeness magnitude is fixed at 3.0, and the cut-off times Tend to be set as [1.0, 2.0, 3.0,

. . ..., 30.0] and use INLA algorithm to estimate the parameters respectively. The changes of

model parameters with the duration of the series were obtained as shown in Fig 2.

As can be seen in Fig 2, during the 15 days following the main earthquake, the model

parameters changed as follows: first, the fitted value of μ in the figure changes significantly

from 16.084 to 0.610, which is the most significant change among all the parameters, and

reaches stability on the 10th day. Secondly, the fitted p-value gradually decreases from 6.515 to

2.355, which is also a more significant change and reaches stability on day 12. On the contrary,

the fitted K-value hardly changes and stays very flat around 0.007, and the c-value also stays

around 0.149, with relatively flat changes. Overall, there were differences in the degree of varia-

tion from the sequence parameter values, with the minimum degree of variation in the param-

eter c and K values, while the degree of variation in the parameter mu, p, and alpha values was

very obvious. The reason for the above result is that the parameter c is a very small positive

Table 5. The fitting values and 95% confidence interval results of the ETAS model after the mainshock of the selected earthquake sequences in five regions.

Region μ K α c p

Hotan 0.051(0.048 ± 0.054) 0.176(0.158 ± 0.192) 1.292(1.246 ± 1.338) 0.032(0.024 ± 0.037) 1.332(1.307 ± 1.354)

Yili 0.026(0.024 ± 0.028) 0.001(0.000 ± 0.001) 5.975(4.540 ± 6.711) 0.889(0.341 ± 1.258) 5.052(3.492 ± 6.864)

Kizilsut 0.101(0.096 ± 0.106) 0.045(0.036 ± 0.053) 1.895(1.824 ± 1.965) 0.047(0.032 ± 0.058) 1.400(1.345 ± 1.443)

Bortala 0.013(0.011 ± 0.014) 0.002(0.000 ± 0.002) 3.475(2.707 ± 3.833) 0.029(0.013 ± 0.036) 1.384(1.293 ± 1.448)

Kashgar 0.062(0.056 ± 0.068) 0.180(0.131 ± 0.222) 0.618(0.443 ± 0.797) 1.548(0.137 ± 2.145) 4.749(3.309 ± 5.200)

https://doi.org/10.1371/journal.pone.0301975.t005
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constant, which is mainly considered to include a small constant term in the model equation

to avoid a zero denominator. It therefore does not have a very clear physical meaning. It can

also be seen from Eq 2 that the parameters p and alpha are in exponential positions in the

model expression, and thus c has less influence compared to p and alpha. Therefore, among

the parameters of the ETAS model, the variation of c over time is relatively smooth, while the

variation of alpha and p is more obvious. It is worth noting that the fitted alpha values have

obvious irregular ups and downs, with sudden increases and decreases over the 15 d period,

with the largest change of 2.52. For the changes of the above ETAS model parameters with the

sequence fitting cutoff time, the alpha and p values both show sudden jumps in the 14 days

after the earthquake, especially the alpha value of the ability to stimulate the secondary after-

shocks has the most drastic change, and the p-value has a certain magnitude of fluctuation in

the 13 days after the earthquake. The reason for the “sudden” changes in the sequence parame-

ters can be analyzed from the earthquake sequence activity, which may be due to the occur-

rence of aftershocks of larger magnitude at the early stage after the main earthquake, thus the

earthquake sequence has a large change in the decay rates of aftershock and the excitation

degree of aftershock. However, this kind of sequence activity is only a representation analysis,

and the adjustment of the stress field in the physical source area or the adjustment and change

of the aftershock rupture mechanism needs to be further studied.

Model fit goodness-of-fit test

In the following, we take the results of fitting the 2014 Ms7.3 earthquake sequence in Hotan as

an example and compare the results of implementing this model using INLAbru with the

results obtained using the R-bayesianETAS package (Ross 2021) [38] (the R-bayesianETAS

package provides an MCMC implementation of the ETAS model), this section is intended to

demonstrate the advantages of this computational method as well as to test the model’s good-

ness-of-fit.

