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Abstract

The rapid development of mobile communication devices has brought challenges to wire-
less networks, where data packets are able to organize and maintain local area networks
more freely without the constraints of wired devices. Scholars have developed diverse net-
work protocols on how to ensure data transmission while maintaining its self-organizational
nature. However, it is difficult for traditional network protocols to meet the needs of increas-
ingly complex networks. In order to solve the problem that the better node set may not be
selected when selecting the node set responsible for forwarding in the traditional OLSR pro-
tocol, a multi-objective optimized OLSR algorithm is proposed in this paper, which incorpo-
rating a new MPR mechanism and an improved NSGA-II algorithm. In the process of route
discovery, the intermediate nodes responsible for forwarding packets are determined by the
new MPR mechanism, and then the main parameters in the OLSR protocol are provided by
the multi-objective optimization algorithm. Matlab was used to build a self-organizing net-
work in this study. In addition, the conventional OLSR protocol, NSGA-II algorithm and
multi-objective simulated annealing algorithm are selected to compare with the proposed
algorithm. Simulation results show that the proposed algorithm can effectively reduce
packet loss and end-to-end delay while obtaining better results in HV and Spacing, two
multi-objective optimization result evaluation metrics.

1 Introduction

Ad hoc network is an instant network that does not depend on a fixed infrastructure and net-
work topology. The nodes in such networks are able to play the role of routers and participate
in data transmission [1]. With the rapid development of communication technology, Ad hoc
networks are widely used in the fields of surveillance, vehicle communication and agriculture
[2, 3]. Due to the dynamic nature of Ad hoc networks [4], previous researchers have developed
various routing protocols suitable for different network requirements. Among them, heuristic
algorithms play an important role in providing reliable solutions to real network problems
because of its advantages of global optimization, strong versatility and parallelism [5].

For different activation mechanism of routing update, on-demand routing protocol, table-
driven routing protocol and hybrid routing protocol are proposed [6]. The nodes in on-
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demand routing protocols do not need to maintain the topology information in real time, and
perform route discovery operations only when nodes need to send data packets [7]. Common
on-demand routing protocols include AODV (Ad hoc On-Demand Distance Vector Routing)
protocols, DSR(Dynamic Source Routing) protocols, etc., table-driven routing protocols are
active routing protocols. Nodes in the network maintain the routing information table in real
time by exchanging information periodically [8]. Common table-driven routing protocols
include DSDV (Destination-Sequenced Distance Vector Routing) protocol, OLSR (Optimized
Link State Routing) protocol, etc.

This paper studies on the improvement of OLSR protocol. We not only note that the work-
ing mechanism of the OLSR protocol can still be adapted, but also take into account the opti-
mization of heuristic algorithm. In addition, QoS (Quality of Service) has been one of the
main topics of networks, it represents the quality of data transmission in a network to evaluate
its performance. Hence, this paper finds an optimal node selection strategy and combines a
modified heuristic algorithm to optimize the OLSR protocol. This algorithm uses QoS metrics
to evaluate its performance, which can better reflect its improvement of network efficiency
and resource saving.

The rest of this paper is organized as follows: Section 2 represents a brief review of related
works on the optimization of Ad hoc network. In section 3, we briefly introduce the OLSR
protocol, MPR mechanism and its improved algorithm. Section 4 introduces NSGA-II and the
optimized mutation operator. Section 5 shows the multi-objective optimization OLSR algo-
rithm proposed in this study. Simulation experiments and data analysis are performed in Sec-
tion 6. Section 7 concludes this study and discusses the future work.

2 Related works

In recent years, many advanced algorithms have been used to improve Ad hoc networks.
Zhang et al. used an energy-balanced routing method FAF-EBRM based on forward-aware
factor in the WSN (Wireless sensor network) [9], the experimental results showed that this
method guaranteed high QoS of WSN. Liu proposed a novel network partition & distance
based unequal clustering routing protocol for WSN, which efficiently reduced the energy con-
sumption and prolonged the network lifetime [10]. Zhang et al. proposed a multi-strategy
channel allocation algorithm for edge computing [11], which improved the network interfer-
ence, transmission delay and network throughput for Wireless mesh networks (WMN:ss).
Zhang et al. designed a low duty cycle asynchronous MAC protocol with adaptive update
mechanism based on the predicted time for WSN [12], the experimental results showed that
the improved protocol can save the network energy consumption and improve the ability of
the network markedly. Zhang et al. proposed a new constructing approach for a weighted
topology of WSNs based on local-world theory for the Internet of Things [13], experiment
results showed that the topology had robustness and fault tolerance.

