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Abstract

Purpose

This study aims to introduce an innovative multi-step pipeline for automatic tumor-stroma

ratio (TSR) quantification as a potential prognostic marker for pancreatic cancer, addressing

the limitations of existing staging systems and the lack of commonly used prognostic

biomarkers.

Methods

The proposed approach involves a deep-learning-based method for the automatic segmen-

tation of tumor epithelial cells, tumor bulk, and stroma from whole-slide images (WSIs).

Models were trained using five-fold cross-validation and evaluated on an independent exter-

nal test set. TSR was computed based on the segmented components. Additionally, TSR’s

predictive value for six-month survival on the independent external dataset was assessed.

Results

Median Dice (inter-quartile range (IQR)) of 0.751(0.15) and 0.726(0.25) for tumor epithelium

segmentation on internal and external test sets, respectively. Median Dice of 0.76(0.11) and

0.863(0.17) for tumor bulk segmentation on internal and external test sets, respectively.

TSR was evaluated as an independent prognostic marker, demonstrating a cross-validation

AUC of 0.61±0.12 for predicting six-month survival on the external dataset.

Conclusion

Our pipeline for automatic TSR quantification offers promising potential as a prognostic

marker for pancreatic cancer. The results underscore the feasibility of computational bio-

marker discovery in enhancing patient outcome prediction, thus contributing to personalized

patient management.
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Introduction

Pancreatic ductal adenocarcinoma (PDAC), usually referred as pancreatic cancer is now the

seventh leading cause of cancer-related deaths worldwide [1] and will soon become the second

leading cause of cancer-related death in Western society [2]. Europe has the highest burden of

pancreatic cancer in the world, with 150000 new cases in 2018 and 95000 deaths/year. With an

average survival of 4.6 months, PDAC, which boasts a 5-year survival rate of less than 5% [3],

emerges as the deadliest cancer globally, resulting in patients to lose up to 98% of their healthy

life expectancy.

Histopathology is considered the diagnostic gold standard for PDAC diagnosis and charac-

terisation. With the digitization of histopathology slides, pathologists can assess the presence

of the disease via a computer screen. However, the prognostic power of current pathological

assessment is very limited and correlates poorly with patient outcome [4] as there is an absence

of proven prognostic biomarkers that can help patient stratification.

Currently, following diagnosis, patient management for PDAC is mainly based on the well-

known TNM [4] staging system developed by the Union International Contre le Cancer

(UICC), which is now in the 8th edition. This system stratifies patients by grading the tumor

size (T), severity of the spread into regional lymph nodes (N) and the status of other distant

metastatis (M), but despite being widely used, it is considered unreliable as patients with the

same TNM stage often present different prognosis [5].

Given the limitations of TNM staging for prognostication in clinical practice, there is a

clear need for identifying reliable biomarkers that better correlate tumor characteristics with

patient outcome. Recent advances in applying machine learning in digitized pathology to

extract prognostic features have opened the door for discovering quantitative morphological

biomarkers to improve prognostic stratification in pancreatic cancer. AI-derived features

could be predictive for pancreatic cancer as recently demonstrated by Nimgaonkar et al. [6],

who specifically focused on extracting morphological features from whole-slide images (WSI)

and correlating these with survival. Nimgaonkar et al. focussed on patients who were treated

with gemcitabine after surgery, therefore it is unknown the predictive value for patients treated

with other therapies.

PDAC is a complex disease often characterised by tumor heterogeneity [7] and dense

stroma, which has been suggested to play a critical role in tumor development, progression

and response to therapy.

The tumor-stroma ratio (TSR) is a widely studied prognostic factor, and it represent the rel-

ative amount of tumor cells and tumoral stroma. For a series of solid tumors such as breast [8],

lung [9] and colorectal [10, 11] cancers, TSR has proved to be an independent prognostic fac-

tor. TSR is a straightforward measure assessed by microscopic inspection of H&E tissue sec-

tions, where a high stromal component is typically associated with poorer prognosis. Recently,

researchers have examined the role of TSR in PDAC, but findings have been inconsistent.

