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Abstract

Background

The COVID-19 pandemic has caused over 7.02 million deaths as of January 2024 and pro-

foundly affected most countries’ Gross Domestic Product (GDP). Here, we study the inter-

action of SARS-CoV-2 transmission, mortality, and economic output between January 2020

and December 2022 across 25 European countries.

Methods

We use a Bayesian mixed effects model with auto-regressive terms to estimate the temporal

relationships between disease transmission, excess deaths, changes in economic output,

transit mobility and non-pharmaceutical interventions (NPIs) across countries.

Results

Disease transmission intensity (logRt) decreases GDP and increases excess deaths, where

the latter association is longer-lasting. Changes in GDP as well as prior week transmission

intensity are both negatively associated with each other (-0.241, 95% CrI: -0.295 - -0.189).

We find evidence of risk-averse behaviour, as changes in transit and prior week transmis-

sion intensity are negatively associated (-0.055, 95% CrI: -0.074 to -0.036). Our results high-

light a complex cost-benefit trade-off from individual NPIs. For example, banning

international travel is associated with both increases in GDP (0.014, 0.002—0.025) and

decreases in excess deaths (-0.014, 95% CrI: -0.028 - -0.001). Country-specific random

effects, such as the poverty rate, are positively associated with excess deaths while the UN

government effectiveness index is negatively associated with excess deaths.

Interpretation

The interplay between transmission intensity, excess deaths, population mobility and eco-

nomic output is highly complex, and none of these factors can be considered in isolation.
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Our results reinforce the intuitive idea that significant economic activity arises from diverse

person-to-person interactions. Our analysis quantifies and highlights that the impact of dis-

ease on a given country is complex and multifaceted. Long-term economic impairments are

not fully captured by our model, as well as long-term disease effects (Long COVID).

Introduction

The World Health Organisation (WHO) declared a Public Health Emergency of International

Concern (PHEIC) on 30 January 2020 as rising SARS-CoV-2 infections were detected across

several countries. During the pandemic’s initial phase, governments enacted large-scale, and

unprecedented non-pharmaceutical interventions (NPIs) to control disease transmission that

had substantial impacts on society [1]. Countries introduced health containment measures

and economic support interventions at different times and with different degrees of stringency

to each other [2]. This in effect set up a longitudinal natural experiment [3], allowing us to

assess the effectiveness of NPIs on the economy.

The worldwide economic impact of the COVID-19 pandemic has been severe [4]. How-

ever, most countries have since recovered their previous GDP. Countries offered significant

support to their populations, particularly through furlough payments and business continuity

support [2]. Sole economic costs of the pandemic do not account for other wide-ranging socie-

tal impacts. Prolonged school closures led to loss of learning for children, which will likely lead

to long-term outcomes, and may more generally result in a loss of national GDP over the com-

ing decades [5, 6].

Between 4 January 2020 and 21 January 2024 (the WHO announced on 5 May 2023 the end

of the PHEIC [7]), there were 774 million confirmed cases and over 7 million confirmed

deaths [8]. These official counts underestimate true COVID-19 burden to varying extents

between countries [9, 10]. More positively, the COVID-19 pandemic also saw rapid vaccine

development and rollout [11]. The UK was the first country to administer a COVID-19 vac-

cine, beginning on 8 December 2020. By the end of the PHEIC, over 13.38 billion doses of

COVID-19 vaccines have been administered, enabling societies to gradually return to normal

life and significantly lessen the health and economic burden of COVID-19 [12].

The COVID-19 pandemic has generated unparalleled quantities of data, much of which is

publicly available. Using these extensive and granular data sets, which we review in the Meth-

ods section, we explore the interaction between transmission intensities (log of the real-time

reproduction number Rt), excess deaths, mobility and economic output. We use previously

published estimates of the real-time reproduction number as well as GDP and consider their

interaction with NPIs using a Bayesian mixed effects model with auto-regressive terms.

Much early research focused on estimating the impact of NPIs on disease transmission. The

heterogeneity in NPI implementation and stringency, both over time and by location, has

been used to previously assess the association between disease transmission and NPIs. Mecha-

nistic models using case data are commonly used to estimate time-varying reproductive num-

bers [13–15], especially during the early phases of a pandemic. We use previously published,

and widely used, estimates of the real-time reproduction number from [15] in our work. Semi-

mechanistic models of Rt, such as Bhatt et al [16], are used to infer latent transmission rates.

