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Abstract

Livestock excrement is composted and applied to agricultural soils. If composts contain anti-

microbial-resistant bacteria (ARB), they may spread to the soil and contaminate cultivated

crops. Therefore, we investigated the degree of transmission of ARB and related antimicro-

bial resistance genes (ARGs) and, as well as clonal transmission of ARB from livestock to

soil and crops through composting. This study was conducted at Rakuno Gakuen University

farm in Hokkaido, Japan. Samples of cattle feces, solid and liquid composts, agricultural

soil, and crops were collected. The abundance of Escherichia coli, coliforms, β-lactam-resis-

tant E. coli, and β-lactam-resistant coliforms, as well as the copy numbers of ARG (specifi-

cally the bla gene related to β-lactam-resistant bacteria), were assessed using qPCR

through colony counts on CHROMagar ECC with or without ampicillin, respectively, 160

days after compost application. After the application of the compost to the soil, there was an

initial increase in E. coli and coliform numbers, followed by a subsequent decrease over

time. This trend was also observed in the copy numbers of the bla gene. In the soil, 5.0 CFU

g-1 E. coli was detected on day 0 (the day post-compost application), and then, E. coli was

not quantified on 60 days post-application. Through phylogenetic analysis involving single

nucleotide polymorphisms (SNPs) and using whole-genome sequencing, it was discovered

that clonal blaCTX-M-positive E. coli and blaTEM-positive Escherichia fergusonii were present

in cattle feces, liquid compost, and soil on day 0 as well as 7 days post-application. This

showed that livestock-derived ARB were transmitted from compost to soil and persisted for

at least 7 days in soil. These findings indicate a potential low-level transmission of livestock-

associated bacteria to agricultural soil through composts was observed at low frequency,

dissemination was detected. Therefore, decreasing ARB abundance during composting is

important for public health.
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Introduction

Livestock excrement is processed via composting and is used to promote the growth of crops

[1]. Various composting methods, including aerobic composting and anaerobic digestion, are

employed to guarantee the eradication of bacteria existing in excrements. Nevertheless, achiev-

ing total bacterial elimination from livestock excrement through composting proves to be chal-

lenging. Residual bacteria in composts, encompassing antimicrobial-resistant bacteria (ARB)

and pathogens, pose a potential risk of spreading to agricultural soils [2,3]. In addition, bacte-

ria in composts applied to soils stay in the soil and flow to surrounding environments [4].

Therefore, applying composts, especially via inadequate composting, to soils is a risk factor for

disseminating livestock-associated bacteria, including ARB.

Compost application amplifies the presence of livestock-associated ARB, which are bacteria

remaining in composts derived from livestock excrements in soils [5]. Additionally, compost

harbors diverse remnants of antimicrobials utilized in livestock raising. These remnants can

exert selective pressure on ARB, contributing to their resilience against these residual antimi-

crobials [6,7]. These studies were mainly employed genome-based analyses such as quantita-

tive PCR to quantify various types of antimicrobial resistance genes (ARGs) as well as 16S

amplification sequencing via short-read next-generation sequencing to unveil the microbiota

[2,8]. Bacteria in the soil could contaminate crops and may transmit livestock-associated bac-

teria to humans [9]. The persistence and transmission of specific livestock-associated ARB

from livestock to agricultural fields through composts are unclear.

In agricultural soils, fecal bacteria maintenance is influenced by various factors, such as

temperature, water content, and nutrients [10]. Through the application of compost to soils,

pathogenic bacteria derived from the composts are sustained within agricultural soils for a

month [9,11]. Thus, quantitative analysis over time is needed to assess the risks of bacterial dis-

semination through composts.

β-lactams are used in livestock and humans, and cephalosporins are especially important

antimicrobial agents in human clinical settings [12]. Resistance to β-lactams is mainly related

to the presence of the bla gene and the production of β-lactamase in gram-negative bacteria

[13]. ARGs can be transferred and disseminated across genera, particularly those mediated by

mobile genetic elements [14]. Plasmid-mediated ARGs from bacteria in the compost can be

transferred to bacteria in the soil [15]. Therefore, bla genes are among the important ARGs

and should be investigated to determine the risks of dissemination. To control ARB, the trans-

mission and dynamics of ARGs must be investigated.

