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Abstract

Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment

response. However, it remains possible that clinical course may be influenced by dynamic

and/or random events such that similar patients subject to similar injuries may yet follow dif-

ferent trajectories. We deployed a mechanistic mathematical model of COVID-19 to deter-

mine the range of possible clinical courses after SARS-CoV-2 infection, which may follow

from specific changes in viral properties, immune properties, treatment modality and ran-

dom external factors such as initial viral load. We find that treatment efficacy and baseline

patient or viral features are not the sole determinant of outcome. We found patients with

enhanced innate or adaptive immune responses can experience poor viral control, resolu-

tion of infection or non-infectious inflammatory injury depending on treatment efficacy and

initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation

despite effective viral control. Adaptive immune responses may be inhibited by very early

effective therapy, resulting in viral load rebound after cessation of therapy. Our model sug-

gests individual disease course may be influenced by the interaction between external and

patient-intrinsic factors. These data have implications for the reproducibility of clinical trial

cohorts and timing of optimal treatment.

Introduction

Severe COVID-19, like the Acute Respiratory Distress Syndrome (ARDS) from other causes, is

highly heterogeneous. Presentations range from rapid resolution [1] to persistent organ failure
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and death [2]. Heterogenous clinical courses may arise due to diverse features of the virus, as

in the emergence of viral variants, or varied patient comorbidities. Severe disease following

COVID-19 infection however, involves a complex set of interactions between viral replication,

innate [3] and adaptive immune responses [4], patient comorbidities [5], and efficacy of thera-

peutic agents. Complex interactions such as this may give rise dynamic heterogeneity, in

which varied initial conditions lead to varied outcome in similar patients and to unexpected

phenomena such as ‘rebound’ of SARS-CoV-2 infectivity after cessation of antiviral treatment

[6]. Isolating dynamic phenomenon such as these in viral infection and sepsis [7] is difficult, if

not impossible, with clinical observations alone as key events, such as size of initial infectious

inoculum, may have occurred prior to presentation or even prior to onset of symptoms. Mech-

anistic mathematical modeling [8–11] can be used to explore a wider range of scenarios than is

practical to test in patients and may thus help identify novel determents of COVID-19 clinical

course.

We have developed a mechanistic model of COVID-19 that incorporates the major aspects

of pathogenesis [12, 13]. In this study, we deploy our model to study how the possible trajecto-

ries of viral load and arterial oxygen saturation following infection are affected by changes in

infectious load, changes in the potency of antiviral agents, changes in the magnitude of the

innate immune response and coagulation cascade and by changes to the adaptive immune

response, including immunization and the presence of viral variants with varying degrees of

immune evasion. We find that the complex dynamics of disease progression allows for clinical

courses in which similar patients go on to experience divergent outcomes. In particular, we

find that clinical course may be substantially modified not only by vaccination, treatment effi-

cacy and inherent patient or pathogen characteristics, but also by external factors such as the

initial viral load. Further, we find an interaction between time of treatment onset and the

robustness of the immune response which may explain viral rebound [14]. These findings

have implications for understanding heterogeneity in critical illness and suggest that clinical

heterogeneity may arise from both modifiable and non-modifiable sources.

Materials and methods

Description of mathematical model

We developed a mechanistic model of COVID-19 infection which consists of a series of linear

and non-linear differential equations which describe the dynamics of infection of epithelial

cells in the lung by SARS-CoV-2, the innate immune response to infection, including the pro-

duction of pro- and anti-inflammatory cytokines and the activation of the coagulation cascade.

The model has been extensively described previously [13, 15, 16] The model further accounts

for interactions between the virus and immune cells including neutrophils, B cells and T cells

(Fig 1 and S1 Fig in S1 Appendix). A detailed description of the equations and parameters

can be found in prior publications and the Supporting Information.

