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Abstract

Urban heat islands will occur if city neighborhoods contain insufficient green spaces to cre-
ate a comfortable environment, and residents’ health will be adversely affected. Current sat-
ellite imagery can only effectively identify large-scale green spaces and cannot capture
street trees or potted plants within three-dimensional building spaces. In this study, we used
a deep convolutional neural network semantic segmentation model on Google Street View
to extract environmental features at the neighborhood level in Taipei City, Taiwan, including
the green vegetation index (GVI), building view factor, and sky view factor. Monthly temper-
ature data from 2018 to 2021 with a 0.01° spatial resolution were used. We applied a linear
mixed-effects model and geographically weighted regression to explore the association
between pedestrian-level green spaces and ambient temperature, controlling for seasons,
land use information, and traffic volume. Their results indicated that a higher GVI was signifi-
cantly associated with lower ambient temperatures and temperature differences. Locations
with higher traffic flows or specific land uses, such as religious or governmental, are associ-
ated with higher ambient temperatures. In conclusion, the GVI from street-view imagery at
the community level can improve the understanding of urban green spaces and evaluate
their effects in association with other social and environmental indicators.

Introduction

Population agglomeration in metropolitan cities is a worldwide trend and drives socioeco-
nomic development [1]. Asian cities like Hong Kong [2] and Taipei [3] have a compact layout,
high urban population densities, and overcrowded buildings. Green spaces or green planting
measures act as regulators, helping to mitigate the urban heat island effect [3, 4]. Furthermore,
a lack of green spaces affects people’s well-being and mental health and can even increase the
risk of mortality [5, 6]. Satellite image-derived metrics [5] such as the Normalized Difference
Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), which quantify greenness at
the grid level, and geographic information systems, used to calculate the spatial accessibility of
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park green spaces at the community level [7] are popular ways of computing proxy indicators
of urban green space. Satellite imagery offers continuous spatial coverage of greening data,
highly correlated with the spatial accessibility of parks or other open green spaces in a commu-
nity. However, satellite images must be taken from above, resulting in limitations in spatial res-
olution and shooting angles. Tight building layouts may obscure ground-level images and
vertical views of buildings. Bird’s-eye-view satellite data cannot effectively capture street trees,
shrubs, and plants on roads, green curtains, and green facades on the vertical sides of build-
ings. In cities, in addition to large parks and green spaces, street trees or plants cultivated by
residents are closer to their daily living environments and may directly contribute to their ther-
mal comfort, namely, the subjective evaluation of the thermal environment, noise relief, and
air purification.

To improve the measurement of city green spaces, Li et al. [8] proposed a new method that
adopts an image segmentation approach to compute the green-view index (GVI) from pano-
rama images from Google Street View (GSV) in 2015. The evolution of the GVI from GVI 1.0
(https://github.com/mittrees/Treepedia_Public) to GVI 2.0 (https://github.com/billcai/
treepedia_dl_public) shows a marked improvement in identifying green vegetation and reduc-
ing the false recognition of green background. Previous research [9] has shown that, compared
with NDVI, the correlation between GVI and NDVI is relatively low, mainly due to the limita-
tions of the spatial resolution of satellite imagery and the essential limitations of GSV, which
needs to be collected along the road. In this study, we increased the GSV sampling rate to pro-
vide finer measures of GVI from a pedestrian perspective.

Urban green spaces can mitigate urban heat island (UHI) effects and play an important role
in cooling urban spaces [9]. Unlike previous studies that focused on urban parks or satellite
imagery, this study incorporated new ecological indicators, including GVI, Building View Fac-
tor (BVF), and Sky View Factor (SVF), calculated from GSV and other environmental data,
including satellite images, altitude, population, building areas, traffic volume, and land-use
information. These three indicators are closely related to factors such as regional temperature
regulation, socioeconomic population distribution [10], air pollution [11, 12], and housing
prices [13]. According to an Australian study [14] that used Google Street View to extract SVF,
there are differences between urban and rural SVF. Sky View Factor and shade were highly
correlated with population traits and the heat vulnerability index (HVI). A study in Los Ange-
les, U.S.A., reported that socioeconomic status in the community was highly correlated with
the green index [15]. These GSV-derived indicators can be used as urban morphological indi-
cators at a fine community scale.