Chen et al. introduced an incentive approach of flow offset based on Q-learning algorithm
for IoT (Internet of Things) user privacy protection [14]. Wang et al. proposed a new approach
of ID mapping correlation for radio frequency identification technology anti-collision to solve
the problem of low tag recognition efficiency in IoT [15]. Zhang et al. presented a new adaptive
stratified sampling based edge computing architecture [16], this architecture performed well
in the real-time data stream processing of IoT. Cui et al. introduced an evolutionary game
algorithm based on reinforcement learning to solve the multiple IoT devices computation off-
loading problem in mobile edge computing [17], the experimental results showed that the
average delay of IoT devices gain good performance in dynamic environment. Chen et al.
designed a new method of the IoT user perceptual task offloading grounded on quantum
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behavior particle population optimization strategy [18], which reduced the time consumption
and energy loss of the algorithm markedly.

In [19-22], some reliable self-adaptive routing protocols based on heuristic multi-objective
algorithms were presented, these methods achieved good performance. In [23], a dynamic task
offloading scheme based on deep reinforcement learning was proposed, the simulation results
showed that this algorithm had better performance on delay and energy consumption. In [24],
a content distribution method of IOV (Internet of Vehicles) based on edge cache and immune
cloning strategy was proposed to better reduce the delay of content distribution and the com-
munication cost. Chen and Mao used a cooperative communication strategy to increase the
capacity of vehicular networks [25]. In [26], a non-dominated sorting genetic strategy was pro-
posed to solve the constrained multi-objective optimization problem for IoV in 5G, the experi-
mental results showed that the proposed strategy can make optimal decision in actual
applications. In [27], a vehicle cooperative communication method based on fuzzy logic and
signal game was proposed to improve the performance of average power consumption, task
success rate and invalid packet quantity for VANET. In [28], an edge caching approach based
on multi-agent deep reinforcement learning was introduced to solve the problem of excessive
response delay in IoV. In [29], a novel approach based on V2I direct transmission and V2V
auxiliary transmission was proposed for IoV, which showed better performance in transmis-
sion delay and packet delivery rate. In [30], a passive multi-hop clustering algorithm was intro-
duced to improve the stability and reliability of clustering algorithm for VANET (Vehicular ad
hoc network). In [31], two decision algorithms were proposed to address the issue of message
consistency caused by malicious vehicles that would tamper the content of disseminated mes-
sages, and the simulation results verified the effectiveness of the algorithms. In [32], a complete
dataset with real traffic data was applied in a traffic simulator and was used for dynamic rout-
ing algorithms. This work provided a visualization sample of dynamic routing algorithms for
Computer Science education. In [33], a new shared-bike demand forecasting model based on
dynamic convolutional neural networks was proposed to predict the demand of shared bike,
which achieved a high prediction accuracy within a relatively short period of time. In [34], a
prefix-projection-based trajectory prediction algorithm called PrefixTP was designed to over-
come the difficulty of predicting short-term partial trajectories. The experimental results
showed that PrefixTP outperformed other algorithms in predicting trajectories.

Zhang et al. presented a new algorithm of clustering AODV based on edge computing strat-
egy in IOV [35]. Experiments showed that this algorithm can reduce end-to-end delay and
improve the packet delivery rate in different environments. Liu et al. proposed an adaptive
repair algorithm for Temporally Ordered Routing Algorithms (TORA) routing protocol based
on flood control strategy [36], which made the improved TORA more adaptable to the data
transmission of the disaster relief network. Zhang et al. introduced an Ad hoc on-demand
multi-path distance vector (AOMDYV) routing protocol based on link lifetime and energy con-
sumption prediction for mobile edge computing [37]. The experimental results proved that
this algorithm can improve the network lifetime, reduce the node’s energy consumption and
the average end-to-end delay. In [38], a network anomaly detection model using the deep
learning method was proposed. By combining 1-D CNN architecture and SMOTE over-sam-
pling method, the proposed method achieved higher accuracy rate in classifying minority clas-
ses of attacks. Zhang et al. proposed a new greedy forwarding improvement routing method
for mobile ad hoc network [39]. Comparing with other existing methods, the proposed algo-
rithm effectively reduced the network delay and prolonged the network lifetime. Liu et al. pro-
posed an estimation formula to provide a general framework or studying the shortest path of
MANET [40], which could describe the changes in actual scenes more accurately. Zhang et al.
proposed an improved path finding algorithm based on genetic algorithm and bacterial
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foraging algorithm [41], which could improve the routing selection algorithm and conver-
gence without change the complexity of DSR.