If composting is inadequate, residuals containing ARB and ARGs derived from livestock

could spread and transmit to soils and crops. This study aimed to investigate the quantitative

and qualitative transmission of livestock-derived ARB and ARGs in compost to soils and

crops. First, ARB and ARG abundance was determined in cattle feces, composts, agricultural

soils, and crops in the same field to evaluate the influence of compost application to agricul-

tural soils. Second, ARB were isolated from cattle feces, composts, agricultural soils, and crops

in the same field to clarify the transmission of clonal ARB isolates from livestock to soils

through composts.

Materials and methods

Sampling locations and sample collection

The samples used in this study were collected from the Rakuno Gakuen University farm in

Hokkaido, Japan. This encompassed a field spanning 51 000 m2 dedicated to the cultivation of

corn. On the field, composts were applied once a year. In the Rakuno Gakuen University farm,
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approximately 180 dairy cattle were kept, and their excretions were treated via aerobic com-

posting (solid compost) and anaerobic digestion (liquid compost) using a biogas plant. In aer-

obic composting, the temperature of the solid compost is raised by self-heating. For making a

solid compost, 20% dairy cattle excretions, 50% bedding, and 30% feed residues and waste

were mixed and stored at a covered, outdoor area. This mixture was turned over every 2 weeks

and allowed to stand for 5 months. In anaerobic biogas digestion, liquid compost is treated at a

constant temperature, removing most pathogens [16]. For making a liquid compost, 40%

dairy cattle excretions, 40 bedding, and 20% farm effluent water were mixed and stored in bio-

gas plant’s tank. In the tank, the mixture was heated to promote fermentation and kept in a

month. Solid and liquid composts are kept within their designated areas on the farm. This stor-

age continues until they are ready for use as fertilizer in the soil where corn is cultivated.

All samples were collected using sterilized bottles and underwent processing on the same

collection day using the following methods. Six cattle feces, six solid compost, one liquid com-

post, and six soil samples were collected before compost application. The six dairy cattle feces

sample were collected from six individuals on the same farm. The six solid compost samples

were obtained from six different parts of the compost pile, and one liquid compost sample was

obtained from a digested liquid storage tank of the biogas plant. The six soil samples were col-

lected from six different points where corn is cultivated.

On day 0, the solid (3.76 kg/m2) and liquid (2.0 kg/m2) composts derived from livestock

excrements in the Rakuno Gakuen University farm were applied to the cultivated field. The

grain corn was sown in the field on day 28 and harvested on day 160. After applying compost,

soil (0, 7, 28, 60, 100, and 160 days), and corn (100 and 160 days), samples were collected from

six predetermined locations, the same as those for pre-sample collection. Corn was divided

into upper (leaves on day 100 and edible parts on day 160) and lower parts (roots) (S1 Table).

Quantification and isolation of bacteria

Samples (2.5 g) were homogenized in 22.5 mL of buffered peptone water (Becton, Dickinson

and Company, Franklin Lakes, NJ, USA). The homogenates were plated on CHROMagar™
ECC agar (CHROMagar, Paris, France) without and with 100 μg mL-1 ampicillin (Sigma-

Aldrich, St. Louis, MO, USA) to determine the abundance (CFU g-1) of Escherichia coli and

coliforms (excluding E. coli), as well as β-lactam-resistant E. coli and coliforms (excluding E.

coli), respectively [17]. After incubation at 37 ˚C for 20 h, E. coli and coliform colonies were

counted according to their colony colors (E. coli, blue colony; other coliforms, red colony) and

morphologies. Up to three E. coli or coliform colonies were isolated from each agar plate.

Means and standard errors were calculated for each type of sample. Additionally, to isolate

other Escherichia species from samples wherein E. coli colonies did not grow, precultures with

2.5 and 1 g of samples were inoculated in 22.5 mL of Luria-Bertani broth (Invitrogen, Carls-

bad, CA, USA) and Colilert-18 (IDEXX, Westbrook, ME, USA), respectively, and incubated at

37 ˚C for 20 h. Then, the preculture was streaked onto CHROMagar ECC agar without and

with 100 μg mL-1 ampicillin and incubated at 37 ˚C for 20 h. Up to three E. coli or coliform col-

onies were isolated from each agar plate.