In a densely populated city such as Taipei, it is difficult to find large areas of green space
because of the building density. The NDVT has limited efficacy in quantifying greening effects
at the community level in urban areas. Anthropogenic factors contributing to increased ambi-
ent temperatures, such as different land uses and traffic volumes, influence urban tempera-
tures. In this study, we innovated by incorporating three GSV-derived indicators—land-use
data, population density, altitude data, satellite imagery data, and traffic volume data from
vehicle detectors—to explore the association between green-view indexes and ambient temper-
ature at the community scale.

Methods
Ethics approval and consent to participate

This study was conducted using non-human subjects. Therefore, the requirement for ethical
approval was waived.
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Google Street View (GSV) data collection. We first sampled GSV points at intervals of
30 m from the commercial road network data in Taipei City, Taiwan. We then applied the
Google Map API with an authentication code to retrieve our sample points’ latest panorama
images from 2018 to 2022 (https://developers.google.com/maps/documentation/streetview/
overview).

We split the panoramic image into six separate images for each sample point, with pitch
angles of 0° and 45°. Thus, 12 images were obtained for further GVI computation at each
point. The resolution of each image is 224 x 224 pixels. A total of 86,637 sample points and
1,039,644 images were used in this study.

Definition and computation of GVI 2.0. The GVIis one way to measure green vegeta-
tion from pedestrians’ horizontal and vertical perspectives along roads. In this study, we
applied a deep convolutional neural network (DCNN) semantic segmentation model from
Treepedia 2.0 [16] to compute the GVI 2.0, which differentiated it from the first-generation
GVI proposed in 2015 [8]. The main difference between GVI 1.0 and GV 2.0 is that the GVI
2.0 algorithm improves the accuracy of tree cover identification by learning from many pub-
licly available labeled street images. In the image segmentation, the pixels were classified as
green or non-green. At each sampling point, a total of six azimuths (0°, 60°, 120°, 180°, 240°,
and 300°) and two elevations (vertical) angles (0° and 45°) of GSV images were measured, and
a total of 12 photo sets were collected. The formula for computing GVI 2.0 was:

12
E » pixels,
12

. pixels,

Green View Index (GVI2.0) = x 100(%)

Where pixels, is the number of green vegetation pixels in one image, and pixels, is the total
pixel number in one image.

Computation of sky view factor (SVF) and building view factor (BVF). The SVF and
BVF, representing the view from the ground, were computed from fisheye images of the GSV.
Fisheye images were processed using SegNet for image segmentation [17], and pixels of the
sky and buildings were identified. The sum of the tree view factor (TVF), SVF, and BVF was
100%. TVF and GVI were highly correlated. Therefore, we did not consider the TVF in our
model. The SVF is a dimensionless measure that varies between 0 and 1 and is used to charac-
terize sky openness in fisheye images [18]. A value of 1 represents the full sky without any
blocks, and 0 indicates that buildings or trees completely block the image and the sky cannot
be seen.

n

@ X sky(i)

i=0
n
Z w
i=0

where n is the total number of pixels, w is the weight associated with each pixel, and sky(i) is a
function determining whether this pixel is the sky.

The measure (BVF) represents the compactness of buildings along the road and ranges
from 0 to 1. Higher values represent a higher percentage of buildings in the fisheye images.

E - o X building(i)
= i x 100(%)

n
Z @
i=0

Sky View Factor (SVF) = x 100(%)

Building View Factor (BVF)
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where n is the total number of pixels, w is a weight associated with each pixel, and building(i)
is a function that determines whether this pixel shows buildings.

Normalized Difference Vegetation Index (NDVI). The NDVI is an indicator commonly
used to quantify the degree of greenness in satellite images. The advantage of the NDVT is that
it can help identify greenness over a large area, which can benefit urban planning. In this
study, we applied the Google Earth Engine (GEE) [19] to collect two types of satellite images as
alternative greenness indicators: the Moderate Resolution Imaging Spectroradiometer
(MODIS) and Landsat 8. The spatial resolution of MODIS is 250 m, and that of Landsat 8 is 30
m. The NDVI ranges from -1 to 1.