Here we consider the use of the stochastic time-varying theorem as a method of the accu-

racy of the results of the method fitting the ETAS model. The stochastic time-varying theorem

[39], assumes that in time [0, T], H = {t1, . . ., tk} is a point process with conditional intensity λ

Fig 2. Variation of ETAS model parameters with cutoff time.

https://doi.org/10.1371/journal.pone.0301975.g002
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(t|H), which is expressed as follows:

LðtijHÞ ¼
Z 1

M0

Z t

0

lðt;mjHÞdtdm ð16Þ

In other words, the quantity Λ(t) can be regarded as the expected number of points in the

time domain, and we obtain the sequence Λ(t1), . . ., Λ(tn) should be associated with the actual

observation points located at t1, . . ., tn the cumulative number of actual observation points.

Below, Fig 3 presents the sequence values generated by the two implementations, Λmcmc(t1),

. . ., Λmcmc(tn) (blue line), ΛInlabru(t1), . . ., ΛInlabru(tn) (green line) and with the actual cumula-

tive number N(t1), . . ., N(tn) (black dots) was compared.

Fig 3 (left) shows the fitted ETAS model curves and the cumulative number of earthquakes

for the Ms6.0 earthquake sequence in Hotan using the Inlabru and MCMC methods. We

found that the results of fitting the ETAS model based on the INLAbru and MCMC methods

are nearly the same and the generated series values are very close to the actual values, which

indicates that the model results obtained by fitting the two methods reflect the data of the

region very well. In addition, we can plot ΛInlabru(ti), ΛMCMC(ti) as in Fig 3(right) the same

goodness-of-fit test can be carried out, the principle is to fit the obtained model to the actual

data the better the line is closer to the black dashed straight line (the more similar to the theo-

retical straight line of the unit-rate Poisson process). Therefore, a conclusion consistent with

Fig 3 (left) can be obtained.

In the following, we first consider comparing the occurrence time and magnitude size of

the earthquake sequences generated by fitting the ETAS model based on the INLAbru and

MCMC methods. It is evident from Fig 4 that the earthquake sequences produced by the

INLAbru and MCMC methods differ significantly in terms of both the magnitude and timing

Fig 3. Cumulative number of earthquakes for the Ms6.0 earthquake sequence in the Hotan region versus using Inlabru and MCMC to realize the

ETAS model fitting curve comparison.

https://doi.org/10.1371/journal.pone.0301975.g003
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of the earthquakes. Following comparing the two methods, we can say that the earthquake

sequences generated by fitting the ETAS model using the INLAbru method have occurrence

times and magnitude sizes that are closer to the actual earthquakes. Second, the MCMC

method takes 1.48207 minutes to compute when dealing with the same number of earthquake

sequences (using the Hotan region’s 2014 Ms7.3 earthquake sequence, which consists of 455

events as an example). In contrast, the INLAbru method, which relies on the approximate

parameter a posteriori technique, takes only 0.29984 minutes to realize the model fitting. The

INLAbru technique has the benefit of drastically cutting calculation time, which becomes

more noticeable when dealing with a sizable dataset of earthquakes and numerous variables.

Analysis of retrospective forecast results

Here, we take the 2014 Ms7.3 earthquake sequence in Hotan region as an example to conduct

a retrospective daily forecasting experiment. Specifically, 1000 a posteriori samples of the

ETAS model parameters of the earthquake sequences in the region are taken as “input sam-

ples” for the forecasting and are used to generate 1000 synthetic catalogs of earthquakes (one

for each sequence) starting from February 12, 2014, which is the same period as that of the

Fig 4. Time-magnitude plots of earthquake sequences generated by the ETAS model and actual earthquake

sequences are fitted based on the INLAbru, MCMC method.

https://doi.org/10.1371/journal.pone.0301975.g004

PLOS ONE Spatiotemporal characteristics of earthquake sequence parameters and forecasting of aftershocks in Xinjiang

PLOS ONE | https://doi.org/10.1371/journal.pone.0301975 May 16, 2024 14 / 20

https://doi.org/10.1371/journal.pone.0301975.g004
https://doi.org/10.1371/journal.pone.0301975


Ms7.3 sequence in Hotan region. ETAS model parameter a posteriori sample is used to gener-

ate one earthquake synthetic catalog. For each forecast period defined (tj, tj+1), it is assumed

that all earthquakes are known to occur strictly before the forecast period, i.e., Htj. where we

will refer to the Earthquake Predictability (CSEP, 2020) in which it is assumed that if an earth-

quake with a magnitude greater than 5.5 occurs during the forecast period (tj, tj+1) at a record-

ing time of tm: tj< tm< tj+1, then tj, the tm period and start a new daily forecast from tm + dt
(dt> 0).