In [42], a new quantum-genetic based OLSR protocol was proposed. It used a new aug-
mented Q-Learning algorithm to optimize the selection of MPR (multi-point relay) nodes that
responsible for forwarding data. Harrag et al. used a multi-objective genetic algorithm to auto-
mate the selection process of the routing protocol parameters [43]. Experiments showed that it
improved the QoS prominently. Yang et al. propose a multi-objective particle swarm optimiza-
tion (MOPSO) framework to enhance the performance of OLSR in VANETS [44]. Gunasekar
and Hinduja proposed Intelligent Water Drops algorithm to optimize the parameter setting in
OLSR protocol, which improved the packet delivery ratio and reduce the communication cost
in VANET [45]. Gautami et al. introduced the idea of combining Genetic Algorithm and Sim-
ulated Annealing to optimize the QoS of OLSR protocol to apply to VANET [46]. Joshua et al.
proposed an optimization framework for routing protocols in VANETS based on a multi-
objective firefly algorithm approach which depends on the use of network resources to further
reflect the current system condition and adjust the arrangement between continuous network
topology changes and the QoS needs [47].

2.1 Discussion

From the above studies, it can be seen that many heuristic algorithms were used to optimize
the network protocols. The researchers have also changed the operators such as encoding,
crossover and mutation to further optimize the initial algorithms. Other researchers have
focused on the improvement of routing mechanisms to enable those routing protocols to cope
with more complex environment changes and task requirements. However, there are still rela-
tively few studies on integrated optimization from these two perspectives, indicating consider-
able room for improvement. This paper is an attempt at such an integrated approach, and the
experiments prove that the proposed integrated algorithm also performs significantly.

3 OLSR protocol and MPR
3.1 OLSR protocol

The widespread adoption of Ad Hoc network has created more diverse network requirements,
and the OLSR protocol is one of the solutions to these requirements [48]. The OLSR protocol
works in the following steps:

1. Neighboring node discovery: A node discovers nodes directly adjacent to itself by broad-
casting Hello messages, and maintains a list of neighboring nodes.

2. MPR selection: MPR nodes are elected in the network according to specific election rules.

3. Topology building: After the MPR nodes are selected, each MPR node establishes a table of
MPR Selectors. This table indicates the nodes from which the MPR nodes are to forward
the TC messages when the topology is built

4. Routing establishment and maintenance: The information in OLSR is updated periodically.
If a node is found to be lost, the neighbor information is updated first, and then updated by
TC grouping according to the above process. A new topology is created in the network
immediately.

In summary, OLSR protocol is able to reduce the size of control packets by proactively pro-
viding paths immediately when needed and by using only selected multi-point relay nodes to
forward messages [49]. Therefore, the protocol can significantly reduce network flooding and
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retransmissions in broadcasts. At the same time, the OLSR protocol retains the routes of all
destination nodes to cope with large-scale node exchanges, making it suitable for large and
dense networks [50]. The control messages of this protocol do not rely on reliable transmis-
sion, but on periodic delivery by nodes, so it can cope with a loss of some packets occasionally
[51, 52].

3.2 MPR selection

MPR(multi-point relay) mechanism is the core of OLSR protocol. Based on this mechanism,
all nodes in the network can receive messages, however, only a few selected nodes have the per-
mission to disseminate packets. These selected nodes are called MPR nodes. The selection of
MPR nodes is related to the broadcast of link state information, and is also an important step
in optimizing network resource allocation. This technique can significantly reduce the number
of retransmissions required to send messages to all nodes in the network [53]. The selection
process of MPR nodes is as follows:

1. Choose the source node, find the set of one-hop nodes adjacent to the source node and the
set of strict two-hop nodes connected to the one-hop nodes.

2. Find all the isolated two-hop neighbor nodes, set the one-hop nodes connected with them
as MPR nodes, and then move the MPR nodes and all their connected two-hop nodes out
of the respective sets.

3. The MPR nodes are gradually selected in descending order according to the number of con-
nected two-hop nodes until all the two-hop nodes can be covered.

As shown in Fig 1, the star symbol represents the source node, the solid symbol represents
the one-hop node, and the hollow symbol represents strict two-hop nodes. According to the
above selection mechanism, the MPR set may be obtained as {a, f, b, ¢}, {a, f, b, e}, {a, f, d, ¢} or
{a, f, d, e}. Each set contains four nodes.

The selection of MPR sets can speeding up the response to topology changes by reducing
the maximum time interval for periodic control message transmissions, thereby improving
network quality of service. The larger and denser the network, the better the optimization
effect of the MPR mechanism.

3.3 Improved MPR scheme

However, in some cases, the MPR set selected by the traditional OLSR protocol is not the opti-
mal set, which will lead to unnecessary packet forwarding and waste of network resources [54].
Based on previous research, Dong and Zhang [55] proposed a reverse MPR set selection
scheme, which can optimize resource allocation, and improve data transmission efficiency
through loop and set operations. The process of the mechanism is as follows:

(1) Find the one-hop neighbor set F and the two-hop neighbor set S in the topology, and ini-
tialize the MPR set.