Characterization of bacteria

For each isolate, the bacterial species were determined using matrix-assisted laser desorption/

ionization-time of flight mass spectrometry (MALDI-TOF MS) using a Bruker MALDI Bioty-

per system (Bruker Daltonics, Bremen, Germany) [18]. In isolates identified as Escherichia
genus members using MALDI-TOF MS, biochemical tests and PCR were conducted to iden-

tify the Escherichia species [19].
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For Enterobacterales, the minimum inhibitory concentrations were determined according

to the Clinical Laboratory Standards Institute (CLSI) guidelines [20]. In addition, the suscepti-

bility of the isolates to ampicillin, cefazolin, cefotaxime, tetracycline, nalidixic acid, ciprofloxa-

cin, and gentamicin was evaluated using the agar dilution method. All antimicrobials were

obtained from Sigma-Aldrich. Resistance breakpoints were defined according to the CLSI

guidelines [20]. E. coli ATCC25922 and Pseudomonas aeruginosa ATCC27853 were used as

quality control strains.

For β-lactam (ampicillin, cefazolin, or cefotaxime)-resistant isolates, blaTEM, blaCTX-M,

blaSHV, and AmpC β-lactamase genes were detected using PCR [21].

When more than two isolates from an agar plate exhibited the same antimicrobial suscepti-

bility profile and possessed ARGs, they were considered single isolates.

DNA extraction and quantitative PCR (qPCR)

To quantify the genes in each field sample, DNA was extracted from 0.2 g of cattle feces, solid

compost, and liquid compost samples using ISOFECAL Kit (Nippon Gene, Tokyo, Japan) and

from soil and corn samples using ISOIL Kit (Nippon Gene), according to the manufacturer’s

instructions. qPCR was then performed to determine the copy numbers of bla (blaTEM,

blaCTX-M, and blaSHV) and uidA genes (marker gene of E. coli) using TB Green1 Premix Ex

Taq™ II (TaKaRa, Shiga, Japan) in 20 μL reactions containing 2.5 μL of template DNA and

0.4 μM of each primer (S2 Table) [22,23]. The reaction conditions were initial denaturation at

95 ˚C for 30 s, followed by 45 cycles each at 95 ˚C for 5 s, and the optimal melting temperature

of each gene for 30 s. Melting curves were analyzed to verify the absence of nonspecific ampli-

fications. All reactions included negative and positive controls. Samples showing results below

the limit of detection were considered negative. The standard curves were generated by clon-

ing the amplicon from the genes into the pTA2 vector and transforming it into E. coli DH5α
competent cells [7]. Means and standard errors were calculated for each type of sample.

Whole genome sequencing

The 18 bla-positive isolates of β-lactam-resistant strains were subjected to whole-genome

sequencing. Genomic DNA for short-read sequencing was extracted using a QIAquick1PCR

Purification Kit (QIAGEN, Hilden, Germany). Libraries were prepared using a Nextera XT

DNA Library Prep Kit (Illumina, San Diego, CA, USA). Multiplexed paired-end sequencing

was performed using HiSeq X (2 × 150 bp paired-end; Illumina). Reads of the adaptor

sequences were trimmed and subsequently assembled de novo into contigs using Shovill v1.1.0

(https://github.com/tseemann/shovill) with the default parameters. ARGs were identified

using the ResFinder database on the Center for Genomic Epidemiology server (http://www.

genomicepidemiology.org/). CSI phylogeny v1.4 (available online at https://cge.food.dtu.dk/

services/CSIPhylogeny/) was used to construct the SNP-based phylogeny [24]. CSI Phylogeny

v1.4 used BWA version 0.7.12, SAMtools version 0.1.18, BEDtools version 2.16.2, MUMmer

version 3.23, and FastTree version 2.1.7. E. coli MG1655 was used as the reference genome.