First, we will generate the earthquake sequence within 100 days after the Feb. 12, 2014,

Ms7.3 mainshock based on the ETAS parameters and obtain the quantitative value of the num-

ber of forecast earthquakes per day. The outcomes of the retrospective forecasting test are dis-

played in Fig 5. The number of observed earthquakes per forecast period is represented by the

black dots in the figure, the median number of earthquakes in the synthetic catalog for each

forecast period is shown by the red solid line, and the 95% forecast interval for the number of

earthquakes in the synthetic catalog for each forecast period is shown by the orange shaded

area. Overall, we can observe that almost all the observed numbers of earthquakes are included

in the confidence intervals. The earthquake sequence tends to stabilize at the late stage of a

strong earthquake, and we focus our attention on the short period after the Ms7.3 mainshock

occurs in Hotan, which corresponds to the peak region of the red line in the figure. Table 6

gives the forecast and actual number of earthquakes in the five days after the mainshock, and

Fig 5. Retrospective forecasting test (using the earthquake sequence from February 12, 2014, in Hotan region as an example). Fig 5 (top), the black

dots indicate the number of earthquakes observed in each forecast period, the red solid line indicates the median number of earthquakes in the

synthetic catalog for each forecast period, and the orange areas indicate the 95% forecast intervals for the number of earthquakes in each time. The

extreme values for each interval are the 2.5% and 97.5% quantiles of the number of earthquakes in the synthetic catalog that make up the daily forecast.

Fig 5 (below) gives the logarithm of the number of earthquakes, thus enlarging the almost empty part of the value.

https://doi.org/10.1371/journal.pone.0301975.g005
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the table shows that the mean value of the forecast number of earthquakes is very close to the

actual value, which indicates that the model can forecast the number of early earthquakes in

the forecast period accurately after the occurrence of the strong earthquake Ms7.3 (Hotan,

February 12, 2014).

Second, we use the fitted mean values of the ETAS model parameters obtained from the fit-

ting of the MCMC and INLA algorithms in simulation experiments to calculate the likely

number of long-term earthquakes after the mainshock and to make comparisons of the out-

comes of these two independent methods. We select the period of Ms7.3 occurrence in Hotan

region since Feb. 12, 2014, as the starting time, and July 2, 2023, as the cutoff date (a total of

455 earthquakes occurred) to synthesize the 1000 earthquake catalogs. We chose the earth-

quake sequences from this region and time because of the large magnitude of the earthquakes

and the long duration of the sequences, which therefore contain a large number of more com-

plete earthquakes. At the same time, we select several historically strong earthquake earth-

quakes occurring during this period as fixed event points in each simulation experiment (in

addition to Ms7.3 also includes two earthquakes, Ms6.5 on July 3, 2015, and Ms6.4 on June 26,

2020). Fig 6 extracts the earthquake catalogs corresponding to the 0.025, 0.5, and 0.975 quar-

tiles in the distribution of the number of earthquakes used for the synthetic earthquake cata-

logs using the results of the two algorithms’ fits, respectively, and plots the histograms of the

forecast number of earthquakes for each month as well as those from the actual earthquake cat-

alogs. The expected number of earthquakes obtained by using the INLA algorithm is closer to

the observed number of earthquakes than those for the MCMC method. Based on the actual

monthly event rate plotted in Fig 6, we can see that the INLA algorithm can more accurately

forecast the number of earthquakes (per month) in the period of sudden (high) earthquakes

compared with the MCMC algorithm and hence may be a more effective method of aftershock

forecasting.

Conclusion

To systematically investigate the ETAS model of earthquake sequences in Xinjiang, the spatial

and temporal characterization of the parameters of earthquake sequences in Xinjiang in the

National Seismic Cataloging System (NSCS) provided by the China Earthquake Network Cen-

ter (CENC) from Jan. 1, 2009, to Jul. 2, 2023, and the forecasting of strong aftershocks are

selected for the study.