While Leppanen et al [12]. did not observe any correlation between TSR and overall survival,

Li et al. [13] identified TSR as an independent prognostic factor. Typically, TSR is evaluated at

low magnification with a single microscopic field of view that contains the tumor area where

stromal tissue is most extensive and the tumor covers all four corners. However, this approach

may not be suitable for PDAC due to its highly heterogeneous tumor microenvironment. Fur-

thermore, the manual assessment of the TSR also suffers from significant inter-observer vari-

ability which can impact reliability. In recent work, Geessink et al. [10] have shown that

machine-learning-based quantification of TSR in colorectal cancer allows for reproducible

and reliable extraction of TSR while maintaining its prognostic power. In PDAC, Li et al. [13]

have explored a semi-automatic approach, where pathologists annotated the tumor bulk area
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for each slide and an algorithm subsequently assessed TSR. Although their work showed

promising results, but the manual identification of the tumor bulk still allows for potential

sources of bias and inter-observer variability.

In this study, we propose a multi-step machine learning-based pipeline for both automatic

PDAC segmentation and TSR ratio estimation. We made the code available at: https://github.

com/DIAGNijmegen/automatic-tsr-quantification-for-pdac.

Materials and methods

Datasets

This study consisted of two main tasks: tumor segmentation through epithelium segmentation,

and the automatic quantification of TSR.

Four independent datasets were considered in this study (Table 1). Specifically, we included

two datasets from Radboud University Medical Center (RUMC), a publicly available dataset

from The Cancer and Genome Atlas (TCGA), and a private multicenter dataset. All data were

fully anonymized before access was granted and ethics committee waived the requirement for

informed consent. Each individual dataset is described in detail on the following sections.

Dataset A. 16 patients who underwent pancreatic surgery at Radboudumc after the year

2000 were collected (study approved from the local ethical committee of Radboudumc, CMO-

2016-3045). For each patient, a single Formalin-Fixed Paraffin-Embedded (FFPE) tissue block

was chosen in consultation with an experienced pathologist, typically representing the largest

tumor area. The tissue block was sectioned, stained with Hematoxylin and Eosin (H&E), and

scanned using a 3DHistech Panoramic 1000 scanner. Next, the section was destained,

restained with CK8/18, and scanned using the same scanner. Anti-CK18/8 is a cocktail of

monoclonal antibodies targeting Ck8 and Ck18 specifically, typically used as a marker for epi-

thelial cells. Both cytokeratins are targeted and revealed during the same IHC procedure. The

resulting stain is therefore monochromatic. CK8/18 was used in conjuction with DAB and

counterstained with haematoxylin, which result in the epihtelial cells being highlighted in

brown and all others cells being stained blue. This was done according to our established pro-

tocol [14]. Finally, the H&E-stained slide was registered with the corresponding CK8/18 using

an existing registration algorithm [15]. Images size were all (272128 x 294144) at spacing

0.25μm. Example of this dataset is reported in Fig 1.

Dataset B. 162 patients with PDAC and personal history of colorectal, breast, ovarian,

endometrial, prostate, gastric cancer, and/or melanoma that were selected from the Dutch

Nationwide Pathology Databank (PALGA) with the approval of their Privacy Commission

and Scientific Council. The nationwide retrospective database-wide search (LZV2018-9) con-

tained information up to and including February 2018 (nationwide coverage since 1991).

Patient materials were collected from 25 collaborating laboratories across The Netherlands.

This study was approved by the local ethical committee of Radboudumc (CMO-2017-3780).

Images size were all (272128 x 294144) at spacing 0.25μm.

Table 1. Overview of the four different dataset used in this study.

Dataset Source Patients Slides Staining Purpose

A Radboudumc 16 16 HE—IHC Epithelium segmentation

B Multicentric 162 162 HE Tumor epithelium segmentation

C Radboudumc 29 29 HE Internal validation

D TCGA 161 187 HE External validation—Survival analysis

https://doi.org/10.1371/journal.pone.0301969.t001
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Dataset C. We selected 29 patients from a PET-cohort of 158 patients with histologically

proven PDAC who underwent [18F]FDG PET/CT in the period between 2004 and 2015 at

Radboud University Medical Center, Nijmegen, The Netherlands during diagnostic work-up

[16]. These patients were selected because whole tumor cross-sections were available for histo-

logical analysis. Images dimensions vary from (43008 x 80384) to (94720 x 96768) at

spacing1.0μm.