Statistical analysis

Statistical significance was determined using the Mann–Whitney U test, with the significance

threshold set at p< 0.05.
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Results

Bacterial abundance

Bacterial abundance with average numbers is shown in Fig 1 (S3 Table). No significant differ-

ence in bacterial abundance was detected in agricultural soils after compost application. After

compost application to agricultural soils, 5.0, 4.0, 4.0, and 3.4 CFU g-1 E. coli were detected in

the soil (days 0, 7, 28, and 160, respectively) (Fig 1A). In cattle feces and liquid compost,

2.5 × 104 and 2.0 × 102 CFU g-1 E. coli were quantified, respectively. E. coli was not quantified

in the soil (pre and days 60 and 100), the corn (days 100 and 160), or solid compost. In addi-

tion, 3.3 × 102–7.5 × 103 and 6.4 × 103–3.2 × 106 CFU g-1 coliforms, excluding E. coli, were

quantified in soils and corn, respectively. In cattle feces, solid compost, and liquid compost,

5.9 × 102, 3.5 × 103, and 5.2 CFU g-1 coliforms, excluding E. coli, were detected, respectively.

For β-lactam-resistant E. coli, there were 2.4 and 8.9 × 101 CFU g-1 in the soil (day 0) and

cattle feces, respectively, and were not quantified in other samples (Fig 1B). In addition, 1.2–

8.9 × 101 and 1.7–5.3 × 101 CFU g-1 β-lactam-resistant coliforms, excluding E. coli, were quan-

tified in soils and corn, respectively. In cattle feces and solid compost, 4.4 × 101 and 2.4 × 101

CFU g-1β-lactam-resistant coliforms, excluding E. coli, were quantified, respectively. In con-

trast, any β-lactam-resistant coliforms, excluding E. coli, were not quantified in liquid

compost.

Copy numbers of bla and uidA genes

The quantification results for the bla and uidA genes with average numbers are shown in Fig 2

(S4 Table). The blaSHV gene could not be detected, except in solid composts (3.7 copies g-1). In

soils (pre), 7.4 copies g-1 of blaCTX-M and 3.0 copies g-1 of uidA genes were quantified, and

blaSHV and blaTEM genes were not quantified. After compost application, 3.6 × 102 copies g-1

Fig 1. Abundance of (A) Escherichia coli and coliforms (excluding E. coli), and (B) β-lactam-resistant E. coli and

β-lactam-resistant coliforms (excluding E. coli) in soil, corn, and compost. Pre: before the application of composts,

day 0: day of application of compost to soils.

https://doi.org/10.1371/journal.pone.0301972.g001
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of blaTEM, 1.8 × 103 copies g-1 of blaCTX-M, and 2.0 × 102 copies g-1 of uidA genes were detected

in soils (0 days). Further, copy numbers of these genes in soil (0 day) were significantly

increased compared to those in soil (pre) (p< 0.05). From days 7 to 100, 5.7–4.4 × 102 copies

g-1 of blaTEM, 2.7 × 102–5.1 × 102 copies g-1 of blaCTX-M, and 2.6 × 102–9.9 × 102copies g-1 of

uidA genes were detected in soils. In soil (day 160), 3.8 copies g-1 of blaTEM, 2.3 × 102 copies g-

1 of blaCTX-M, and 3.0 × 101 copies g-1 of uidA genes were detected, and the copy number of

blaTEM in soil (day 160) wassignificantly decreased compared to that in soil (day 0) (p< 0.05).

In leaves of corn, 3.9 copies g-1 of blaTEM and 3.3 copies g-1 of uidA genes were quantified, and

the blaCTX-M gene was not quantified. In the root of corn, 2.4 × 101 and 3.8 copies g-1 of bla-

TEM, 6.8 × 101 and 3.1 copies g-1 of blaCTX-M, and 3.6 × 101 and 2.9 copies g-1 of uidA genes

were detected on days 100 and 160, respectively. In edible parts of corn, blaTEM, blaCTX-M, and

uidA genes were detected. In cattle feces, solid composts, and liquid compost, we detected

1.3 × 104, 1.0 × 104, and 1.8 × 104 copies g-1 of the blaTEM, 1.1 × 104, 3.5 × 104, and 5.7 × 102

copies g-1 of blaCTX-M and 1.1 × 106, 3.2, and 1.1 × 104 copies g-1 of uidA, respectively.