. . ) NIR — RED
Normalized Difference Vegetation Index (NDVI) = ———
NIR + RED

Here, RED represents the spectral reflectance acquired in the red (visible), and near-infra-
red (NIR) stands for the spectral regions.

We matched the GSV year and month information of the sampling points with the year
and month information corresponding to the two spatial resolutions of the NDVI from 2018
to 2022. Then, we compared the correlation between the GSV-derived GVI and NDVTI in Tai-
pei City.

The grid-based temperature data. The original temporal resolution of the temperature
data at a spatial resolution of 0.01° is from the Taiwan Climate Change Projection Information
and Adaptation Knowledge Platform (TCCIP, https://tccip.ncdr.nat.gov.tw/index_eng.aspx)
from 2018 to 2021. The temperature data used in this study included the monthly average tem-
perature and the monthly temperature difference computed from the daily difference between
the maximum and minimum temperatures. As shown in Fig 1, there were 232 grids in the
study area.

Land-use data. Land-use survey data for 2021 were obtained from the National Land Sur-
veying and Mapping Center of the Ministry of the Interior, Taiwan (https://www.nlsc.gov.tw/
en/). The classification of land-use data included nine classes in the first tier, 48 classes in the
second tier, and 93 classes in the third tier. Official land-use classifications are based on the
law and previous land-use surveys. Each upper-level classification has different subcategories.
The first-tier category is broad and includes agriculture, forestry, transportation, water conser-
vation, construction, public utilities, entertainment, and mineral salt utilization. However,
because the study site is located in the metropolitan area of Taipei City in northern Taiwan, we
selected the 19 land-use types with the highest land-use area ratio for statistical analysis. The
types of land use include farms, forests, mass rapid transit (MRT), roads, rivers, water storage
facilities, commercial areas, residential areas, mixed commercial residential areas, industrial
areas, religious sites, funeral facilities, parks, leisure facilities, vacant land, government agen-
cies, schools, social welfare facilities, and public facilities. We computed each TCCIP grid’s
percentage of each land-use type using QGIS 2.28 [20].

Human activity. This study uses two types of data to represent human activities in com-
munities. The first was the hourly traffic volume data from 737 automated vehicle detection
stations in Taipei City from the Taipei City Traffic Engineering Office from 2018 to 2021 (Fig
1). The different road levels are shown in Fig 1. To ensure consistency in spatiotemporal reso-
lution, we calculated the monthly averages of the hourly traffic volume in each grid. The sec-
ond dataset comprises static population data from June 2022 from the socioeconomic database
maintained by the Ministry of the Interior of Taiwan. At that time, Taipei City had approxi-
mately 2.5 million registered residents. The spatial resolution of the population data was within
the basic statistical area (BSA). The QGIS spatial analysis function was used to compute the
number of populations in the grids.
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Fig 1. Spatial distribution of vehicle detectors, road networks, and grids with temperature data from the Taiwan
Climate Change Projection Information and Adaptation Knowledge Platform (TCCIP). Layers such as vehicle detectors
(https://data.gov.tw/dataset/135705), road networks (https://data.gov.tw/dataset/156810), county boundaries (https://data.
gov.tw/dataset/7442), and 20m Digital Terrain Model (DTM, https://data.gov.tw/dataset/103884) are all from the Taiwan
Open Data Platform (https://data.gov.tw/) which is followed by Open Government Data License, version 1.0 (https://data.
gov.tw/license). The License is compatible with the Creative Commons Attribution License 4.0 International.

https://doi.org/10.1371/journal.pone.0301921.9001
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Altitude and size of the building area. As altitude is related to temperature, we used
open data from the digital terrain model at a resolution of 20 m in 2019 from the Ministry of
Interior, Taiwan (https://data.gov.tw/dataset/103884). The zonal statistical function in QGIS
was used to compute the average altitude of the grids. In addition, we computed the building
areas within each grid by using the one-thousandth numerical topographic map of Taipei City
from the Taipei City Department of Urban Development in 2017.