(2) Map each one-hop neighbor to its connected strict two-hop neighbor one by one.

(3) Sort the set F from largest to smallest according to the number of two-hop neighbors that
each one-hop neighbor can connect. If the numbers are the same, then sort the nodes
alphabetically.

(4) Find the isolated two-hop node in set S, put the corresponding one-hop node into the
MPR set, and mark these two nodes. If there is no such one-hop node, delete the lowest-
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ranked node in the sorted set F, and perform a union operation on all two-hop nodes that
connected to each node in the set F. Compare whether the union is consistent with the set
of unmarked nodes in the set S. If so, it can be confirmed to be deleted. Otherwise, it is
added to the MPR set, and its connected two-hop node is marked.

(5) Repeat step (4). The union is performed every time a one-hop node moves to the MPR set
until the elements in the MPR set can completely cover the set S.

Applying this scheme to Fig 1 again, the new MPR set can be obtained is {a, d, e}, which has
one node less than the original MPR set.

4 Genetic algorithm and its improvement
4.1 MOGA

Genetic Algorithm (GA) is a computational model that simulates the natural selection and
genetic mechanism of Darwin’s theory of biological evolution [56]. The model adopts a proba-
bilistic optimization method, which can automatically obtain and guide the optimized search
space without certain rules, and adjust the search direction adaptively. This algorithm takes all
the individuals in the population as objects and uses randomization techniques to perform an
efficient search of a parameter space that is encoded [57]. The genetic operation includes selec-

tion, crossover, and mutation.

6 7

Fig 1. Topology diagram.
https://doi.org/10.1371/journal.pone.0301842.g001
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Multi-objective optimization means that when multiple objectives need to be reached in a
given scenario [58], the optimization of one objective is at the expense of the deterioration of
the others due to the tendency to have inherent conflicts between the objectives. In this case, it
is difficult to emerge a unique optimal solution, and instead, coordination and compromises
are made among them so that the overall objective is as optimal as possible [59]. The result of
optimization is a set of optimal solutions obtained on the Pareto front.

Multi-objective evolutionary algorithm is suitable for solving complex multi-objective opti-
mization problems and has been widely used. This algorithm uses one-dimensional string data
to represent variables, also known as genotyped individuals. A certain number of individuals
form a population, which will undergo genetic recombination -> mutation -> evaluation and
selection to produce new individuals [60]. Individuals with better fitness will be remained in
the next generation, that is, the non-dominant solution.

This study adopts the framework of the non-dominated sorting genetic algorithm with elite
strategy (NSGA-II), which introduces fast non-dominated sorting and crowding distance
comparison operator. Individuals can judge the superiority of each other by comparing the
rank and crowding distance, which has the advantages of simple and efficient computation.

4.2 Precision control mutation operator

Zhang et al. [61] proposed an adaptive precision control mutation operator to explore and
exploit the decision space. Let x = [xy, xp, . . ., Xn] T represents one individual, x; represents the
ith decision variable of individual x. Eqs (1)-(6) are used to explore the local region near x and
the region far away from x

X = x,+ A (1)
X =x,— Aa (2)
where,
1
Ao = g x Random(9) (3)
x; =x;+Ap (4)
x; =X Ap (5)
where,

Ap = W x Random(9) (6)

Eqs (1) and (2) represent the increase or decrease of x; by Aa, Aa is calculated by Eq (3).
The function Random(p) is used to generate a pseudo-random number between 1 and p.
Jodan 18 Used to control the required local search accuracy, Random(9) produces a random
coefficient ranging from 1 to 9. These two equation are used to perform local exploitation. If a
local search accuracy of 0.0001 is desired, the parameter p should be set to 4. Eqs (4) and (5)
represent the increase or decrease of x; by AS, Af is calculated by Eq (6). The function Random
(g) is used to generate a pseudo-random number between 1 and q. m is used to control
the required global search accuracy. These two equation are used to perform global
exploration.
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5 Multi-objective optimized OLSR protocol
5.1 Network model

OLSR performs basic functions through different types of control message. Among them, each
node must detect its neighbor nodes with direct and bidirectional links. In order to ensure the
validity of the links, each node periodically sends Hello messages to its neighbors [62]. In this
process, the neighbor list in the Hello message may be partial, so it is stipulated that all neigh-
bor nodes are referenced at least once during a predefined refresh cycle. Topology Control
(TC) messages are sent periodically by each node in the network to announce its MPR node
set [63], thus building an internal forwarding database. The address list in each TC message
may also be incomplete, but must be resolved within a certain refresh period. Refresh interval
refers to the period in which a node must refer to each link and each neighbor [64]. This value
is also used to determine the neighbor maintenance time.