This model encompasses intricate interactions occurring within the human body, utilizing

differential equations to simulate various aspects of SARS-CoV-2 infection and the corre-

sponding immune responses. These include the viral entry process, immune system activation,

cytokine production, and the coagulation cascade. Furthermore, our model incorporates

mechanisms and immune responses related to both mRNA and vector-based vaccines. Of par-

ticular importance is the inclusion of a pharmacokinetic-pharmacodynamic model, which

meticulously tracks the movement of viral particles and other relevant elements across major

body compartments. This comprehensive framework empowers us to conduct in-depth analy-

ses and make predictions.
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Modeling strategy and model formulation

Our model contains a large number of parameters, many of which may not be explicitly deter-

mined from existing experimental data. Even where such experimental data exists, the large

number of parameters results in a danger of overfitting. Due to this limitation, we do not seek

to determine optimum parameter values for predicting the disease trajectory of any individual

patient. Instead, here we seek to understand the full scope of possible clinical courses which

follow SAR-CoV-2 infection and the factors which influence them. To do so, we study the

range of possible outcomes which correspond to a range of possible parameter values. In order

to understand the complex interaction between viral characteristics, innate and adaptive

immunity, random events and treatment efficacy, we explicitly include terms describing the

response to vaccination, varying levels of antibody affinity to viral variants and anti-viral drugs

of varying efficacy. We model an individual who has been vaccinated against the ancestral

strain of SARS-CoV-2 with the BNT-162b2a mRNA vaccine, including a first booster dose.

Viral infection is assumed to take place 6 months following the booster dose (the model allows

for the variation of antibody level over time [12].

The initial values of the model parameters related to viral infection and the pharmacokinet-

ics/pharmacodynamics of COVID-19 were defined in previous work. Also, model parameters

Fig 1. Biological interplay and pathways incorporated by the mathematical model. The basic components of the model are: i) a detailed model of lung

infection by SARS-CoV-2 that includes innate and adaptive immune responses, known mechanisms of the renin-angiotensin system (RAS) and the

coagulation cascade. Intracellular virus initiates inflammatory pathways through toll-like receptors and NFκB, which produces interferons and other

inflammatory cytokines. Antiviral drugs affect the replication of the virus within host cells. The viral antigens, along with inflammatory cytokines, facilitate

activation of naïve B and T cells, creating virus-specific effector cells. Activation of naïve immune cells is controlled by viral antigen strength and the status of

immune checkpoint inhibition (specifically PD-L1/PD-1). Ii) A Pharmacokinetic/Pharmacodynamic model of dissemination of viral particles, cytokines,

micro-thrombi and antibodies in the major organs (lung, heart, liver, brain, spleen, gastro-intestinal, upper body, lower body, torso, cardiac vessels and the

tumor). Iii) Αll steps of vaccination-induced immunity for mRNA and vector vaccines, including the translation of viral antigens, the production of antigen

presenting cells by dendritic cells, the subsequent activation of T cells and B cells to create CD4+ and CD8+ effector and memory T cells as well as short-lived

and long-lived plasma (antibody-secreting) B cells. Iv) Τumor cells and interactions with the immune system. Proliferation of tumor cells depends on oxygen

levels in the tissue, and their death rate on the interaction of cancer cells with immune cells (effector CD8+ T cells, natural killer cells, type 1 macrophages and

neutrophils) as well as on the effect of cancer therapy. This schematic Illustrates the foundational elements of our model, including the detailed lung infection

mechanism by SARS-CoV-2 and the innate and adaptive immune responses. It highlights key processes such as the activation of immune pathways by the

virus, effects of antiviral drugs, and the role of immune checkpoints. The schematic also shows the model’s representation of the pharmacokinetic/

pharmacodynamic dissemination of viral particles and micro-thrombi across major organs, as well as the distinct steps of vaccination-induced immunity for

mRNA and vector vaccines. Lastly, it depicts the interaction between tumor cells and the immune system, considering factors like oxygen levels and the impact

of cancer therapy.

https://doi.org/10.1371/journal.pone.0301780.g001
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related to vaccination-induced immunity, including the affinity for and uptake rate of vaccine

particles by cells, the rate of DNA transcription to mRNA, the production rate of viral antigens

and the degradation rates of the vaccine and the viral antigen have been reported previously

[12]. The values of model parameters are summarized in S1 Table in S1 Appendix.