Statistical model. In this study, we converted all explanatory data into grid units to match
the TCCIP grid of the dependent variables of interest, including the monthly average tempera-
ture and monthly average temperature difference. The explanatory variables included the sea-
son, GSV-derived indicators (GVI, SVF, and BVF), NDVI from satellite imagery (MODIS and
Landsat 8), land use, human activity, altitude, and building area. We used two statistical mod-
els to analyze the factors influencing urban temperature: a linear mixed model (LMM) and a
geographically weighted regression (GWR). For LMM, we applied R software v. 4.2.0 [21] with
the “Ime4” package [22] to consider the repeated measurement of temperature data across dif-
ferent seasons and treat the random effect for the grids. Due to the collinearity issue between
GVIand NDVI in the same model, we treated GVI and the two types of NDVI with the same
covariates in the same model. We used the smallest Akaike information criterion (AIC) to
select the model. In both the LMM and GWR models, the green space indicator using GVI
had the lowest AIC, and we included the GVI in our final model. Considering the GVI, we
treated the seasons as categorical variables to account for their effect on the average tempera-
ture or the temperature difference.

K:ﬁMFE BXy+b+e,i=1,2,...,232
k=1

where Y; is the monthly average temperature or the monthly average temperature difference in
grid i. X was the value of the kth explanatory variable in grid i and m is the number of explan-
atory variables. 3, was the intercept term. X included seasons, green metrics (GVI, NDVI
(MODIS), or NDVI(Landsat 8)), SVF, proportions of land use types (19 types), population,
traffic volume, altitude, and building area. The f; was the regression coefficient for the kth
explanatory variable. b; represented the grid-specific random effect that is independently nor-
mally distributed with a zero mean and variance o}. The €; was the random error term that is
independently normally distributed with a zero mean and a common variance of ¢”.

In addition, various factors may have different degrees of influence on the average tempera-
ture or the temperature difference in a specific local grid. Thus, we considered spatial hetero-
geneity using GWR to show the different estimations of the explanatory variables for each
grid. We ran the analysis using the R package “GWmodel” [25].

Y, = Bo(u;, v,) + Zk:1 Bi(w;, v)Xy + &

where (u;,v;) denoted the coordinates of grid i, Bo(u;,v;) represented the intercept value, and
Bi(u;,v;) is a set of values of parameters at grid i. This model allowed the parameter estimates to
vary across spaces and was likely to capture local effects. In each of the local regression equa-
tions, we used a Gaussian weighting scheme to assign a weight of one to each target grid. As
the distance from the regression feature increased, the weights for the surrounding grids
smoothly and gradually decreased.

Results

An overview of the green view index in Taipei City from 2018 to 2022 is shown in Fig 2A. Tai-
pei City lies in the Taipei Basin and the mountainous areas on the eastern side provide higher
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Fig 2. Overview of the green view index in Taipei City from 2018 to 2022. (A) Green view index estimated during the study period, at 30 m intervals. (B)
Green view Index data distribution (mean: 30.17%).

https://doi.org/10.1371/journal.pone.0301921.g002
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GVI. Within the densely populated city area, the GVI has spatial heterogeneity. The mean GVI
during the study period was 30.17% (Fig 2B). Due to the filming time of the GSV, we obtained
the latest GSV's for computing the GVI from different seasons in different spaces. Stratification
of the GVI into four seasons can help us understand the distribution of the green view (Fig 3).
Although green vegetation may shed its leaves in the fall or winter, the GVI remains relatively
stable, particularly in subtropical cities such as Taipei. This is because, even though the leaf pix-
els are lost, image segmentation still identifies pixels belonging to other parts of the vegetation,
such as the trunk and branches. Fig 4 shows the average monthly temperatures during the four
seasons from 2018 to 2021. The spatial trend shows that northern Taipei City is much cooler
than the rest of the city area, and the center of Taipei City is hot during all four seasons.