The use of multiple data streams (such as cases, deaths) improves robustness and allows con-

current estimation of NPIs’ effectiveness and the time-varying reproduction number Rt. This

integrated approach involves parameterising Rt using multi-level Bayesian regressions, with
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NPIs as covariates. Flaxman et al [17] considered binary variables for NPIs across 11 European

countries and found that only ‘lockdown’ had an identifiable and substantial impact on reduc-

ing transmission. Brauner et al [18] implemented a similar model, using a curated set of NPIs

across a wider set of countries, to obtain improved estimates of effect sizes. Importantly Brau-

ner et al and Liu et al reach similar conclusions regarding NPI impact using different methods,

strengthening their conclusions.

There has been far less work investigating the impact of NPIs on economic activity. Turner

et al [19] implement a model similar to Liu et al [20], but with the percentage of weekly GDP

versus pre-pandemic GDP as a counterfactual response variable. Their longitudinal model

considers 33 countries between January 2020 and May 2021. They found that NPIs for health

reduces GDP relative to the pre-pandemic counterfactual. Adda [21] explored a similar type of

longitudinal regression model investigating the association of epidemiological variables and

economic variables for flu-like illnesses, acute diarrhoea and chickenpox.

There has further been a significant focus on mobility and its association with disease trans-

mission. Unwin et al [22, 23] used mobility to capture the impact of NPIs and behaviour more

generally for the United States at the state level. The advantage of mobility is that it captures

what individuals actually do, and not merely the restrictions (NPIs) they are subjected to,

where the latter may not be adhered to. The disadvantage of mobility data is that it is usually

analysed as an aggregated measure that does not allow a more granular policy analysis.

Individual behaviour has long been recognized as a crucial determinant of epidemic trajec-

tory. However, there is an absence of data that can reliably inform theoretical models, which

have therefore focused on the trade-offs of human-to-human contact given transmission

dynamics. Fenichel et al [24] showed that behaviour should be included in infectious disease

modelling, as it impacts parameter estimation and therefore the design of social distancing

interventions.

Studies and models considering multiple countries are relatively rare. Famiglietti et al [25]

proposes a structural vector autoregression model considering deaths, health containment

measures (using OxGRT stringency on C measures) and exports, as a measure of economic

activity, as response variables, based on US state-level data. They find that NPIs are highly

effective at reducing deaths and that they have no long-term impact on export activity. How-

ever, their analysis has several drawbacks (e.g. focusing on deaths and not excess deaths).

Camehl et al [26] follow a similar approach considering deaths, mobility, and containment

policy stringency.

There are several other variables which could be considered to gain better insights into the

spatial diffusion dynamics of the COVID-19 pandemic. Bontempi [27] considers air pollution

across US states as an indicator for the spread of COVID-19 and commercial trade. Similarly,

Bontempi et al [28] considered if commercial trade could be an indicator of COVID-19 spread

in Italy, Spain, and France. Qiu et al [29] considers environmental and economic factors to

understand the spread of COVID-19 across China and Gu et al [30] considers a spatial model

of disease spread across China.

In this paper, we perform a statistical, retrospective analysis of the interaction between epi-

demiological variables and economic output.

Materials and methods

In this section, we describe the data used and outline our Bayesian mixed effects model.

We consider data on transmission dynamics using the real-time reproduction number. In

our model we also consider non-pharmaceutical interventions across containment and closure

policies. Economic policies, and health system policies, and economic output measured by
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GDP nowcasts. We use mobility as a proxy for behaviour and excess mortality for 25 European

countries from Jan 2020 to Dec 2021. Countries implemented interventions at different times

and to different levels of stringency. The heterogeneity in interventions, in both space and

time, sets up a natural experiment to study their effectiveness [3].

Fig 1 provides a schematic representation of the variables considered.

Data

Reproduction numbers Rt. We use existing estimates of the real-time reproduction num-

ber Rt from the package EpiNow2 [15]. EpiNow2 is based on reported cases and calculated

over a 12-week window, and has been validated against several other models [31, 32]. It is

based on aggregated data which has the advantage of providing a consistent estimation of Rt

across countries as the same methodology is applied. The Rt estimates may be affected by dif-

ferent case definitions and different levels of testing or reporting, which may impact the ascer-

tainment ratio, i.e. the proportion of infections identified, to varying degrees between different

countries. We provide a plot of logRt in Figure A.1 of the S1 File. In the model, the daily

median of the Rt estimates for a country is used and the data was retrieved from [33].