From studies of neutralization experiments that involved all omicron variants from BA.1 to

BA 4/5 [17–20], we determine the affinity of the vaccine-induced antibodies for each SARS-

CoV-2 variant (S2 Fig in S1 Appendix) [17–20]. We then simulate infection and treatment in

patients who received the BNT-162b2a initial vaccine and a first booster, and then were

infected with the ancestral strain or an omicron variant.

Incorporation of antiviral drugs and monoclonal antibodies

To incorporate antiviral treatment into the model, we assumed that antiviral drugs reduce the

rate of release of replicated virus, Kin. Furthermore, to contextualize the extent of decrease in

virus replication for the most common antivirals, namely remdesivir, molnupiravir and nir-

matrelvir+ritonavir (NMV/r), we employed data from clinical studies for the proportion of

patients that recovered from COVID-19 having been treated with these drugs [21–23]. We cal-

culated the baseline value of Kin for our studies by fitting the model to these clinical data, hav-

ing Kin as the only fitting parameter. Comparison of model predictions with clinical data for

the three antivirals along with the corresponding values of Kin are shown in S3 Fig in S1

Appendix. In addition, to assess the sensitivity of our predictions to variations in other model

parameter values, we repeated simulations while altering parameters other than Kin using a

range of values within an order of magnitude around the baseline values (S2 Table in S1

Appendix). Simulations were repeated for all possible combinations among parameters taking

100 different values for each parameter. In this way we attempt to quantify the effect of uncer-

tainty in model parameter values.

The results are presented in the figures as standard error bars from the baseline values. The

model was able to provide accurate predictions of the proportion of patients recovered with χ2

lower than 0.0123 in all cases. Monoclonal antibodies were treated in the model separately

from antibodies produced by vaccination or viral infection, so that three types of antibodies

exist: (antibodies produced by vaccination, those produced by infection and monoclonal anti-

bodies) which may vary in their affinity and half-life. Initial parameter values related to mono-

clonal antibodies were obtained by fitting the model to clinical data of patients who recovered

from COVID-19 after receiving these drugs. Comparison of model predictions with the clini-

cal data and the values of relevant parameters for the bamlanivimab and etesevimab antibodies

and for the casirivimab and imdevimab antibodies are shown in S4 Fig in S1 Appendix. Simi-

lar to the antivirals, the model was able to provide accurate predictions of the proportion of

patients recovered (χ2 < 0.0236).

Results

Interaction of antiviral therapy with heterogeneity in vaccine induced

immunity

Clinical data suggest that prior vaccination may modify the utility of antiviral therapy [24]. To

better understand this interaction, we first assessed how various antiviral therapies affect viral

replication and oxygen saturation when administered in the setting of prior vaccination and

with infection by viral variants with varying degrees of immune evasion (i.e., virus-antibody

affinity; Fig 2). Panels 1A,B confirm that antiviral therapy confers benefit even in the setting of

vaccination and that effective antiviral therapy is more important to outcome in the setting of
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variants which evade vaccine induced immunity. Our model suggests that for monoclonal

antibodies to be effective against the BA4/5 variant, they need to not only have a high affinity

to the virus but also exhibit blood circulation times longer than 50 days.

In our study, key control parameters that impact COVID-19 outcomes include the basic

reproduction number, antiviral treatment efficacy, immune response rates, and initial viral

load, which all influence epidemic peaks and virus spread. Variations in treatment efficacy

markedly affect disease progression and population spread dynamics. Differing immune

responses lead to varied disease severities and recovery rates, highlighting individual immune

variability. The initial viral load also plays a vital role, with higher loads linked to more severe

disease courses. Understanding these parameters is essential for applying our model to real-

world scenarios.