Table 1 provides descriptive statistics of the variables included in the models. The two
dependent variables were the average monthly temperature (21.51 + 2.94°C) and the average
monthly temperature difference (5.69 + 0.98°C). The mean and standard deviation of green
view index 2, sky view factor, and building view factor are 30.17 + 14.36%, 42.66 + 11.49%, and
22.74 £ 19.83%. The mean NDVT values obtained from MODIS and Landsat 8 are 0.51 and
0.2. The average temperatures in winter, spring, summer, and fall were 17.4, 22.15, 27.70, and
22.74°C, respectively. The average altitude is 181.35 m. The average population in the grid was
10,192, and the average building area was 147,928.32 m”. The average hourly traffic volume
was 747.44 vehicles per hour. The top five land-use types in the grids of Taipei City were for-
ests (36.8%), roads (12.35%), residential areas (8.85%), agricultural fields (7.39%), and mixed
commercial and residential areas (4.75%).

The spatial resolution affects the green view. This study compared the correlations between
the GVI 2 and two other NDVI values at the grid level (Table 2). The overall correlation was
higher between GVI 2 and Landsat 8 (r = 0.756, p<0.001) than between GVI 2 and MODIS
(r=0.577, p<0.001). The correlation between the Landsat 8 and MODIS data was 0.577
(p<0.001). The correlations were similar for spring, summer, and fall but slightly weaker in
winter.

In the linear mixed model (Table 3), we controlled for major seasonal effects on the average
temperature. The coefficient of GVI 2 was -0.049 (p<0.001), indicating that a higher green
view index was negatively associated with the average temperature. We observed that religion-
related land use was positively associated (coefficient = 0.228, p = 0.034) with average tempera-
ture. In addition, grids with higher traffic volumes (coefficient: 0.001, p<0.001) were positively
associated with average temperature. In Table 4, we applied the GWR with the same variables
to evaluate the association. The direction of the median estimations from GWR was like that
of the LMM. The median values of GVI 2, religion-related land use, government land use, and
traffic volume were -0.016, 0.008, 0.004, and 0.00009, respectively. The coefficients in the last
column were obtained using simple linear regression. Government land use was significant in
the simple linear regression and positively correlated with average temperature. The overall
model performance in terms of the adjusted R-squared was 96.6% for the LMM and 95.8% for
the GWR. The two significant predictors selected from the GWR are shown in Fig 5. The esti-
mation of GVI 2 in Fig 5A for northern and southeastern Taipei City showed that a higher
GVI was associated with a lower average temperature. The traffic volume estimation is shown
in Fig 5B, and a few of the significant grids overlap with those in Fig 5A, indicating that a
higher traffic volume is associated with a higher average temperature.

In the Appendix, we describe the results related to the temperature differences. As shown
in S1 Appendix, the average monthly temperature difference was high in the spring and sum-
mer and the south of Taipei City. The results of the LMM (S2 Appendix) on the temperature
difference showed that the difference decreased with each year (coefficient: -0.099, p<0.001).
Higher GVI2 and SVF values were negatively associated with the temperature differences.
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Fig 3. The stratified visualization of the green view index by four seasons.

gvi2

60

40

20

https://doi.org/10.1371/journal.pone.0301921.g003

PLOS ONE | https://doi.org/10.1371/journal.pone.0301921 May 14, 2024

9/17


https://doi.org/10.1371/journal.pone.0301921.g003
https://doi.org/10.1371/journal.pone.0301921

PLOS ONE The relationship between temperature and urban form

winter spring

25.20°N -

25.15°N

25.10°N -

25.05°N -

25.00°N -

Temperature

L]

| 30
24.95°N - [T 6 km I T 6 km
25

20
N
- % 15

summer fall

]

25.20°N -

25.15°N -

25.10°N -

25.05°N -

25.00°N -

24.95°N - TN 6 km I Gk
121.45°E  121.50°E  121.55°E  121.60°E  121.65°E 121.45°E  121.50°E 121.55°E  121.60°E  121.65°E

Fig 4. Average monthly temperature in four seasons from 2018 to 2021.
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Table 1. Descriptive statistics of the variables used in the models.