NPI data. NPI data is obtained from the Oxford Blavatnik School of Government Covid-

19 Government Response Tracker (OxCGRT) [2], retrieved from [34]. Daily data is available

by country, intervention, and strength of intervention (scale dependent on type of

Fig 1. Schematic model representation. Interaction of economic (top box), behavioural (middle box) and

epidemiological variables (bottom box) are represented on the left-hand side. Policy variables and variables related to

vaccination and phylogenetics (right-hand side of schema) are explanatory variables only. NPI H, C, and E are non-

pharmaceutical interventions for containment and closure policies, health system policies, and economic policies

respectively.

https://doi.org/10.1371/journal.pone.0301785.g001
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intervention). Interventions are grouped into containment and closure policies, economic pol-

icies and health system policies. A full list of interventions, including descriptions and scales,

are available in Tables A.1–A.3 and a plot of NPIs in Figure A.6 of the S1 File.

Economic data. Economic data is typically only reported on a monthly or quarterly basis,

presenting a challenge when studying the interaction between the economy and the pandemic.

Before the pandemic, the OECD proposed a nowcasting methodology for modelling weekly

GDPs which we accessed via GitHub [35] and we are using weekly index levels of the OECD

Tracker by country. The OECD created a two-step model using 215 categories and 33 topics

related to economic activity from a panel of Google Trends data. To assess economic impact,

we consider changes in economic activity as measured by the weekly GDP index and economic

activity, adjusted for pre-pandemic growth trends (mean growth rate between 2016 and 2019

for each country). Removing the pre-pandemic growth trend adjusts for inherent differences

between the economies of different countries. A plot of indexed GDP over the study period is

included in Figure A.4 in the S1 File.

Excess mortality data. Countries have varying definitions of what constitutes a Covid-19

death. Testing capacity varied widely, especially in the initial phase of the pandemic. Therefore

lab-confirmed deaths underestimate true Covid-19 deaths. To correct for this underestimate,

we use estimated excess deaths [36] and retrieve the data from github (TheEconomist/covid-

19-the-economist-global-excess-deaths-model) [37] (Figure A.2 in S1 File), which is consistent

with work by WHO [38]. We note that there has been much discussion on excess deaths in the

literature (see e.g. Bager et al [39]). The data is provided weekly as excess deaths per 100k pop-

ulation for each country. We also account for the delay between infection and death, using the

mean symptom onset-to-death delay of 15 days [40]).

Mobility data. Mobility data is of significant interest as it captures the actual behaviour of

individuals. Google provided mobility data over the pandemic period across a wide range of

countries, as well as categories for which mobility could be recorded: retail and recreation, gro-

ceries and pharmacies, parks, transit stations, workplaces, and residential. We retrieved the

data from [41] and focus on transit stations, as these represent mobility outside the home that

involves contacts with non-household members, by the nature of mass transit relative to travel-

ling by car, and they are a proxy for risk-seeking behaviour, either to capture economic oppor-

tunities or for non-essential leisure activities. This data is available at the country level daily as

an index. The index is presented as the percentage change from mobility in each category,

where the baseline is the median value for each weekday, between 3 Jan and 6 Feb 2020

(Figure A.3 in S1 File).

Variant data. We obtained SARS-CoV-2 variant data from [42] for each country and

week (based on GISAID data) and retrieved the data from github (hodcroftlab/covariants/mas-
ter/cluster_tables) [43]. The data is provided at the nextstrain clade level, which we aggregate

into WHO labels (e.g. Alpha). We choose the majority strain as the dominant strain for each

week and country. We estimate missing data for Hungary, weeks 9–45 of 2021 by taking the

weighted average of neighbouring countries, with weights equal to the percentage of border

length shared with that country, choosing the dominant strain by majority vote. A plot of the

dominant variant by country is provided in Figure A.9 in the S1 File.

Vaccination data. We use the average number of vaccinations per person. The total num-

ber of vaccinations administered is obtained from Our World In Data [8] and retrieved from

[44], (Figure A.8 in S1 File). More granular data, disaggregated by age group, would offer an

improvement, but we were not able to find consistent data across the countries of interest.

Country characteristics data. It is important to consider a range of societal, economic,

governance and health systems data when studying the interaction of the economy and the

pandemic. Each of these vary over time, but not fast enough to be relevant to our analysis
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given the time-frame we consider. We provide an overview of these characteristics in

Table A.4 in the S1 File and consider these as constants for our analysis.

Model. To investigate the interaction of SARS-CoV-2 transmission, mortality and the

economy, we use a Bayesian mixed effects model with auto-regressive terms, which we fit

using stan (via brms) [45, 46]. In this section we present our main model. We provide detailed

specification and results for two special cases of our main model in the (section B.2 in S1 File).

The model is a Bayesian hierarchical model and any reference to random and fixed effects

should be considered in the context of that modelling framework.