According to [43], Hello interval, Topology control (TC) interval and Refresh interval are
taken as three variables of the multi-objective optimization algorithm in this study. In accor-
dance with RFC 3626, these three variables are real numbers ranging from 1 to 30 and will be
used as objects for selection, crossover and mutation operations during the optimization
process.

5.2 Objective function

In this study, packet loss rate and end-to-end delay are taken as two objectives of optimization
[43], both of which are important indicators for network quality evaluation [65]. The packet
loss rate refers to the ratio of the number of lost packets to the sent packets during the trans-
mission process. The end-to-end delay refers to the total delay of sending a packet from the
source host to the destination host.

5.3 The improved OLSR

The brief workflow of the improved OLSR is as follows: First, build the network and initialize
the population. Use the modified MPR mechanism to determine the routing path. Then, the
objective values of the initial population is obtained by simulation experiments. Start the popu-
lation iteration until the end of loop condition is met. The flow chart is shown in Fig 2.

5.4 Pseudo code

Improved OLSR protocol Based on new MPR Mechanism Combined with Optimized

NSGA-II Algorithm

1. Build the topology, set the parameters of the network and the
multi-objective optimization algorithm

2. Initialize the population, set the population size pop size and
number of iterations

3. Calculate the two objective values of each individual through net-
work simulation, and sort each individual

4. Screening of parental individuals

5. Crossover between parent individuals to obtain offspring

6. Select individuals from the parents for mutation to obtain off-
spring using the mutation method in Section 4.2.

7. Merge the offspring and the original population

8. Perform a non-dominated sorting on the merged population and select
a new generation of the population

9. Loop step 3 to 8 until the iteration is completed and evaluate the
final results
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Fig 2. Flow chart of the proposed algorithm.

No

https://doi.org/10.1371/journal.pone.0301842.g002

5.5 Complexity analysis

The time complexity of OLSR protocol depends on the size and connectivity of the network, as
well as on the implementation and optimization algorithm. Overall, the complexity of the
OLSR protocol is low because it uses a multi-point relay-based routing calculation method,
which can efficiently calculate the routing path of packets, and the protocol itself does not have
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much redundant information. Specifically, the time complexity of the OLSR protocol can
reach O(m°) in the worst case, where m is the number of nodes in the network. However, in
most cases, the time complexity of the OLSR protocol can be optimized to O(m°) or lower.

The improved OLSR protocol contains two main computational components. One is the
selection of the MPR set, because the improved MPR mechanism requires needs to compute
the shortest path from each node to other nodes, and for each node, it needs to find the small-
est set of all its neighboring nodes, which requires 7 iterations and each iteration needs to com-
pare the number of neighboring nodes. Therefore, the total time complexity is O(1%). The
other is the multi-objective optimization algorithm. In this part, the computational complexity
of this algorithm is related to the number of objectives M and the number of individuals N.
The sorting process of selecting an individual in each round takes O(N) and has to compare M
objectives, so the complexity here is O(MN?). To summarize, the total complexity of the
improved OLSR protocol is O(MN?*)+0(n?).

5.6 Discussion

Compared with the previous studies cited in Section 2, this paper also makes some improve-
ments to the relevant strategies and algorithms for specific network environments, and uses
simulation experiments to verify the effectiveness and practicality of the improved algorithms.
In addition, the network quality measures such as packet loss rate and delay are also used to
reflect the optimization effect on the network. In previous studies, researchers have made in-
depth analysis of the research background, contributed extensively to various types of network,
and their results have been quite convincing. In this paper, we choose the OLSR protocol as
the research object and use the Pareto solution to deal with the multi-objective problem, and
add data analysis to enhance the persuasiveness of the results.

6 Simulation and analysis

Unlike traditional optimization ideas, the proposed algorithm optimizes the OLSR protocol in
terms of both multi-objective optimization and routing mechanism. In this study, Matlab is
used as a network simulation and multi-objective optimization algorithm implementation
tool. The traditional OLSR protocol, the traditional NSGA-II optimized OLSR protocol and
the multi-objective simulated annealing algorithm [66] optimized OLSR protocol are selected
for comparison experiments. With the same network topology, the same number of packets
are sent in each experiment to calculate the average packet loss rate and the average end-to-
end delay.