Variables Mean + standard deviation
Average monthly temperature (°C) 2151 +£2.94
Average monthly temperature difference (°C) 5.69 + 0.98
Green view index 2 (%) 30.17 + 14.36
Sky view factor (%) 42.66 + 11.49
Building view factor (%) 22.74 +19.83
NDVI MODIS (250m) 0.51 +£0.22
NDVI Landsat 8 (30m) 0.2+0.1
Season
Winter (°C) 17.40 + 1.19
Spring (°C) 22.15+1.39
Summer (°C) 27.70 +2.11
Fall ("C) 22.74 £1.94
Altitude (meters) 181.35 + 244.09
Population (persons) 10192 + 12990
Building area (square meters) 147928.32 + 148890
Traffic volume (vehicles/hr) 747.44 + 359.60
Land use within TCCIP grids
Agriculture field (%) 7.39 £ 11.56
Forest (%) 36.8 £ 32.58
Mass rapid transit (MRT) (%) 0.37 £ 1.25
Road (%) 12.35 £ 10.96
River (%) 2.87 £ 6.64
Water storage facilities (%) 0.14 +0.58
Commercial area (%) 3,18 +4.98
Residential area (%) 8.85 +8.39
Mixed commercial residential area (%) 4.75+7.12
Industrial area (%) 0.27 +0.87
Religious sites (%) 0.46 + 0.62
Funeral facilities (%) 1.08 +3.92
Park (%) 3.96 £ 5.59
Leisure facilities (%) 0.65 £ 2.73
Vacant land (%) 1.23+£2.35
Government agencies (%) 2.04+6.2
School (%) 398+7.1
Social welfare facilities (%) 0.09 +0.21
Public facilities (%) 0.21 £ 0.49

https://doi.org/10.1371/journal.pone.0301921.t001

Land use for funerals was positively associated with temperature differences. The results of
the simple linear regression and the GWR (S3 Appendix) are consistent with those of the
LMM. The adjusted R-squared values for LMM and GWR for temperature differences were
71.8% and 75.7%, respectively. In the results of the GWR estimation in space (S4 Appendix),
a higher GVI 2 was negatively associated with the temperature difference in northern Taipei
and positively associated with the temperature difference in southern Taipei. Higher SVF
showed only negative associations in a few grids in northern Taipei. Moreover, a higher per-
centage of funeral land use was positively associated with temperature differences in north-
ern Taipei.
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Table 2. The correlations among green view index 2.0, NDVI from Landsat 8 satellite imagery, and NDVI from
MODIS satellite imagery.

Overall correlation GVI2 NDVI Landsat 8 NDVIMODIS
GVI2 - 0.756™** 0.577%**
NDVI Landsat 8 0.756™** - 0.686™**
NDVI MODIS 0.577%%* 0.686™** -
In winter
GVI2 - 0.567*** 0.480™**
NDVI Landsat 8 0.567*** - 0.553%**
NDVI MODIS 0.480%** 0.553*** -
In spring
GVI2 - 0.759*** 0.539%**
NDVI Landsat 8 0.759%** - 0.690***
NDVI MODIS 0.539%** 0.690*** -
In summer
GVI2 - 0.763*** 0.532%%*
NDVI Landsat 8 0.763*** - 0.728***
NDVI MODIS 0.532%%* 0.728*** -
In fall
GVI2 - 0.786™** 0.586™**
NDVI Landsat 8 0.786™** - 0.628™**
NDVI MODIS 0.586™** 0.628™** -
D <0.001

https://doi.org/10.1371/journal.pone.0301921.t1002

Discussion

Urban greening is an important strategy for reducing urban ambient temperatures and can
play a part in reducing noise and improving air quality. Unlike previous approaches that used
land surface temperature and greenness data from satellite imagery, we innovatively leveraged
grid-based temperature data from long-term meteorological ground observations, GSV-
derived green-view indicators, and seasonal and land-use information. By densely sampling
GSVs from Taipei City’s dense road network, we constructed a GVI distribution from the per-
spective of pedestrians. In our results, the GVI was negatively correlated with mean air

Table 3. Results of the linear mixed model on average monthly temperature.