Scaling of data. Because we use stan for parameter inference, we must ensure all variables

are scaled to be centred around zero, and that the scale of all variables is approximately the

same. This is important to obtain efficient sampling.

• We log transform the instantaneous reproduction number and use log Rt (transmission

intensity).

• We consider the log of excess deaths per 100k.

• We consider changes in the overall stringency index divided by 100.

• We consider changes in GDP divided by 10.

• We consider changes in Transit divided by 100.

Model. Yt,c is a multivariate normal random variable with covariance matrix Su. yt,c is a

vector containing the values of the response variables, as defined in Eq 2, at time t for country

c which we model as a vector auto-regressive process of order p for N = 25 European countries.

μc represent country-specific random effects. Fk is the N × N coefficient matrix of the vector

auto-regressive component for lag k. ν is the coefficient for vaccination (defined as the average

number of vaccinations per person at time t for country c). ψ is the coefficient for the jth domi-

nant variant of SARS-CoV-2. Cj,t, c is constructed such that CWT,�,� is always 1 (and acts as an

intercept term), CAlpha,�,� is 1 unless Wildtype is the dominant SARS-CoV-2 variant (in which

case it is 0), CDelta,�,� is 1 unless Wildtype or Alpha are the dominant variants and COmicron,�,� is

1 only if Omicron is the dominant variant. Stringency of individual NPIs (across containment

and closures, economic and health system policies) are represented by the vector xt,c and

changes in stringency are represented as Δxt,c.

We consider individual NPIs to be covariates to the response variables (transmission inten-

sity, excess deaths, changes in economic output and transit mobility). The implementation of

NPIs, both in timing and stringency, have varied between countries. Early in the pandemic

(March to September 2020), implementations of NPIs were reasonably homogeneous, but we

subsequently observe significant heterogeneity, both over time and between countries. In this

model, we consider lagged NPIs, where the coefficients λ and δ respectively denote the coeffi-

cients for stringency and changes in NPIs.

Yt;c � MVN yt;c;Su

� �

yt;c ¼ mc þ

Xp

k¼1

Fkyt� k;c þ l � xt;c þ d � Dxt;cþ

n � vacct;c þ c �

X

j 2 fWT;Alpha;
Delta;Omicrong

Cj;t;c ð1Þ
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where:

yt;c ¼ ðy1t;c; y2t;c; y3t;c; y4t;cÞ
>

¼ ðlogRt; logExcess Deathst;DGDPt;DTransitt; Þ
>

xt;c ¼ NPIt� 1;c

vacct;c ¼ Average Vaccinations per persont

ð2Þ

Common priors and parameters across models. We use normal priors with zero mean

and variance τ on the response variables in the vector auto-regressive part of the model. We

assume the same prior N(0, τ) for all other explanatory variable coefficients. We manually

choose τ to be 1, to give an uninformative prior. For country specific intercepts, we take a N(0,

σ2) prior, where σ has a Cauchy(0, 2) prior. At the group level, parameters u are assumed to be

multivariate normal with unknown covariance Su, which is further decomposed into variances

(σ1, � � �, σN) and a correlation matrix ON which has a LKJ prior [46] with hyperparameter ξ = 2.

Fk;i;j � Nð0; t2Þ 8k ¼ 1; i 2 ½1;N�; j 2 ½1;N�

li; di; ni;ci � Nð0; t2Þ 8i

mc � Nð0; s2Þ

s � cauchyð0; 2Þ

ON � LKJðxÞ

The chosen priors are uninformative, as we assume a zero mean for all coefficients and η =

2> 1, favouring less correlation amongst our parameters. We perform a range of sensitivity

analyses, which we provide in the S1 File with the parameter ranges provided in Table 1.

Table 1. Table of parameters used in modelling.

Parameter Type Value Range Description Results

p VAR 1 order of VAR process -

c VAR Country LOO* country index Fig C.20 in S1 File

N VAR 25 number of countries -

Su VAR fitted covariance matrix

μc VAR fitted random effects Fig 4

Fk VAR fitted coefficients for response variables Table C.5 in S1 File

λ VAR fitted coefficients for stringency of NPIs Table C.6 in S1 File

δ VAR fitted coefficients for changes of NPIs Table C.7 in S1 File

ψ VAR fitted coefficients for dominant variant Table C.8 in S1 File

ν VAR fitted coefficients for vaccination Table C.9 in S1 File

τ prior 1 (0.2,2) prior on response variable coefficients -

σi prior cauchy(0,2) prior on country random effects -

ξ prior 2 (1,2,4) hyperparameter on LKJ prior -

adapt_delta Stan 0.9 target average acceptance probability -

step_size Stan 0.01 discretization interval -

max_treedepth Stan 10 max binary tree size in the NUTS algorithm -

(*) LOO—leave one out sensitivity analysis

https://doi.org/10.1371/journal.pone.0301785.t001
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Identification strategy. We use Orthogonal Impulse Response Functions to assess the