Firstly, the spatial distribution characteristics of earthquakes are described based on the

log-Gaussian Cox process model (LGCP), and the parameters of Gaussian random fields in

the LGCP model are calculated by the INLA algorithm. The results show that the confidence

interval of the random field standard deviation parameter does not contain zero, which indi-

cates that the earthquakes in Xinjiang have spatial local effects. Then, according to the poste-

rior mean of spatial random fields in LGCP model, it is found that the high risk areas of

Table 6. Intervals of the forecasted number of earthquakes and the actual number of earthquakes within five days

after the mainshock of Ms7.3(February 12, 2014)in Hotan region.

Days Lower(5%) Median(50%) Upper(95%) True

1 0 2 5 3

2 21 38 58 34

3 2 6 12 10

4 1 4 8 5

5 0 2 6 4

https://doi.org/10.1371/journal.pone.0301975.t006
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Fig 6. Histograms of monthly earthquakes in the 0.025, 0.5, and 0.975 quartiles of the distribution of the number of earthquakes in

the synthetic earthquake catalogs corresponding to the earthquake catalogs, and the actual earthquake catalogs, respectively, using

the results of the INLA and MCMC algorithms fitted to the ETAS model.

https://doi.org/10.1371/journal.pone.0301975.g006
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earthquakes in Xinjiang are mainly distributed in Hotan, Kashgar, Kizilsut, Yili, and Boltala,

and the research focuses on these 5 regions. Due to the limitations of the number of strong

earthquakes in the study area and the computational conditions of the ETAS model, we only

estimated the earthquake sequences in the five high seismicity regions in Xinjiang and dis-

cussed the temporal characteristics, and the conclusions drawn only reflect some of the statisti-

cal characteristics.

The ETAS model is implemented based on the INLAbru package and applied to the earth-

quake sequences in the above-selected five regions. Comparing the ETAS model parameters of

earthquake sequence activity in different regions of Xinjiang, is conducive to the study of the

characteristics of each aftershock sequence. The results show that there are obvious regional

differences in ETAS model parameters of earthquake sequences in different regions of Xin-

jiang. Then, we take the Ms7.3 earthquake sequence in Hotan region on February 12, 2014, as

an example to investigate the change characteristics of earthquake sequence parameters with

time in the short period after the main earthquake. The results show that the model parameters

change significantly within 15 days after the main earthquake, in which the mu value of the fit

value changes the most, followed by the p-value of the fit value, the K and c values of the fit

value change relatively flat, and the alpha value of the fit value shows a sudden increase or

decrease within 15 days after the earthquake, after which the model parameters show a rela-

tively stable trend.

To prove the advantages of the INLAbru method and test the goodness of fit of the model,

the accumulated earthquake number of the Ms6.0 earthquake series in Hotan region was com-

pared with the fitting curve of the ETAS model achieved by INLAbru and MCMC. Comparing

the occurrence time and magnitude size of the earthquake sequences generated by fitting the

ETAS model based on the INLAbru and MCMC methods, the occurrence time and magnitude

of the earthquake sequences generated by fitting the ETAS model by the INLAbru method are

closer to the actual earthquakes. In the case of the same number of earthquake sequences (taking

the 2012 Ms earthquake sequence in Hotan region as an example, a total of 455), the calculation

time of the statistical MCMC method is 1.48207 minutes, while the INLAbru method only needs

0.29984 minutes to achieve model fitting by relying on the posterior technology of approximate

parameters, which greatly reduces the calculation time. The advantages of this method in the

face of huge data sets of earthquake occurrence earthquakes will be more obvious.

In the end, the aftershocks 100 days after the Ms7.3 earthquake series in Hotan region are

forecasted by using the ETAS model parameter estimation results. The results show that the

actual observed earthquakes during the forecasting period are all included in the forecast inter-

val, which can provide a reference for identifying the period of high incidence of earthquake

aftershocks after the main earthquake in these regions. At the same time, we used the fitting

mean of ETAS model parameters fitted by MCMC and INLA algorithms to calculate the num-

ber of long-term forecast earthquakes after the main earthquake and compared them. The

results showed that the expected number of earthquakes fitted by the INLA algorithm was

closer to the number of observed earthquakes than that fitted by the MCMC algorithm. Com-

pared with the MCMC algorithm, the INLA algorithm can accurately forecast the number of

earthquakes in a sudden period, which is more conducive to the forecasting of strong

aftershocks.
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