In setting the model’s parameter ranges, we grounded our choices in physiological and

experimental evidence. For instance, the range for the basic reproduction number (R0) was

based on published studies on COVID-19 transmission rates. The efficacy of antiviral treat-

ments was modeled based on clinical trial data, reflecting both current and potential future

therapies. Immune response parameters were informed by immunological studies, acknowl-

edging the diversity in individual responses to the virus. Finally, the initial viral load parame-

ters were derived from virological research, recognizing the variability in viral exposure and

infection dynamics. This evidence-based approach ensures that our model’s simulations are

both realistic and relevant to the diverse scenarios observed in the pandemic.

Interaction of antiviral therapy with heterogeneity in the innate and

adaptive immune response

Previous work has highlighted the importance of the adaptive, T-cell response to illness resolu-

tion [13]. Moreover, COVID-19 patients may vary in degree of hypercoagulability and in the

amplitude of either the innate or adaptive response to a given stimulus [25]. To better

Fig 2. Antiviral therapies and viral strain affect COVID-19 severity. Diagrams of peak viral load (A) and minimum oxygen saturation (SpO2) (B) caused by

viral infection as a function of viral immune evasion and relative decrease of virus replication rate, Kin, with antiviral drugs. ’Favorable’ outcomes for viral load

correspond to low concentrations, while ’unfavorable’ outcomes relate to high concentrations. For oxygen saturation, ’favorable’ outcomes are indicated by

high levels, and ’unfavorable’ outcomes by low levels. Kin values estimated to correspond to current antivirals are shown in the plot. Fold-decrease in antibody

affinity for the virus is on horizontal axis, and values thought to correspond to currently known variants (all omicron variants from BA.1 to BA 4/5) are listed

for reference. Viral load is normalized to the initial value.

https://doi.org/10.1371/journal.pone.0301780.g002
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understand the interaction of these diverse pathophysiologic mechanisms, we simulated the

clinical course of antiviral treatment after imposing various perturbations to the immune

response and coagulation cascade. We tested three cases: patients with i) varying levels of CD4

and CD8 immune cell activation, ii) varying levels of pro-inflammatory cytokine production,

and iii) varying tendency for thrombus formation in response to infection and immune activa-

tion. The values of model parameters modulated to account for these three cases are shown in

S1 Table in S1 Appendix.

In the analysis, we changed the indicated parameter values up to 1000-fold. We also focused

on vaccinated patients, using a level of antibody response consistent with the BA4/5 variant.

Results are presented in Fig 3. Predictably, we find that high rates of immune cell activation

and inflammatory cytokine production result in lower viral load–and that viral control is aug-

mented by effective antiviral therapy (moving from bottom to top in all panels in Fig 3). How-

ever, we also find that when pro-inflammatory cytokine production is increased, the decreased

viral load comes at the cost of poorer gas exchange (Fig 3C, moving from left to right). Increas-

ing the effectiveness of anti-viral therapy in the setting of increased inflammatory cytokine

production attenuates the adverse effects on gas exchange (consistent with the more rapid

decrease in inflammatory stimulus). Interestingly, increases in the CD4 and CD8 T-cell

response augment viral control with less adverse effect on gas exchange. Imposing changes in

microthrombosis production rate independent of cytokine production, we see that enhanced

thrombosis also adversely affects oxygenation (moving from left to right in Fig 3C). In S4 Fig

in S1 Appendix we show the combined effect of hyperinflammation and hypercoagulability in

which the effect on gas exchange is increased when compared to altering either process alone.

We next sought to understand more about the mechanisms that underly the above findings.

S5A Fig in S1 Appendix indicates that increasing the rate of production of proinflammatory

cytokines enhances recruitment of both macrophages and neutrophils to the lung, while

increasingly-effective antiviral therapy decreases both.