Variables Estimate Std. Error P-value VIF

GVI2 -0.049 0.007 <0.001 1.143

Season (ref = fall) 1.033
Spring -1.782 0.101 <0.001
Summer 4.849 0.191 <0.001
Winter -6.997 0.106 <0.001

Land use: religion 0.228 0.106 0.034 1.015

Land use: government 0.009 0.009 0.304 1.007

Traffic volume 0.001 0.0001 <0.001 1.061

Adjusted R-squared: 96.6%; AIC: 1180.8

https://doi.org/10.1371/journal.pone.0301921.t003
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Table 4. Results of the geographically weighted regression and simple linear regression on average monthly temperature.

Variables Min. Q1 Median Q3 Max. Coefficients®
GVI2 -0.089 -0.025 -0.016 -0.009 0.007 -0.055**
Season (ref = fall)

Spring -2.232 -1.823 -1.702 -1.534 -0.789 -1.45**

Summer 4.174 4.646 4.782 5.092 5.639 5.24**

Winter -7.608 -7.043 -6.95 -6.712 -6.282 -6.613**
Land use: religion -0.13 0.001 0.008 0.021 0.143 0.222**
Land use: government -0.312 -0.05 0.004 0.046 0.806 0.009*
Traffic volume -0.00033 -0.00002 0.00009 0.00029 0.00075 0.00056™*

Adjusted R-squared: 95.8%; AIC: 1129.096

#p<0.001;
*p<0.05
% estimated from

b. estimated from

simple linear regression
geographically weighted regression

https://doi.org/10.1371/journal.pone.0301921.1004

temperature and temperature difference, which means that green infrastructure in urban areas
helps regulate ambient temperature smoothly. Human activities, such as traffic volume, and
specific land-use types, such as religion and government, are associated with high tempera-
tures. Using the GWR model, we determined the spatial impacts of different human activities
on the local temperatures.

In our study, the associations between GVI and NDVI, both overall and across seasons, ran-
ged from moderate to high according to the spatial resolution of the data. Landsat 8 has a
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Fig 5. Geographical distributions of the selected significant predictors of monthly average temperature. (A) Green view index. (B) Traffic volume.

https://doi.org/10.1371/journal.pone.0301921.g005
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resolution of 30 m, equal to the GSV sampling interval. Therefore, the correlation was 0.75,
except in winter (r = 0.567). The MODIS data have a resolution of 250 m, much coarser than
that of the GSV. Thus, the correlation coefficient decreases to 0.577. The correlations between
the green-view index from street-view images and the NDVT have varied in different studies.
A study conducted in northeast China used Tencent Map Street View images to compute the
GVI with a sampling interval of 100 m and compared it to the NDVT of Landsat 5 at a resolu-
tion of 30 m. The association with greenness within 1000 m was 0.85 [23]. Another study con-
ducted in Ireland showed a high correlation (r = 0.85) between GVI and NDVI within a 500-m
buffer of an air monitoring station [24]. However, other studies reported weak associations.
For example, a study conducted in Canada by the Canadian Urban Environmental Health
Research Consortium used Landsat 5 and Landsat 8 NDVI and GVI from GSV data [25].
Their association was only 0.14, but GVI (20.1%) was more relevant in explaining air pollution
exposure than NDVI (1.4%). The authors concluded that GVI may be a more sensitive indica-
tor of tree exposure. Different urban morphologies may affect the urban greenness measure-
ments from an overhead or pedestrian perspective.

A previous study reported the association between greenness and ambient temperature. As
in our Taipei Basin study, the researchers selected only three days of land surface temperature,
associated green space coherence, and local climatic zone [3]. They reported that the cooler
environments were associated with increased greenery and clustering of green spaces. Our
study identified the benefits of cooling from increased GVI across years and seasons. South-
west Taipei City is cooler than other regions of Taipei City because of the highly compact lay-
out of the buildings. The GVT had significant cooling effects, especially in the northern and
southeastern regions close to the foot of the mountains. Another study [26] conducted in the
West District of Taichung City, Taiwan, used GSV to compute the SVF and GVI from 50 sam-
ple locations and applied on-site questionnaires and meteorological measurements. The study
observed that the SVF was positively correlated with the physiological equivalent temperature
(PET) and thermal sensation vote (TSV) and negatively correlated with street-level perceived
shade. The GVI is negatively correlated with PET, indicating that higher greenness levels can
result in cooling and greater thermal comfort. Although our study did not measure PET, we
observed a correlation between ambient temperature and PET and a similar negative correla-
tion between GVI and temperature. However, in our study, a higher SVF was associated with
lower temperature differences, not the mean temperature. Our number of GSVs was 86,637
points, much higher than in the above-mentioned study, with only 50 sampling points. There-
fore, we believe that our data can further explain the changes in GSV-derived indicators and
the impact of temperature changes in different areas within the city.