Escherichia isolation and characterization of bla-positive isolates

E. coli was isolated from all samples using a pre-culture step, excluding the edible parts of corn

(day 160) and solid composts. β-lactam-resistant E. coli was isolated from soil (days 0 and 7),

cattle feces, and liquid compost, while β-lactam-resistant Escherichia fergusonii was isolated

from soils (pre and day 0), cattle feces, and liquid composts.

Ten bla-positive E. coli and eight bla-positive E. fergusonii were detected in β-lactam-resis-

tant isolates from soils (pre and, days 0 and 7), cattle feces, and liquid compost (S5 Table). The

bla genes were not detected in β-lactam-resistant isolates from soil (days 28, 60, 100, and 160),

corn, and solid composts. From soils (days 0 and 7), cattle feces, and liquid compost, seven

blaCTX-M-2- and three blaTEM-positive E. coli isolates were detected. From soils (pre and day 0),

Fig 2. Quantification of bla and uidA genes in soil, corn, and compost via qPCR.

https://doi.org/10.1371/journal.pone.0301972.g002
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cattle feces, and liquid composts, eight blaTEM-positive E. fergusonii isolates were detected. In

addition to harboring β-lactam resistance and bla genes, these isolates were resistant to other

antimicrobials that we tested and carried ARGs, except for two blaTEM-positive E. coli isolates.

The phylogenetic tree of bla-positive isolates is shown in Fig 3. Closely related isolates

which were considered clonal isolates, were observed by SNP-based phylogenetic analysis in

seven blaCTX-M-2-positive E. coli (F2-4, S11-4E, S13-4E, T1-4E, F4-4, F3-4E, and F1-4) isolated

from soils (0 and 7 days), cattle feces, and liquid compost and in six blaTEM-positive E. ferguso-
nii (S7-4, S10-5E, F3-4, F1-7, T1-4, and F2-7) isolated from soils (pre and day 0), cattle feces,

and liquid composts. Clonal isolates of seven blaCTX-M-2-positive E. coli were resistant to ampi-

cillin, cefazolin, and cefotaxime and possessed aadA2, dfrA12, and sul1 genes. In addition, the

seven clonal blaCTX-M-2-positive E. coli were resistant to ampicillin, cefazolin, and cefotaxime

and possessed aadA2, dfrA12, and sul1 genes. In contrast, the six clonal blaTEM-positive E. fer-
gusonii were resistant to ampicillin and tetracycline and possessed tetA, aph(3’’)-Ib, aph(6)-Id,

dfrA14, and sul2 genes (S6 Table).

Discussion

This study detected clonal bla-positive Escherichia species in cattle feces, liquid compost, and

soil after compost application. These strains persisted for at least seven days in the soil, show-

ing ARB transmission from livestock to agricultural soils would occur by applying processed

composts in the tested field. Depending on the conditions, the abundance of E. coli decreased

to the detection limit within 46–49 days at most in the agricultural fields [25]. After the appli-

cation of cattle compost to soils, antimicrobial-resistant fecal coliforms experienced a rapid

reduction within a week and reached the detection limit within 2 months [26]. After the appli-

cation of chicken litter, closely related antimicrobial-resistant phenotypes of Enterococcus iso-

lates were detected in the chicken litter and litter-amended soils [27]. These studies showed

that livestock-associated bacteria, including ARB, could be transmitted to soils through pro-

cessed composts and maintained in the soil for a certain period.

In this study, the number of β-lactam-resistant E. coli and coliform and copies of ARGs and

uidA decreased with excrement processing. However, in the soil, it once increased immedi-

ately after applying compost especially the copy numbers of ARGs and uidA genes. After waste

treatment processing, the microbiota changed. However, some enriched bacteria could harbor

Fig 3. Phylogenetic tree of bla-positive β-lactam-resistant Escherichia isolates from soil, cattle feces, and compost.