To further understand the role of these innate immune effector cells in controlling viral

load in response to increased cytokine production, we also investigated the case where we

mathematically deleted the neutrophil population (S5B Fig in S1 Appendix). In this case, we

still observe worsened oxygen saturation with elevated levels of cytokine production, as in the

case with neutrophils present (Fig 2C, right). This is associated with increased burden of

microthrombus (S6 Fig in S1 Appendix), which limits blood perfusion and oxygen transport.

However, without neutrophils, this apparent inflammatory injury is not associated with the

same degree of viral control(compare S6C and S7B Figs in S1 Appendix). Augmenting the

antibody response via increasing B cells results in both decreased peak viral load and increased

nadir SpO2 (S6 Fig in S1 Appendix).

Interaction of initial viral load with treatment efficacy and immune

response

An additional potential source of heterogeneity in clinical course are stochastic environmental

factors, such as initial viral inoculum. In Fig 4, we examine the peak viral load and nadir SpO2

that results from varying the magnitude of the initial viral exposure. Increasing viral inoculum

is associated with worsening SpO2 and higher peak viral load at all levels of anti-viral efficacy

and pre-existing immunity.

We further examined the interaction between heterogeneity in the inflammatory response

and in the initial viral inoculum, focusing again on the level of antibody response consistent

with the highest risk BA.4/5 variant. In Fig 5, we demonstrate the higher peak viral load associ-

ated with higher initial viral load is attenuated by a more aggressive inflammatory response.
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Fig 3. Heterogeneity in the immune response affects viral clearance and oxygen saturation. Diagrams of peak viral load with varying decreases in in viral

replication (Kin) as a function of CD4 and CD8 cell response, production of pro-inflammatory cytokines and production rates of microthrombus. Viral load is

normalized by division with the initial value.

https://doi.org/10.1371/journal.pone.0301780.g003

PLOS ONE Dynamics of COVID-19 heterogeneity: A mathematical model approach

PLOS ONE | https://doi.org/10.1371/journal.pone.0301780 May 31, 2024 7 / 16

https://doi.org/10.1371/journal.pone.0301780.g003
https://doi.org/10.1371/journal.pone.0301780


However, very high initial viral loads can result in high peak viral loads even at very high levels

of expression of proinflammatory cytokines. The same is true of high levels of production of

CD4 and CD8 T-cells. Similar dynamics are observed when looking at viral load and SpO2

over time in untreated patients (S7 Fig in S1 Appendix)

Rebound after antiviral therapy and optimal treatment initiation

An unexpected clinical observation during antiviral drug therapy is the rebound of viral load

after therapy termination, which has been attributed to interactions between innate and adap-

tive immune responses [26]. We varied the day of treatment initiation within a period of 10

days from infection. Here we define infection as first contact with virus and account for three

different types of patients: a high risk (older) vaccinated patient, a low risk (young) vaccinated

patient and a low risk (young) unvaccinated patient. The different parameter values employed

to represent the immune state of the old and young individual is shown in S4 Table in S1

Appendix. Antiviral drug administration lasted for a period of 10 days from treatment initia-

tion and the effects of treatment on the levels of infected host cells, SpO2, microthrombosis in

the lung and levels of activated CD8+ T cells for a high risk (older) vaccinated patient is pre-

sented in Fig 6 for the case of treatment with NMV/r and S8-S10 Figs in S1 Appendix for

NMV/r low risk vaccinated and unvaccinated patient, remdesivir and Molnupiravir.