temporal relationships between variables. The Impulse Response Functions quantify the

impact of a unit shock in one variable on all the remaining variables [47, 48]. The model we

consider is over-identified, as we cannot deduce the impact of contemporaneous shocks on

each variable. The model therefore requires constraints. This over-identification arises as our

covariance matrix can be represented as Su ¼ E½u>t ut� ¼ BB>, where ut are the error terms of

the VAR model and B is a matrix representing the shocks as a linear combination of our error

terms (for an example see section B.3 in the S1 File). Here we constrain the contemporaneous

impact of variables at time t, i.e. variable A does not immediately impact variable B (also

referred to as a ‘short run restriction’). This is implemented by choosing B = L such that Su =

LL> and L is a lower triangular matrix (that is L is the lower triangular Cholesky decomposi-

tion of Su). This resolves the identification problem for shocks. Below we justify these restric-

tions. Note that the ordering of the response variables matters in this identification scheme.

1. Transmission intensity cannot be affected contemporaneously by any other variable. Indi-

viduals change their behaviour subject to past information, which may lead to risk-seeking

behaviour, such as searching for economic activity, or risk-mitigating behaviour, such as

staying at home to avoid person-to-person contact.

2. Excess Deaths are affected by disease transmission (with a lag derived from the onset-to-

death distribution of SARS-CoV-2) but are not immediately affected by any other variable.

As with transmission, person-to-person contact is calibrated on past information.

3. NPIs are affected by disease transmissions and excess deaths (assuming that policymaking

is instantaneous and translates observed disease dynamics into policy). However, individu-

als’ behaviours, such as mobility or economic activity, are not known to policymakers

contemporaneously and hence do not affect NPIs contemporaneously.

4. Economic activity is not contemporaneously impacted by mobility since individuals’ obser-

vation of past economic activity drives their behaviour. Economic opportunity. as observed

in the preceding time periods, drives transit behaviour and hence cannot impact Economic

activity.

5. Transit mobility has no restrictions and can be affected by any other variable.

Other identification strategies are possible, and include ‘zero long-run effects’ and ‘sign

restrictions’. We prefer the short-run restrictions set out above as they naturally fit with the

disease transmission mechanism and human behaviour.

Results

We provide results of the model described in this section. We provide results from a variation

of the model in the S1 File as sensitivity analysis.

We first consider the results of the Orthogonal Impulse Response Function (Fig 2). A posi-

tive impulse in transmission intensity leads to an increase in excess deaths, peaking after 5

weeks, and the decay of the impulse is slow and prolonged. We observe a significant and nega-

tive response in economic activity (change in GDP), but no significant impact on changes in

transit behaviour. The effect of a positive impulse in excess deaths is smaller than that for

transmission intensity on both transmission intensity and economic activity. A positive

impulse in economic activity has a positive effect on itself and a significant positive effect on

transit mobility in the next time period.
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Vector auto-regressive coefficients are given in Fig 2(B) and correspond to the parameter

estimates of Fk. The auto-regressive terms of the response variables lagged with themselves are

significant for transmission intensity (0.757, 95% CrI: 0.725 to 0.790) and excess deaths 0.856

(95% CrI: 0.828 to 0.884). For changes in transit mobility, we observe a negative auto-

Fig 2. Model estimates. A. Vector auto-regressive coefficients and 95% credible intervals (CrI). Positive and

significant coefficients are blue, negative and significant coefficients are red. B. Orthogonalised IRF. Columns are the

variables to which the shock is applied to, rows are the variables which we observe the impulse response for. Mean

estimates (solid black) and 95% CrI (dotted red). (Vector auto-regressive coefficient estimates are available in

Table C.5 in the S1 File).

https://doi.org/10.1371/journal.pone.0301785.g002
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regressive coefficient -0.113 (95% CrI: -0.163 to -0.063) and the auto-regressive coefficient for

economic activity is not significant.