Dataset D. For external validation of the segmentation and survival analysis, we selected

the public dataset from TCGA, study PAAD. This dataset is composed of 161 patients with 187

WSIs. An experienced pathologist made coarse tumor annotations on 35 randomly selected

patients. In addition to coarse tumor annotations, 35 Regions of Interest (ROIs) of 2mm2 were

annotated for tumor epithelium. Together with the slides, clinical and survival information for

each patient were collected. We selected the following clinical variables: Age, Gender, Vital

Status, Origin of the tumor, Primary diagnosis, Prior malignancy, and Survival time in days.

Survival days was a variable represented either from 0days-to-death0 if the patient died before

the end of the study, or 0days-to-last-follow-up0 if the patient was still alive at the end of the

study. Images dimensions vary from (15347 x 15243) to (197207 x 84805) at spacing 0.25μm.

Dataset preprocessing. All the WSIs in the aforementioned dataset were preprocessed by

first converting the available annotations into masks and then masking them with the tissue

masks generated by a tissue-background segmentation algorithm [17] in order to remove the

possible presence of the background. For the slides where annotations were not available, only

tissue masks were generated to have faster both training and inference time.

Methods

In this study, a two-step method for automatic tumor segmentation in WSIs of pancreatic can-

cer is proposed. A detailed pancreatic tumor segmentation is obtained by combining coarse

Fig 1. Example of dataset A (first row H&E stained WSI, corresponding CK18/8 stained WSI on the second row). The staining-restaining

procedure results in perfectly matching slides.

https://doi.org/10.1371/journal.pone.0301969.g001

PLOS ONE TSR as a prognostic marker for pancreatic cancer

PLOS ONE | https://doi.org/10.1371/journal.pone.0301969 May 21, 2024 4 / 13

https://doi.org/10.1371/journal.pone.0301969.g001
https://doi.org/10.1371/journal.pone.0301969


tumor segmentation based on pathologists’ annotations with immunohistochemistry-based

epithelium segmentation, which requires developing several segmentation models. All models

were constructed using the Pytorch version of the publicly available “Segmentation models”

library [18]. An overview of the full pipeline is shown in Fig 2.

Epithelium segmentation and convex hull. The first step involved using dataset A to

train an epithelium segmentation network. Tissue-background segmentation [17] was per-

formed first, followed by the registration of the HE and IHC slides using a nonlinear image

registration method [15]. Color deconvolution was applied to obtain an image only including

the CK8/18 stain and subsequent thresholding converted it to a binary mask. The threshold

value was empirically determined. A U-Net [19] model from the open-source Segmentation

library [18] was used as the segmentation model. This network consisted of a Efficientnet-b0

encoder, pre-trained on ImageNet and a decoder with a depth of five. Skip connections were

used between each encoder and decoder step. The network was trained to segment the epithe-

lial cell in H&E using the registered binary mask resulting from the IHC slide as a reference.

In the second step, dataset B was used to train a tumor epithelium segmentation network. The

ensemble of epithelium cell segmentation network obtained from the five-fold cross-validation

over dataset A was applied to dataset B, and the results were masked with the tumor bulk annota-

tions made by an expert pathologist. This resulted in precise tumor epithelium and normal epi-

thelium annotations (Fig 2b). A U-Net based segmentation network with the same architecture

as for epithelium segmentation was then trained to segment normal and tumor epithelium.

To evaluate the model’s effectiveness in segmenting tumor epithelium, the Dice coefficient

was calculated on the epithelium within the tumor areas, as presented in the experimental

Fig 2. Flowchart highlighting different pipeline steps: (a) Epithelium segmentation and (b) tumor epithelium segmentation. Through the process of

staining-destaining of paired H&E and IHC slides, epithelium annotations are obtained, which are then used to train an epithelium segmentation

network (dataset A). This network annotates the rest of the slides. Subsequently, a tumor epithelium segmentation network is trained on the segmented

epithelium combined with annotated tumor area (dataset B). Based on tumor epithelium segmentation, the tumor bulk is automatically determined by

drawing a convex hull (c), on which TSR is calculated. Legend: In green the epithelium segmentation network, in yellow the tumor epithelium

segmentation network and in red the resulting tumor bulk segmentation and TSR quantification.

https://doi.org/10.1371/journal.pone.0301969.g002
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setup section 1. In addition, the performance of tumor bulk segmentation was assessed by

automatically generating a convex hull around the segmented tumor epithelium cells using the

alphahull algorithm, with an empirically determined alpha value of 0.038. The Dice coefficient

was computed between the pathologists’ tumor bulk annotation and this convex hull.