Fig 4. Increasing viral inoculum compromises immune and treatment efficacy. Diagrams of peak viral load and nadir SpO2 at varying levels of effectiveness

of vaccine-induced antibodies and antiviral therapy. Initial viral load increases from left to right and in all cases is associated with worsening clinical course (at

any given level of pre-existing immunity or antiviral efficacy). Viral load is normalized by division with the initial value 4.96x104 [pg/ml]. The low and high

initial viral load are set at 4.96x102 [pg/ml] and 4.96x106 [pg/ml], respectively.

https://doi.org/10.1371/journal.pone.0301780.g004
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The model predicts that early treatment, before day 3 of infection, leads to the rebound of

the disease after cessation of treatment, demonstrated by the increase in the levels of infected

host cells. Whereas delayed treatment, after day 5, results in a number of infected cells similar

to the case of no treatment. The model predicts an optimal window around day 5 correspond-

ing to the initial, post-infection peak in the number of infected cells. Adding the antiviral at

Fig 5. Initial viral load determines disease severity (analysis of the BA4/5 variant). The worsening clinical course (peak viral load and SpO2) associated with

higher initial viral load is attenuated by more a more aggressive (increased rate of production of activated CD4 and CD8 cells or increased rate of expression of

pro-inflammatory cytokines). Viral load is normalized by division with the initial value 4.96x104 [pg/ml]. The low and high initial viral loads are 4.96x102 [pg/

ml] and 4.96x106 [pg/ml], respectively.

https://doi.org/10.1371/journal.pone.0301780.g005
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Fig 6. Time of treatment initiation affects disease rebound and therapeutic outcome. (A) Temporal variation in

levels of infected host cells, (B) oxygen saturation, SpO2, (C) levels of activated B cells and (D) levels of activated CD8+

T cells for high risk (older) vaccinated induced by NMV/ras a function of treatment initiation. Antiviral treatments

lasted for 10 days. Infected host cells and activated CD8+ T cells are normalized by division with their initial values

14.46x106 [1/ml] and 0.4 [g/cm3], respectively. (E) indicates that increasing the expression of proinflammatory
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this time results in the lowest number of infected cells at nadir and avoids rebound. Interest-

ingly, this conclusion is valid for all types of patients and antiviral drugs, in contrast to previ-

ous reports [26]. The existence of rebound seems to be related to the dynamics of the adaptive

immune response. Early treatment attenuates the adaptive response, and insufficient adaptive

immunity develops (Fig 6C& 6D).

We next examined the combined effects of perturbations to the immune response on the

timing of antiviral treatment and viral rebound (Fig 6E and 6F). With increases in the expres-

sion of pro-inflammatory cytokines, the peak number of infected cells is decreased but the

optimal window for avoiding rebound remains unchanged.

Discussion

A central challenge in the study of critical care syndromes such as sepsis and ARDS is the pro-

found heterogeneity and complexity of the response to serious injury or infection. Heterogene-

ity may result from fundamental, qualitative biologic differences between patients but, as

demonstrated here, may also arise from more subtle quantitative differences between patients.

Complexity gives rise to heterogenous clinical trial results as stochastic factors can influence

the treatment response in any given trial cohort [27, 28]. An advantage of mathematical

modeling in this setting is the ability to precisely alter one aspect of pathophysiology and dis-

cern its effects on many others. Minimalist mathematical models [7, 11] have been used to

identify multiple steady-states (resolution of infection, persistent infectious inflammation, per-

sistent sterile inflammation) as a function of initial viral load and vigor/competence of the host

immune response, but such minimalist models use lumped parameters that are not directly

identifiable with clinically observable data. Here, we constructed a more detailed mechanistic

model of COVID-19 which takes into account the major determinants of clinical course,

including environmental (viral load), patient specific (magnitude of inflammatory response)

and therapeutic parameters (antiviral agents and vaccine induced immunity). Here we illus-

trate the model’s potential for assisting in the interpretation of clinical observations related to

COVID-19 and outlined the validation procedure. The model’s value is built on its compre-

hensive representation of viral dynamics and immune responses. It can project the course of

the infection under varying scenarios, such as changes in viral strains or treatment strategies.

For validation, we utilized a multi-step approach. Initially, the model was calibrated with cur-

rent epidemiological data and clinical findings. Subsequently, its predictions were cross-veri-

fied with independent datasets, including emerging data on new viral variants and treatment

responses.