We highlight the significant, off diagonal vector auto-regressive coefficients: excess deaths

and lagged transmission intensity are positively associated (0.271, 95% CrI: 0.213–0.329), con-

sistent with a positive correlation between excess deaths and transmission. Transmission

intensity and lagged changes in transit are positively associated (0.103, 95% CrI: 0.019–0.187)

consistent with person-to-person interactions in the previous time period leading to transmis-

sion events. Changes in transit mobility are positively associated with lagged changes in eco-

nomic activity (0.135, 95% CrI: 0.115 to 0.156) indicating that individuals react to observed

economic activity and opportunity.

Economic activity is negatively associated with lagged transmission intensity (-0.241, 95%

CrI: -0.295 to -0.189) and changes in transit is negatively associated with lagged transmission

intensity (-0.055, 95% CrI: -0.074 to -0.036) implying that high transmission intensity leads to

lower economic activity and transit mobility.

Transmission intensity and excess deaths are negatively associated (-0.040, 95% CrI: -0.054

to -0.026) as well as changes in transit mobility and excess deaths (-0.025, 95% CrI: -0.033 to—

0.018) indicating that observed excess deaths seems to lead to a small, but significant, reduc-

tion in transmission and transit behaviour.

NPIs were implemented to varying degrees across countries and over time. The model

includes NPIs as covariates in both their stringency in each week and the change in stringency

from the previous week, as this improved model performance. We used Leave-One-Out cross-

validation (LOO-CV) to estimate the pointwise out-of-sample prediction accuracy of our fitted

Bayesian model [49]. The model with both stringency and changes outperformed the model

which includes only the stringency of NPIs, with an expected log pointwise predictive density

difference (ELPD-diff) of -80.9 (95% CrI: -136.1 to -25.7). The model with both stringency and

changes is not statistically different from the model, which includes only changes in stringency

(ELPD-diff of -23.8 (95% CrI: -54.8—7.2)). However, we prefer the model with both stringency

and changes as it allows us to explain the effect of NPIs more fully.

Fig 3 shows the effect sizes for both the stringency of NPIs and changes therein. Excess

deaths are positively associated with changes in restrictions on gatherings (0.021, 95% CrI:

0.003–0.039); negatively associated with the stringency of international travel controls (-0.014,

95% CrI: -0.028 to -0.001), and positively associated with the stringency of facial covering

mandates (0.011, 95% CrI: 0.000–0.021). Economic activity is negatively associated with both

changes in school closures (-0.026, 95% CrI: -0.049 to -0.003) and protection of the elderly

(-0.049, 95% CrI: -0.071 to -0.027). Economic activity is positively associated with the strin-

gency of protection of the elderly (0.015, 95% CrI: 0.005 to 0.027), international travel controls

(0.014, 95% CrI: 0.002 to 0.025), income support (0.023, 95% CrI: 0.009 to 0.039) and facial

coverings (0.016, 95% CrI: 0.007 to 0.026). Changes in transit behaviour were negatively asso-

ciated with changes in mandate level for workplace closure (-0.026, 95% CrI: -0.036 to -0.017),

school closure (-0.019, 95% CrI: -0.028 to -0.011), international travel controls (-0.030, 95%

CrI: -0.038 to -0.021) and closure of public transport (-0.017, 95% CrI: -0.033 to -0). Transmis-

sion intensity was negatively associated with the mandate level for workplace closures (-0.012,

95% CrI: -0.021 to -0.003), restrictions on gatherings (-0.006, 95% CrI: -0.012 to -0.001), pro-

tection of the elderly (-0.007, 95% CrI: -0.013 to -0.000) but positively associated with the man-

date level for facial coverings (0.01, 95% CrI: 0.004–0.015).

If only changes in NPIs or only stringency of NPIs are included in the model we obtain

largely similar results, which are reported in the S1 File.

We consider the results for μc, the country-specific effects (random effects) (Fig 4). We first

note that there is very little unexplained variability in changes in transit mobility. Considering

PLOS ONE The interaction of disease transmission, mortality, and economic output of the COVID-19 pandemic

PLOS ONE | https://doi.org/10.1371/journal.pone.0301785 June 13, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0301785


Fig 4. (A.) Country-specific intercepts μc for transmission intensity vs economic activity. (B.) Country-specific μc
intercepts for excess deaths vs economic activity.

https://doi.org/10.1371/journal.pone.0301785.g004

Fig 3. NPI effect sizes for model. Coefficient effect sizes (with 95% credible intervals) for each response variable. NPI changes (left column) and NPI

stringency (right column) with NPI names listed on the vertical axis. Blue highlighted results indicate positive and significant coefficients and red

indicates negative and significant coefficients.

https://doi.org/10.1371/journal.pone.0301785.g003
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excess deaths and transmission intensities we observe that the order of countries is similar for

both. This is perhaps unsurprising given the strong link between transmission and excess

deaths, where differences are driven by the demography, health status and health systems of

countries. Correlations for country intercepts between excess deaths and economic activity is

0.23 (95% CrI: -0.21 to 0.59) and similarly for transmission intensity and economic activity the

correlation coefficient is 0.09 (95% CrI: -0.33 to 0.46), which suggests a trade-off between

excess deaths and economic activity, irrespective of interventions.