6.1 Evaluation indicators

6.1.1 HyperVolume(HV). The HV evaluation index represents the volume of the hyper-
cube enclosed by the non-dominated individuals in the solution set and the reference point in
the target space [67]. This index evaluates both the convergence and distributivity of the solu-
tion set at the same time [68]. The accuracy of HV metric depends on the choice of reference
point, and different reference points for the same solution set will give different results [69].
Let X denote the non-dominated solution set and P be the corresponding reference point. The
calculation formula (7) of HV is as follows

HV(X,P) = Ul v(x,P) (7)

x is an individual in the solution set X, i.e., x€X. v(x, P) denotes the volume of the space
enclosed by x and P. U is the mathematical symbol of union set. This formula represents the
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12

10

0

Table 1. Simulation experiment parameters.

network parameters proposed algorithm parameters
nodes 22 population 100
connections 34 targets 2
packets sent 200 variables 3
crossover rate 0.6
mutation rate 0.1

https://doi.org/10.1371/journal.pone.0301842.t001

union of all volumes. The larger the value, the closer the solution set is to the real Pareto front,
and the better the algorithm performance.

6.1.2 Spacing(SP). The SP index is used to assess the uniformity of the approximate
Pareto solution over the target space [70]. Assuming that the solution set obtained by the
multi-objective algorithm is P, the calculation formula (8) of SP is shown below

spcin(®) [ 3, @ - a) ®

L]

Q

Il 't ) 1 ) I i I

0

2 4 6 8 10 12 14

Fig 3. Network topology.

https://doi.org/10.1371/journal.pone.0301842.9003
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Table 2. Evaluation index of multi-objective optimization algorithm.

Improved OLSR NSGA-II OLSR AMOSA OLSR
HV SP run time/s HV SP run time/s HV SP run time/s
100.813254 3.095831 6.597439 96.906755 5.816321 7.234401 29.165 3.1133 7.316922
59.05023 1.688376 7.031235 93.092785 6.285952 6.789962 55.167 2.2868 7.931146
105.775363 4.954058 6.487442 83.581825 8.297134 6.552379 53.342 1.9313 7.698046
112.19943 3.839177 6.785653 36.486627 2.240588 6.18666 82.224 2.1031 8.398576
101.406916 2.922663 6.503328 43.927112 2.266727 7.509054 56.801 3.0929 7.633853
68.510852 4.98929 6.992628 54.805031 6.046629 7.081911 64.604 2.6054 8.536014
80.05946 2.212217 7.228467 80.665947 2.49649 7.14628 77.631 2.2522 8.123185
76.934 2.4922 6.662898 94.318344 9.648715 7.08785 65.295 2.7649 7.544914
73.051701 2.892598 7.577904 70.671686 6.08017 7.031838 48.11 2.9902 7.966633
93.60565 3.719562 6.944842 78.042357 7.937279 6.30737 83.581 2.148 7.758269
77.534 1.4871 6.823574 41.935922 5.102679 7.57574 57.405 2.5397 7.496716
91.060545 1.583228 7.367366 68.686855 6.220011 6.837195 62.192 2.5167 8.073279
54.448 2.0556 7.091183 55.649806 2.75291 6.763237 75.255 2.1199 7.953578
81.258575 3.939789 6.321039 72.801959 2.81347 6.351201 37.503 2.8276 7.890938
66.375 2.2114 8.066726 76.257826 3.420455 6.801208 75.015 2.4449 7.89487
88.019122 3.551554 7.885388 49.037576 2.511725 6.771911 78.109 1.7481 8.219964
80.885624 2.708957 7.673384 52.669424 8.686493 8.696988 44.362 2.784 7.820719
106.612632 3.051339 6.336094 41.427 2.3045 7.725367 67.629 2.5262 7.232223
67.459 2.1623 6.742672 92.153597 2.356938 6.965776 60.136 2.3549 7.393517
114.028824 1.746736 6.832979 85.445738 4.797804 7.200151 80.732 2.2024 8.030539
https://doi.org/10.1371/journal.pone.0301842.t1002
Table 3. Network simulation results.
Improved OLSR NSGA-II OLSR AMOSA OLSR OLSR
Packet Loss/% E2E Delay Packet Loss/% E2E Delay Packet Loss/% E2E Delay Packet Loss/% E2E Delay
5.185 23.7641 5.53 24.97236 9.5946 42.758 11.25 62.90444
5.145 30.24631 5.825 23.1391 8.4063 33.701 11.255 56.48142
5.47 26.55857 5.56 21.8367 10.83 43.667 10.985 55.97741
5.31 18.923 5.75 20.58363 10.138 49.371 10.99 55.27264
5.74 20.617 6.51 20.591 10.021 47.254 11.2 55.57722
6.09 19.488 6.165 29.86335 8.96 46.996 11.16 63.98024
5.86 25.2122 5.42 35.07 8.9808 37.037 11.21 59.79158
5.38 26.062 6.28 26.90672 10.694 36.973 11.255 61.6043
5.335 22.9998 4.435 25.65928 10.89 45.505 11.3 57.82639
6.05 19.5466 6.36 23.10529 9.5667 47.8 10.885 60.2346
4.67 31.997 5.38 32.65184 9.0395 53.997 11.245 53.87124
5.52 26.093 591 25.06542 9.4865 51.36 11.07 54.89811
5.265 25.121 5.49 25.67362 8.5172 45.889 11.005 57.96153
6.355 21.6675 5.76 24.48977 8.7632 34.195 10.59 62.53533
5.425 18.442 5.555 34.21914 9.1571 47.696 11.23 55.92694
5.43 18.8952 5.825 30.61514 9.1774 43.599 10.91 54.49625
6.155 30.6536 5.42 35.07 9.4688 37.327 11.125 57.78028
6.22 19.582 6.005 24.95618 10.307 42.661 11.26 56.69773
5.645 27.95686 6.54 23.5853 8.7963 41.818 10.97 60.47512
5.76 18.4671 6.44 22.05004 9 38.439 11 60.05679
https:/doi.org/10.1371/journal.pone.0301842.t003
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d is the average of the distance between all individuals and their nearest individual, d; is the
current individual. This formula measures the standard deviation of the minimum distance