We used this model to determine the interactions between antiviral therapies, initial infec-

tious load and individual components of the innate and adaptive immune response. Reassur-

ingly, the model confirms some expected relationships between viral characteristics,

therapeutic efficacy, immune response and outcome. The model data, however, also suggest a

number of novel hypotheses about the relationship between these multiple determinants of

disease.

Stochastic determinants of patient phenotype

In our model, the influence of random events on patient outcomes in COVID-19 is particu-

larly significant, highlighting the consequences of disease complexity not just for COVID-19

cytokines (by 1000-fold), decreases the peak number of infected cells with prolonged hypoxemia (F) the optimal timing

for avoiding rebound or qualitatively effecting the degree of activated B cells (G) or activation of CD4 and CD8 T-cells

(H).

https://doi.org/10.1371/journal.pone.0301780.g006
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but potentially a large number of respiratory infections. COVID-19 is characterized by a wide

range of clinical manifestations, from asymptomatic cases to severe illness, not entirely

explained by known risk factors. Our model incorporates these stochastic elements which as

we highlight here, may constitute an underappreciated source of heterogenous clinical course.

To the extent that initial conditions such as initial viral inoculum are difficult to control for in

the setting of a clinical trial, such stochastic determinants of outcome may threaten the exter-

nal validity of some trial cohorts. The ability of a trial to observe a positive effect from any sin-

gle strategy may vary from trial to trial, depending on the unknown distribution of initial

events Consistent with this possibility, latent class analysis has identified hypo and hyperin-

flammatory phenotypes of COVID-19 ARDS with frequencies that vary by cohort [29]

Our model thus demonstrates that severe illness is not always explainable by known risk

factors. The model suggests that some combination of cytokine trajectories, viral load trajec-

tory and patient comorbidities could be utilized as markers of optimal therapeutic strategy and

as criteria to design optimal trial cohorts. This approach, while acknowledging the limitations

in current data and understanding, underscores the potential of our model to contribute to the

ongoing efforts in managing this dynamic and complex illness.

Multivariate determinants of treatment response

In addition, our data highlight multiple potential determinants of clinical course. In Fig 2, it is

clear that low viral load and normal gas exchange may result from either an effective antibody

response or highly effective antiviral therapy [30] and the effects of each are reinforcing. This

finding is consistent with clinical reports [30], providing confidence in the soundness of the

model. At the same time, our results emphasize the quantitative nature of the relationship

between host and pathogen—high degrees of immune escape limit the benefit from even

improbably effective antiviral therapy. Fig 3 illustrates that increasing proinflammatory cyto-

kine expression can lead to lower viral load, but also lower oxygen saturation. This, too, is con-

sistent with what is what is known about hyperinflammatory responses from the clinical

literature, but the model data highlight the fact that multiple clinical courses are possible

depending on the relative magnitudes of the various pathophysiologic and physiologic process.

For example, the effect of hyperinflammation on oxygen saturation is exacerbated by hyperco-

agulability, a effect consistent with clinical experience in COVID-19 [31] but attenuated by

increasing the CD4+ and CD8+ T cell response and by the provision of effective antiviral ther-

apy. As such, each patient follows a trajectory through a high dimensional landscape with mul-

tiple routes to a given outcome.

Inflammatory and infectious injury

Consistent with the findings of more minimal models [7] our data point to the existence of

diverse degrees of infectious and inflammatory injury with potential treatment implications.