In Fig 5(C) we display the country-specific characteristics that are significantly correlated

with excess deaths. We observe higher excess deaths, accounting for interventions, for coun-

tries with high proportions of households with members over 60, high poverty rates, high

infant mortality and high numbers of hospital beds per 100k population. Conversely, we

observe a long list of country characteristics which are negatively correlated with excess deaths,

typically associated with developed and rich countries (e.g. life expectancy at birth, control of

corruption or government effectiveness).

We describe the effects of the dominant variant and vaccinations in Tables C.4—C.8 of the

S1 File. It is important to note that we consider time periods for which there was a single domi-

nant variant, and differences between periods do not reflect epidemiological or phenotypic

characteristics of that variant.

Transmission intensity was significantly positively associated with the periods where Delta

and Omicron dominated. For the period where Alpha was dominant, there was a negative

association with transmission intensity (due to very stringent interventions in place then).

Excess deaths had a significant and positive coefficient during the Wildtype period. During the

Omicron period, we observe a negative coefficient, but this coefficient needs to be considered

cautiously as we only cover a brief time period for omicron. Changes in economic activity are

negatively associated with the Wildtype and Alpha periods, and positively for Delta and Omi-

cron periods, indication that the economy adjusted to the pandemic after 2020, with less strin-

gent restrictions as vaccinations were rolled out and individuals adapting more generally to

Fig 5. Correlations of country-specific intercepts with country-specific characteristics for excess deaths at 95% credible interval level.

https://doi.org/10.1371/journal.pone.0301785.g005
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the pandemic [50]. We observed positive coefficients for changes in transit mobility during the

Alpha period, as mobility increased over the first half of 2021, and a negative coefficient for

omicron driven by reductions in mobility in December 2021.

We estimate a negative association between vaccination and excess deaths consistent with

the leading role the vaccination program played in reducing mortality. The lack of significant

association between vaccination and economic activity might be linked to the vaccination roll

out schedule which focused on the elderly and vulnerable, rather than the working-age

population.

Discussion

The interplay between transmission intensity, excess deaths, population mobility and eco-

nomic output is highly complex, and none of these factors can be considered in isolation.

Here, we study their interaction holistically, for 25 European countries, during the first two

years of the SARS-CoV-2 pandemic. Higher transmission intensity decreased GDP and

increased excess deaths as can be seen from the impulse responses in Fig 2. Intensified public

health interventions reduced mobility, transmission intensity, excess deaths and GDP. Inter-

estingly, because our model allows asymmetric relationships, we found that changes in GDP

alone (independent of control measures) had no significant impact on either transmission

intensity or excess deaths as we see no impulse response to a shock in GDP (Fig 2). These find-

ings generalise and extend results from previous studies [25], and make them more robust by

considering different specifications of our model. Broadly, our results quantify the intuitive

phenomenon that significant economic activity arises from person-to-person interaction.

Reductions in such interactions—by governmental mandate or behavioural change—reduce

transmission, but also harm economic activity.

NPIs affect transmission, GDP and excess deaths in many ways, but act differently to one

another. International travel restrictions reduce mortality, but increase economic activity, as

more domestic activity can take place where importation of the virus is slowed due to quaran-

tine, testing or outright travel bans [51]. We found, consistent with other work [40], that work-

place closures are associated with reduced transmission. We also find that specific economic

characteristics of each country reduce transmission intensity. For example, countries with

more face-to-face service sectors have higher transmission intensity (see Table C.9 in the S1

File). The effect of NPIs is consistent across each model variant we consider. The association

between NPIs and logRt are consistent with the broader literature [20, 52].