from each individual to the other individuals. The smaller the Spacing value is, the more even
the solution set is. If the value of SP is 0, it means that the Pareto solution is uniformly distrib-

uted on the target space.

6.2 Experiment setting
The network parameters and optimization algorithm parameters are shown in Table 1. The

network topology is shown in Fig 3.

6.3 Simulation experiment results
Table 2 shows the collection of the solution set evaluation metrics obtained from all the experi-

ments of multi-objective optimized OLSR protocol and run time for each algorithm for each
run. Table 3 shows the collection of the network quality metrics obtained from all experiments
of the multi-objective optimized OLSR protocol and the original OLSR protocol, where the

13/25

PLOS ONE | https://doi.org/10.1371/journal.pone.0301842  April 26, 2024


https://doi.org/10.1371/journal.pone.0301842.g004
https://doi.org/10.1371/journal.pone.0301842

PLOS ONE

Multi-objective optimized OLSR

w

Fig 5. Comparison graph of SP.

I I I I I I 1

— Improved OLSR
NSGA-IIOLSR
AMOSA COLSR

T

—

1 1 1 1 1

[ SN ot

e 8 10 12 14 16 18 20
Tes t Group

https://doi.org/10.1371/journal.pone.0301842.g005

number of packets sent in each simulation is 200, and the average packet loss rate and end-to-
end delay are counted in each algorithm. Figs 4 and 5 show the data in Table 2 as bar graphs.
Figs 6 and 7 show the data in Table 2 as boxplots. Fig 8 shows the data in Table 2 as scatter
plot. Figs 9 and 10 show the data in Table 3 as bar graphs. Figs 11 and 12 show the data in
Table 3 as boxplots. Fig 13 shows the data in Table 3 as scatter plot.

As can be seen from Table 2 and Fig 4, most HV values of the improved OLSR optimization
algorithm are larger than NSGA-II and significantly better than MOSA. This indicates that the
non-dominated solution of the proposed algorithm is closer to the real Pareto front. Fig 6
shows the discrete distribution of HV values for the three algorithms, and it can be observed
that the data of the proposed algorithm is generally distributed on the upper position. From
Table 2 and Fig 5, most SP values of the improved OLSR optimization algorithm are better
than MOSA, and significantly better than NSGA-II. This indicates that the distribution of the
solutions of the proposed algorithm is more even. Fig 7 shows that the proposed algorithm can
obtain lower SP values. By observing the two indicators simultaneously in Fig 8, it can be seen
that the improved algorithm distributes more points in the lower right corner of the coordi-
nate axis, which indicates that the algorithm takes more cases of two better indexes at the same
time. Both the HV and SP values of the proposed algorithm outperform the other two multi-
objective optimization algorithms in the 1st, 5th, 9th, 11th, 12th, 17th and 20th simulation
experiments, showing the advantages of the proposed algorithm.
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Comparing the run time of these three algorithms, it can be counted that the improved
algorithm has the shortest run time in 11 experiments, NSGA-II OLSR has the shortest run-
ning time in 9 experiments, while AMOSA OLSR has the longest run time in each experiment.
According to the analysis in Section 5.5, the proposed algorithm differs from NSGA-II OLSR
in the selection of MPR and the mutation process, while these two do not have a significant dif-
ference in computing time consumption. However, AMOSA OLSR differs from the other two
algorithms in the Optimization mechanism, and runs for a relatively longer time.