Increases in pro-inflammatory cytokine production result in lower peak viral load but also

lower nadir oxygen saturation consistent with a primarily inflammatory lung injury for these

patients. This is most evident in the setting of highly effective antiviral therapy and maximal

inflammatory cytokine expression (Fig 3C, right upper quadrant) in which peak viral load is

very low but there is, nevertheless, decreased oxygen saturation. Interestingly, zeroing out the

neutrophil response results in higher viral load even with maximal cytokine expression sug-

gesting the possibility of both persistent infectious and inflammatory injury in the setting of

neutropenia. This trajectory is consistent with some pre-clinical models of viral infection in

which lack of neutrophils, despite their unclear role in direct viral clearance, worsens outcome

[32]. For any given level of cytokine expression, viral load decreases and SpO2 increases with
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increasingly effective antiviral therapy (i.e., decreased production of intact virions) highlight-

ing the contribution of infectious injury even in the setting of hyperinflammation (Fig 3C, left

lower quadrant). Interestingly, in our model the effect of uncontrolled viral load on SpO2

appears somewhat less than that of uncontrolled inflammation (compare the right and left

ends of the lowest row of Fig 3C). To the extent that the model predicts hypoxemia with low

viral load in the setting of elevated inflammatory cytokine production it is possible to hypothe-

size that some patients (those with more vigorous innate immune responses) will be more

prone to inflammatory injury. Note, however, that the model does not specify the cause of

increased inflammatory cytokine production. Even at the highest simulated level of proinflam-

matory cytokine production nadir SpO2 is increased with more effective antiviral therapy–

suggesting that rapid pathogen control is an effective way to avoid respiratory failure even in

patients prone to inflammatory injury. That this argument could extend to the utility of vacci-

nation is suggested by the salutary effects on both viral load and SpO2 that result from aug-

menting the adaptive immune response in the model.

Viral rebound and dynamic determination of treatment efficacy

Finally, we find an additional, quantitative interaction between adaptive immunity and viral

load wherein rapid viral clearance in response to effective therapy, and the subsequent failure

to generate a robust adaptive response, can lead to viral rebound after the cessation of therapy.

As a result the model suggests a fairly narrow window of optimal treatment initiation–though

it is important to point out that a narrow window for optimal treatment response does rule out

some treatment response outside that window. The development of tailored biomarkers for

immune status may help inform antiviral drug scheduling.

The prediction of an optimal timing for antiviral therapy, as demonstrated in our simula-

tion results, is indeed a fascinating and potentially crucial finding [15, 33]. While the existence

of viral rebound is now firmly established in the clinical literature (see, for example Anderson

et. al. [14] and the typical time course is broadly consistent with our simulations, we must

emphasize that issue of optimal timing of therapy and its mechanistic basis is a novel predic-

tion of the model and not yet clinically verified.

Clinical relevance

Our mathematical model enables the multivariate exploration of various factors which can

impact the clinical presentation and optimal treatment strategy for COVID-19. It allows for

the simulation of simultaneous variations in patient comorbidities, antiviral effectiveness and

enhanced immune escape by viral variants. A particualr advantage of a more comprehensive

model such as ours is the ability to predict markers of the various model trajectories [15] and

to develop hypotheses on predictors of response to therapy. Such markers could help locate an

individual patient in the complex landscape of critical illness and suggest which variables, or

‘treatable traits’[33] (e.g., viral replication, cytokine signaling, neutrophil recruitment etc.)

should be targeted to achieve optimum results in a given setting. Such predictions could ulti-

mately assist with predictive enrichment schemes and lead to more rationally designed clinical

trials. In addition, as done here with antiviral therapy, it is possible to explore the range of out-

comes that follow from other types of treatments such as anticoagulants and immunomodula-

tion. Such studies could ultimately make sense of heterogenous clinical trial data [15].

In our manuscript, we detailed the model’s potential for predicting future events related to

COVID-19 and outlined the validation procedure. The model’s predictive capability is built on

its comprehensive representation of viral dynamics and immune responses. It can project the

course of the infection under varying scenarios, such as changes in viral strains or treatment
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strategies. For validation, we utilized a multi-step approach. Initially, the model was calibrated

with current epidemiological data and clinical findings. Subsequently, its predictions were

cross-verified with independent datasets, including emerging data on new viral variants and

treatment responses. This ongoing validation process ensures the model remains accurate and

relevant, providing valuable foresight in managing the pandemic.
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