Facial coverings (masks of all types) are an important intervention, as their societal costs

and impacts are relatively small and no future economic costs are associated with facial cover-

ings [53]. Economically, facial coverings allow for more open societies, and therefore eco-

nomic activity (as changes in economic activity and face mask mandates are positively

associated). The impact of facial coverings on transmission intensity and excess deaths is more

difficult to assess, as this is a function of adherence and face covering quality. We see positive

associations between facial coverings (or mask mandates), and both excess deaths and trans-

mission intensity. This may seem counter-intuitive but may be regarded as a consequence of

an asymmetric net effect of the lifting of other restrictions that often accompanies increased

mask-wearing. This interpretation is consistent with behavioural survey data, such as the

Imperial College YouGov COVID Behavioural Tracker survey data [54] which indicates that it

takes time for individuals to adhere fully to the face mask mandates at the imposition of the

mandate [50] but that individuals are quick to stop using face coverings once mandates are

relaxed.
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Income support is an important intervention to support economic output but direct inter-

pretation of this coefficient requires caution. Income support itself is a government transfer

payment which has no impact on GDP. The positive coefficient with respect to ΔGDP which

we observe in the model is the indirect result of two effects. First, income support enables indi-

viduals to continue to consume, even if they cannot work. Second, it enables businesses to con-

tinue to employ staff and maintain basic functions through the most significant restrictions, so

that they can restart activity as soon as possible following lifting of those restrictions.

The behavioural response of individuals is an important factor impacting both disease

transmission and economic activity. Fenichel et al [24] used a highly mechanistic model to

estimate the impact of behaviour on person-to-person contact and the estimates of Rt. The

most direct proxy for behaviour in our model is transit mobility and, according to our esti-

mates, individuals reduce their transit mobility as disease transmission and excess deaths

increase, exhibiting risk-averse behaviour. Individuals increase their transit mobility in

response to increasing economic activity, exhibiting risk-seeking behaviour. Further, individu-

als reduce their transit mobility in response to NPIs. However, in the longer term, the strin-

gency of restrictions has no statistically significant impact.

Country-specific intercepts in our model account for residual variation, after considering

the past dynamics of the response variables, NPIs, vaccination and the variant of SARS-CoV-2

that is currently dominant. Country-specific intercepts for excess deaths and GDP were corre-

lated with several country-specific characteristics (Fig 5), suggesting that more developed

European countries had more cautious approaches to the pandemic, prioritising healthcare

and lower mortality over economic performance. This can also be seen in Figure C.18 in the

S1 File, where there is a positive slope between country-specific intercepts for excess deaths

and changes in GDP. Although country-specific intercepts account for latent factors, the col-

linearity between the trends in GDP and excess deaths suggests a trade-off between them.

Additionally, the choice to alter economic performance is not binary and needs to be carefully

calibrated according to a country’s economic outlook, policy objectives and fiscal ability to sus-

tain restrictions and associated support.

Several country characteristics are associated with lower excess deaths (Fig 5). Most charac-

teristics reflect the general development level of a country, such as the Global freedom score,

Control of Corruption, Internet usage, and the proportion of jobs which are teleworkable.

We find that larger hospital capacity is associated with greater excess deaths. This may seem

counter-intuitive but is consistent with previous studies (e.g. Haw et al [5]) which used mecha-

nistic models to explore different scenarios of hospital capacity and the impact on deaths. This

association arises because a higher healthcare capacity allows policymakers to delay the intro-

duction of more intensive, but ultimately necessary, NPIs for longer than smaller healthcare

capacity would allow, resulting in more infections and deaths. We also note that the capacity

and the quality of a healthcare system are not necessarily equivalent, and vary across countries.

One limitation of our model is that we cannot quantify the counterfactual effect size from

delaying interventions and the commensurate effect on health care capacity. This would be a

promising area of future research and likely be only possible to estimate over small regional

scales.

A limitation of our analysis is that we do not consider long-term health and economic

impacts of the pandemic, such as those caused by loss of schooling [6], mental health impacts

[55] and Long COVID [56], as our work is focused on the short term impact of the pandemic

over the first 2 years. Another limitation is our assumption of a linear relationship between dis-

ease transmission, excess deaths, economic output and transit mobility and other covariates

(such as NPIs). More generally, we do not model any latent processes in our analysis—e.g.

underlying infection incidence—and we are therefore limited in our ability to mechanistically
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represent relationships between response variables and interventions. Conversely, our omis-

sion of latent processes has the advantage that our model is less constrained by structural

assumptions than a more mechanistic modelling framework.

Future research should address the above limitations. In particular, despite the greater

structural constraints, more mechanistic representations of both disease epidemiology (e.g.

extending the framework of Brauner et al [18] to include economic impacts) and the economy

(e.g. by embedding economic variables into the modelling framework) should provide greater

insight into the relationships between government policies, country differences and the result-

ing health and economic effects of the pandemic. The model could be further extended to con-

sider trade as a measure of economic activity, such as in Depero et al [57]. A further extension

could be a comparison of the disease spread characteristics to that of other diseases, such as

mpox.
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