From Table 3 and Fig 9, it can be seen that most of the packet loss rates of the improved
OLSR optimization algorithm are lower than those of NSGA-II OLSR. And, in all experiments,
lower than MOSA OLSR and the original OLSR, which indicates that the proposed algorithm
can effectively reduce the packet loss rate and ensure the transmission efficiency. Fig 11 shows
that the packet loss rate of the proposed algorithm is generally lower than that of the other
three algorithms. As can be seen from Table 3 and Fig 10, the end-to-end delay of the
improved OLSR optimization algorithm is lower than that of NSGA-II OLSR in most of the
experiments and lower than the other two algorithms in all experiments, which indicates that
the proposed algorithm can effectively reduce the end-to-end delay. Fig 12 shows that both the
quartile and median positions of the end-to-end delay values of the proposed algorithm are
lower than those of the other algorithms, which further proves its superiority. In Fig 13, packet
loss rate the end-to-end delay of all algorithms are scattered in the coordinate axis at the same
time, and it can be seen that the proposed algorithm is mainly concentrated in the lower left
corner, which indicates that it is more common for this algorithm to achieve lower packet loss
rate and end-to-end delay simultaneously, and the performance of this algorithm is better. In
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the 1st, 4th, 6th, 8th, 10th, 11th, 12th, 13th, 15th, 16th and 20th set of experiments, both packet
loss rate and end-to-end delay of the proposed algorithm are optimal, which proves that it can
effectively improve network service quality.

6.4 Statistical analysis

In this section, Wilcoxon test and Friedman test are used to compare the above algorithms.
Tables 4 and 5 show the results of Wilcoxon test between this algorithm and the two compari-
son algorithms. Table 4 compares the HV value, and Table 5 compares the SP value. The Wil-
coxon test is used to test the null hypothesis and is able to rank the observed distribution [71].
In these four sets of comparison data, it is evident by the three metrics R+, R- and p-value that
the proposed algorithm has a larger rank sum than the other two algorithms. This illustrates
that the improved OLSR algorithm is significantly different from the other two algorithms in
terms of HV and SP indexes.

Friedman test can detect the significance of differences between more than two samples
[72]. Tables 6 and 7 show the results of Friedman test for the proposed algorithm and the two
comparison algorithms. Figs 14 and 15 show the Friedman test chart of the two evaluation
metrics. In the figures, the horizontal axis is the average rank value, the vertical axis represents
each algorithm. The vertical coordinate 1 represents the proposed algorithm, group 2
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represents NSGA-II, and the group 3 represents MOSA. For each algorithm, the dot is used to
indicate the average ranking value of that algorithm. Table 6 and Fig 14 compare the HV val-
ues, and Table 7 and Fig 15 compare the SP values. It can be seen that the proposed algorithm
ranks first in HV, and its mean column rank is significantly different from that of the MOSA.
The proposed algorithm performs best in SP, and the mean column rank of the proposed algo-
rithm is obviously different from that of the NSGA-II.

6.5 Discussion

Compared to the improvement algorithm proposed in [41] for the OLSR protocol, the above
simulation additionally chooses two multi-objective optimization algorithms for comparison,
and further increases the persuasiveness by evaluating the quality of the solution set through
two metrics, HV and SP, in addition to the metrics used for evaluating the QoS. Compared
with the improved algorithm of [42], this simulation adds end-to-end delay to the packet loss
rate to compare the improvement effect of the routing protocol, and also proves the reliability
of the experimental results by two kinds of non-parametric test.

7 Conclusion

This work has worked to provide an effective improvement to OLSR protocol, which inte-
grated an improved mutation operator into NSGA-II framework and combined with the new
MPR set selection mechanism. Through simulation and comparison experiments, it can be
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Table 4. Wilcoxon test of the HV metric values.
Improved OLSR versus R+ R- p-value
NSGA-II 14.00 6.00 0.025094
MOSA 18.00 2.00 0.00077959
https://doi.org/10.1371/journal.pone.0301842.t1004
Table 5. Wilcoxon test of the SP metric values.
Improved OLSR versus R+ R- p-value
NSGA-II 15.00 5.00 0.0064246
MOSA 13.00 7.00 0.68132
https://doi.org/10.1371/journal.pone.0301842.t1005
Table 6. Friedman test of the HV metric values.
Algorithms Ranking
Improved OLSR 28(1)
NSGA-II 42(2)
MOSA 50(3)

https://doi.org/10.1371/journal.pone.0301842.t006
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Table 7. Friedman test of the spacing metric values.

Algorithms Ranking
Improved OLSR 32(1)
NSGA-II 52(3)
MOSA 36(2)

https://doi.org/10.1371/journal.pone.0301842.t1007
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concluded that the proposed algorithm can effectively reduce the packet loss rate and end-to-
end delay. At the same time, this algorithm outperforms other multi-objective optimization
algorithms in terms of Pareto solution set evaluation metrics, and the data analysis results also
show the superiority of the proposed algorithm. In future work, the multi-objective optimiza-
tion algorithm will be further optimized in population selection and crossover. Moreover, the
algorithm will be applied to more network simulation scenarios to verify its effectiveness.
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