Based on previous longitudinal observations, increased built-up areas and urban population
density are associated with increased land surface temperature [27]. In this study, we used the
latest GSV, which does not reflect temporal changes in land use owing to discontinuous film-
ing dates in different city areas. However, the cross-sectional association between the current
GVI and the corresponding average temperature within cities still reflects the spatial gaps in
our cooling strategy. The southwestern part of Taipei City has a high population density and is
the hottest area. However, the GVI did not have a significant cooling effect here. The GVI in
the northern part of the city was inversely associated with mean temperature and temperature
differences, while temperature differences were positively correlated with funeral land use. In
the southern part of the city, heavy traffic volume was positively correlated with higher ambi-
ent temperatures, while temperature differences were positively correlated with the GVI. Most
of these significant areas are close to the foot of the mountain, at the junction of urban and
rural areas, where the temperature is intermediate. Overall, increased green vegetation in cities
had a cooling effect; however, this effect was not as pronounced as that in the surrounding
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urban areas. Using new types of data, such as GSV-derived indicators and continuous spatial
coverage of grid-based temperature data with other environmental and anthropogenic infor-
mation, and applying spatially oriented GWR models can help researchers and policymakers
quantify local influencing factors on ambient temperature or temperature difference. The level
of GVI at the community level can help improve green infrastructure planning and evaluate
greening effects.

Limitations

The data frequency of the GSV was primarily from a street view car and depended on the film-
ing schedule. Thus, unlike satellite imagery, which had a full spatial extent and regular tempo-
ral intervals, the temporal and spatial extents of street-view imagery were discontinuous.
Therefore, we had to combine our GVI observations with GSV data from 2018 to 2022 to
obtain a complete picture of the GVI of the entire city. Although we had a high time resolution
for the temperature data, we had to match the GSV in the resolution month and lose the data
linkage for those without GSV data.

The GSV imposes a second limitation: the shooting must occur along a road. In large green
space areas, GSV can only collect outline data on green vegetation. This may underestimate
the cooling effect of green spaces like parks and forests. Our study used NDVI and park and
forest land-use data. The NDVI affected the degree of cooling. However, the overall model per-
formance was no better than that of the GVI model. The final model excluded land covered by
parks and forests. GVI is better suited for use in urban areas because of the scattered distribu-
tion of trees and vegetation on roads and in front of buildings and balconies. The third limita-
tion is an inherent feature of GSV. Passing vehicles or other obstacles in certain shooting
directions obscure the image, leading to an underestimation of the true greenness value. The
fourth limitation is the temporal discontinuity of the greenspace indicators. The temperatures
for each month represent the average stable conditions for that month. Our primary focus is
green space, which does not change much at the daily level but may vary at the monthly level.
As a result, we used monthly temperatures as modeling targets since green space indicators
cannot be updated frequently. In this study, we did not consider the human behaviors reacted
to the environmental changes. The two-way relationship between human behavior and the
environment can be further explored through people’s digital footprints [28].

Conclusion

Green vegetation measured by the GVI in an urban city showed a cooling effect at ambient
temperature and reduced the temperature difference. The increase in anthropogenic activities,
such as traffic volume and built-up land, has influenced the increase in ambient temperatures.
However, the associations were significant at the junction of urban and rural areas in the cities.
Street-view-derived ecological indicators are beneficial for understanding urban forms and
undermining green vegetation distribution and their association with the urban heat effect at
the city scale.
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