Automated tumor to stroma ratio quantification. The overal goal of task 2 is to auto-

matically quantify TSR and relate it TSR to patient survival. To calculate the TSR, segmenta-

tion of the tumor bulk, tumor epithelium and stromal components is needed. The former two

were obtained through task 1, whereas the stromal segmentation was obtained by applying a

multi-tissue segmentation algorithm, previously pre-trained on colorectal tissue [20], to the

tumor bulk area.

Although TSR is not yet commonly assessed in pancreatic cancer, in colorectal cancer TSR

is typically scored by 1) selecting a stroma-rich area within the tumor bulk at low resolution, 2)

within that area identifying a field-of-view that is representative and surrounded by tumor

cells, and subsequently 3) assessing the relative amount of stroma in 10% increments [21].

This process is complex and suffers from inter-observer variability. Despite those issues, in

colorectal cancer this is a reliable procedure with prognostic power. However, in pancreatic

cancer we have an additional challenge of high tumor heterogeneity. In this work, we circum-

vented this issue by not limiting the TSR to a single field-of-view, but by calculating it across

the entire tumor bulk contained in one section. This follows a process similar to that of Li et al.

[13], with the key difference that in our approach the tumor bulk was automatically

segmented.

The automatic quantification of the TSR was carried out on dataset D, which included a set

of clinical features that we used in combination with TSR to predict patient survival. The dis-

tribution of the automatic quantification of TSR in the slides analyzed shows a tendency

towards very high values. The mean TSR is 0.731, and the median TSR is 0.852. A Logistic

Regression model was trained with five-fold cross-validation to predict the probability of a

patient’s death within 6, 12, or 18 months and labels were assigned accordingly. In case multi-

ple slides were available per patient, the slide with the highest TSR was selected.

Experimental setup. The epithelium segmentation network was trained using a five-fold

cross-validation approach. Tiles sized 512x512 pixels were randomly selected from the WSIs in

dataset A, with a resolution of 1.0 μm and a batch size of 10. For each experiment, training

patches were augmented by applying various transformations, including horizontal and verti-

cal flipping, blurring, random adjustments to HSV channels, contrast, and brightness.

To assess the performance, the Dice coefficient was computed at the WSI level. Specifically,

for dataset A, encompassing the images used for training with available ground truth annota-

tions, the Dice was calculated for the entire whole slide image. For dataset D, which involved

35 previously pathologist-annotated ROIs, the Dice was computed on these regions.

The tumor epithelium segmentation network underwent five-fold cross-validation, with

training patches randomly taken from the WSIs in dataset B, at a 1.0 μm resolution and using

a batch size of 10. Performance evaluation involved calculating the Dice coefficient on the

whole slide image of dataset B. Additionally, for datasets C and D, one 2mm2 region within the

tumor area, previously annotated by a pathologist, was used to calculate the Dice coefficient.

Notably, for dataset D, both the epithelium segmentation network and the tumor epithelium

segmentation network were assessed on the same region of interest.

Furthermore, the convex hull’s performance was evaluated on datasets B, C, and D, utilizing

the Dice coefficient. To enable a dependable comparison across these datasets, the parameter

of the alphahull algorithm was kept constant.
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Results

Tumor segmentation

Epithelium segmentation. Table 2 presents the results of the epithelium segmentation

task. The median Dice score for dataset A was 0.749 (0.30), while the median Dice score for

dataset D was 0.717 (0.33). These results suggest that the algorithm performed similarly on

both training and testing datasets. Fig 3 shows the performances of the epithelium segmenta-

tion model on dataset A. The network performs well at segmenting the epithelium, despite the

fact of missing some glands. This is mostly due to the quality of the ground truth, which has

been not refined to remove staining artefacts.