The phylogenetic tree was inferred from CSI phylogeny using the assembled contigs. The nodes show the strain

№/source.

https://doi.org/10.1371/journal.pone.0301972.g003
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ARGs and maintain their abundance in the microbiome [7]. Previous reports showed that

ARB and ARGs decreased with appropriate composting [2,28] and increased after the com-

posts were applied to the agricultural soils [18,29]. Although the microbiota structures of feces,

composts, and soils were different, compost application in agricultural soils did not impact the

overall structure of the microbiota [30,31]. Agricultural soils would be a suitable environment

for fecal bacteria [25]. In the absence of antimicrobial selective pressure, it is difficult for ARB

to maintain dominance among the total microbes of an environment because plasmids carry-

ing ARGs require fitness costs and this causes inferior growth of ARB compared with that of

the wild-type strains [30]. These studies suggest that appropriate livestock waste treatment for

reducing ARB and ARGs as much as possible is important to prevent the spread of ARB and

ARGs from livestock. Therefore, additional composting treatment strategies were needed to

improve the removal of ARB and ARGs.

In the edible part of corn, E. coli was not isolated, and the bla and uidA genes were not

detected. Although crops could be contaminated by pathogenic E. coli suspected to be live-

stock-associated from soil [32,33], the phyllosphere, endosphere, and soil microbiota were

quite different [34,35], and the degree of bacterial transmission and persistence from soil to

crops would vary according to the type of vegetable [36]. Another study showed that ARGs

were transmitted into plants mainly through endophytic bacteria [37]. In crop production,

many factors are involved in bacterial contamination, and contamination through soil could

be a risk factor [27,38]. In our study, bacterial contamination from soil to crops was not

observed, which could be attributed to the low abundance of targeted bacteria in the soil. Care-

ful washing, such as rinsing with running water, is important for decreasing the abundance of

bacteria, including ARB, and pathogens in the soil and preventing crop contamination at pro-

duction and cooking sites [39,40].

After compost application, ARGs and uidA gene expression increased in the soil, suggest-

ing the dissemination of ARGs and fecal bacteria derived from livestock excretions in the

soil [8]. Additionally, certain amounts of ARGs were detected in the soil for up to 160 days.

Through the treatment process of excrement, antimicrobial resistance and livestock-associ-

ated bacterial genes were reduced. However, compared with bacteria, including ARB, they

were maintained for a longer time and not markedly reduced [7,28,41]. This result is because

ARGs were transferred to bacteria across genera and maintained in bacteria that were not

detected through cultivation methods in the experiments [15,42]. Another reason is that

genes in dead cells and extracellular DNA of bacteria have been detected via qPCR and meta-

genomic analysis [43,44], leading to a higher risk estimate, making assessing the actual extent

of ARB and ARG dissemination impossible. Therefore, the actual existence of functional

antimicrobial resistance genes needs to be accurately assessed by measuring DNA only from

living bacteria cells, such as by qPCR using monoazide. This process must be done to develop

effective treatment methods for livestock excrement and prevent the dissemination of live-

stock-associated ARGs [43,44].

Clonal antimicrobial-resistant E. fergusonii was isolated from feces, liquid compost, and

soil. Antimicrobial-resistant E. fergusonii from a different genetic background was isolated

from the soil before compost application. Recently, E. fergusonii was detected in livestock and

has attracted attention as a reservoir of ARGs [45]. Unlike E. coli, E. fergusonii is negative for

lactose, sucrose, and sorbitol fermentation [46]. Because lactose and/or sucrose-positive fer-

mentation was set to indicate Enterobacteriaceae (including E. coli) in isolation steps using

agars, such as deoxycholate-hydrogen sulfide-lactose and MacConkey agars, E. fergusonii was

overlooked in the bacterial isolation steps. In some cases, E. fergusonii caused human infec-

tions [19] and resisted last-line antimicrobials for human infections [47,48]. These findings

suggest that E. fergusonii, which has not received much attention until recently, is an ARG
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reservoir. Further investigation of overlooked bacteria, such as E. fergusonii, is important to

prevent ARB transmission and maintenance.

Conclusions

Compost application to the agricultural soil led to the introduction of compost-derived bacte-

ria, but these bacteria exhibited low relative abundance, and the compost treatment exhibited

no marked impact on the overall composition of the microbiome and resistome [49]. The

notion that the extent of ARB spread from livestock to crops is modest, while the environmen-

tal dissemination remains evident. Therefore, the extent of removal of livestock-derived

microorganisms from vegetables via customary washing processes and effective removal meth-

ods warrants further investigation.
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