Tumor epithelium segmentation. The results of the tumor epithelium segmentation task

are presented in Table 2. The median Dice score for dataset B was 0.642 (0.25), while the

median Dice scores for datasets C and D were 0.751 (0.15) and 0.726 (0.25), respectively.

These results suggest that the algorithm performed similarly on all three datasets. The Dice

coefficients were lower on the training set because the network tended to misclassify other

types of epithelial cells, such as those from the duodenum, as tumor. This could be due to the

fact that healthy pancreatic epithelium looks distinct from duodenum epithelium, which has a

glandular composition that may be more similar to the cancerous pancreatic epithelium. Fur-

thermore, as the evaluation on dataset B was conducted on the entire WSI, the presence of pos-

sible false positives was more visible, while on dataset C and D, this was less visible, being the

algorithm evaluated on ROIs. Fig 4 provides qualitative examples of the Tumor segmentation

network’s performance.

Tumor segmentation. The results of the Tumor segmentation task are presented in

Table 2. The algorithm was tested on datasets B, C, and D. The median Dice score for dataset B

was 0.7 (0.27), while the median Dice scores for datasets C and D were 0.76 (0.11) and 0.863

(0.17), respectively. These results suggest that the algorithm performed better on dataset D

than on datasets B and C. A possible reason for this is that the on this dataset the tumor area in

each slide covers on average more than 53% of the entire tissue, while on dataset B and C there

is an average of approximately 40% of tumor to tissue area. Fig 5 shows an example on the con-

vex hull generated on the segmented Tumor epithelium on dataset D.

Survival analysis

The results of the survival analysis are presented in Fig 6. Based on the figure, TSR appears to

be a promising prognostic factor for predicting 6-month survival in the patient population

studied when combined with the aforementioned clinical variables. The area under the curve

(AUC) of the cross-validation is 0.61±0.12, indicating moderate predictive performance. How-

ever, when predicting longer survival, the performance of the model decreased significantly, as

Table 2. Results of the various tasks.

Task Dataset Median Dice (IQR)

Epithelium segmentation A 0.749 (0.30)

D 0.717 (0.33)

Tumor Epithelium segmentation B 0.642 (0.25)

C 0.751 (0.15)

D 0.726 (0.25)

Tumor segmentation B 0.700 (0.27)

C 0.760 (0.11)

D 0.863 (0.17)

https://doi.org/10.1371/journal.pone.0301969.t002
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Fig 3. Example of epithelial segmentation network on two different slides from dataset A. Left column: example of two patches extracted from two

different cases. Middle column: in green the overlay of the epithelium extracted from the CK18/8 stain. Right column: output of the network (in green

the segmented epithelium). As we can see, lymphoid aggregates are correctly recognised as non-epithelium from the network.

https://doi.org/10.1371/journal.pone.0301969.g003

Fig 4. Example of tumor epithelial segmentation network on a slide from dataset B. First column: a randomly extracted patch from the dataset.

Middle column: ground truth obtained by inferring the Epithelium segmentation network (top left cluster of epithelial cells are non cancerous, bottom

right are cancerous). Right column: output of the tumor epithelium network. As we see, tumor epithelium is correctly segmented while healthy

epithelium is discarded.

https://doi.org/10.1371/journal.pone.0301969.g004
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evidenced by the AUCs of 0.52±0.13 and 0.42±0.08 for 12-month and 18-month survival,

respectively. Furthermore, we employed a Kaplan-Meier estimator, categorizing patients into

high-risk and low-risk groups based on the TSR value, with a threshold set at 0.73—chosen as

it represented the mean TSR value. The results are displayed in Fig 7. Although the Kaplan-

Fig 5. Example of the performance of the alphahull algorithm on dataset D. Middle column is the coarse tumor

annotation made by pathologist, while right column is the convex hull automatically generated on the segmented

tumor epithelium.

https://doi.org/10.1371/journal.pone.0301969.g005

Fig 6. AUC of the Logistic Regression model across five-fold cross-validation. Shade in the area represents the

standard deviation across all folds. The figure reports three experiments, 6 months, 12 months, and 18 months

survival, respectively.

https://doi.org/10.1371/journal.pone.0301969.g006
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Meier estimator indicates some differences in risks between patients, the significance level is

not reached.

Discussion and conclusion

We developed a deep learning multi-step method for the segmentation of tumor epithelial

cells, tumor area, and TSR quantification in H&E stained slides of the pancreas. Common

approaches for this task on H&E slides required manual epithelium annotations, which are

time-consuming and prone to errors. We overcame this limitation by using a double-stained

dataset, which allowed us to have nearly perfect epithelium ground truth.

Our algorithm showed reliable performance in segmenting epithelium, as demonstrated by

cross-validation results and on independent validation over dataset D, with a mean Dice coef-

ficient over the two datasets of 0.733 (0.3). With this reliable epithelium segmentation network,

we automatically generated tumor epithelium annotations on dataset B, in which we had only

coarse tumor annotations. Gao et al. [22] proposed a multi scale attention network to segment

multiple tissues in pancreatic whole slide images and they reported a mean dice of 0.769 over

five different types of tissues, including tumor epithelium, islets, ducts, blood vessels and

nerves, while a mean dice of 0.757 on tumor epithelium, ducts and islets.

To further improve the segmentation of tumor epithelium, we trained a second network

specifically suited for this task. We then used this network to automatically create a tumor area

by drawing a convex hull around the segmented tumor epithelial cells. Results on different

datasets (B,C,D) show that our network achieves good performance in segmenting tumor epi-

thelium, with an average dice coefficient over the three datasets of 0.71 (0.22), with the perfor-

mances of this network being better than the first network when evaluated on dataset D by

0.009. Finally, the Dice coefficients on the automatically generated convex hulls are reliable

over all the tested datasets with an average Dice of 0.77 (0.18). Fu et al. [23] achieved similar

results with an average Dice score of 0.803 on the patch-level segmentation task.

By generating a tumor area, we were able to automatically quantify TSR. We tested the

prognostic power of TSR by combining it with other clinical variables and performing a

Fig 7. Kaplan-Meier estimator. Stratification was done using the mean TSR value.

https://doi.org/10.1371/journal.pone.0301969.g007
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survival analysis at different time points. Our results suggest that TSR has potential predictive

power for short-term survival (6 months) with an average AUC in the five-fold cross-valida-

tion of 0.61±0.12 (clinical variable alone 0.60±0.12), although this power decreases as the time

slot interval increases. We further investigated the possible stratification between high-risk

and low-risk patients, and our results lean towards the assumption that higher TSR is associ-

ated with higher risk, while lower TSR is associated with lower risk. However, we should note

that the survival analysis did not provide statistical significance. Chen et al. [24] conducted a

similar analysis on the same dataset, achieving an AUC of 0.58 for predicting survival on WSI

only and 0.65 when combining the WSI with genomic information.

Despite the promising results, our work suffers from several limitations. For instance, the

double-stained dataset is relatively small, which prevented us from having a proper test set and

required instead cross-validation. Additionally, the color deconvolution has not been cor-

rected for staining artefacts, which could affect the performance of our algorithm. The tumor

epithelium network suffers from false-positive over-segmentation, meaning that our algorithm

could segment other tissue epithelium (e.g. healthy duodenum) as tumor. Finally, despite the

potential prognostic importance of TSR in predicting short-term survival, our experiments did

not achieve statistical significance. It is important to note that the predictive performances of

TSR seem to decrease substantially when predicting longer survival. Further analysis with

larger cohorts of patients is required to fully validate the prognostic value of TSR when com-

bined with clinical variables.

By eliminating the need for manual assessment, our approach can increase efficiency and

reduce the potential for human error. Furthermore, the ability to quantify TSR automatically

over the entire tumor area provides a more comprehensive assessment of this potential

biomarker.

Overall, the results of our study demonstrate the potential of automated approaches for the

assessment of TSR as a prognostic biomarker. While further validation is required, the results

presented here provide a foundation for future research and development in this area. In

future work, it would be interesting to explore additional biomarkers, such as the presence of

tumour-infiltrating lymphocytes, in combination with TSR.
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