
RESEARCH ARTICLE

Securing cloud data using secret key 4

optimization algorithm (SK4OA) with a non-

linearity run time trend

Twum Frimpong1, James Benjamin Hayfron Acquah1,2, Yaw Marfo Missah1,2, John

Kwao DawsonID
1,2*, Ben Beklisi Kwame Ayawli2, Philemon Baah2, Samuel

Akyeramfo Sam2

1 Department of Computer Science, Kwame Nkrumah University of Science and Technology, Kumasi,

Ghana, 2 Department of Computer Science, Sunyani Technical University, Sunyani, Ghana

* kwaodawson1@yahoo.com

Abstract

Cloud computing alludes to the on-demand availability of personal computer framework

resources, primarily information storage and processing power, without the customer’s

direct personal involvement. Cloud computing has developed dramatically among many

organizations due to its benefits such as cost savings, resource pooling, broad network

access, and ease of management; nonetheless, security has been a major concern.

Researchers have proposed several cryptographic methods to offer cloud data security;

however, their execution times are linear and longer. A Security Key 4 Optimization Algo-

rithm (SK4OA) with a non-linear run time is proposed in this paper. The secret key of

SK4OA determines the run time rather than the size of the data as such is able to transmit

large volumes of data with minimal bandwidth and able to resist security attacks like brute

force since its execution timings are unpredictable. A data set from Kaggle was used to

determine the algorithm’s mean and standard deviation after thirty (30) times of execution.

Data sizes of 3KB, 5KB, 8KB, 12KB, and 16 KB were used in this study. There was an

empirical analysis done against RC4, Salsa20, and Chacha20 based on encryption time,

decryption time, throughput and memory utilization. The analysis showed that SK4OA gen-

erated lowest mean non-linear run time of 5.545±2.785 when 16KB of data was executed.

Additionally, SK4OA’s standard deviation was greater, indicating that the observed data var-

ied far from the mean. However, RC4, Salsa20, and Chacha20 showed smaller standard

deviations making them more clustered around the mean resulting in predictable run times.

1. Introduction

Cloud computing is an environment in which all data is stored, processed, and produced via a

network of distant computers distributed throughout the Internet. It offers a practical solution

for data access and storage from anywhere via Internet-connected devices [1]. Many firms are

switching from traditional data storage to cloud storage since it allows for quick access to

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 1 / 18

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Frimpong T, Hayfron Acquah JB, Missah

YM, Dawson JK, Ayawli BBK, Baah P, et al. (2024)

Securing cloud data using secret key 4 optimization

algorithm (SK4OA) with a non-linearity run time

trend. PLoS ONE 19(4): e0301760. https://doi.org/

10.1371/journal.pone.0301760

Editor: Raman Singh, University of the West of

Scotland, UNITED KINGDOM

Received: December 14, 2023

Accepted: March 21, 2024

Published: April 16, 2024

Copyright: © 2024 Frimpong et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The minimal data set

associated with this study can be retrieved via

Kaggle at https://www.kaggle.com/datasets/

morriswongch/kaggle-datasets.

Funding: The author(s) received no specific

funding for this work.

Competing interests: No authors have no

competing interest.

https://orcid.org/0000-0002-7436-5550
https://doi.org/10.1371/journal.pone.0301760
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301760&domain=pdf&date_stamp=2024-04-16
https://doi.org/10.1371/journal.pone.0301760
https://doi.org/10.1371/journal.pone.0301760
http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/datasets/morriswongch/kaggle-datasets
https://www.kaggle.com/datasets/morriswongch/kaggle-datasets


information from anywhere. Cloud computing has been critical to driving digital transforma-

tion and enabling cutting-edge technologies such as Artificial Intelligence (AI) and Machine

Learning (ML) [2]. Because of the sharp rise in users, cloud computing has seen a significant

increase in communication, necessitating a more effective way of data transfer and securing

data. Cloud computing users have expanded owing to its numerous benefits, such as scalabil-

ity, collaboration, reduced expenses, and flexibility; as seen in the conceptual and cloud com-

puting features in Fig 1. These advantages are offered through cloud deployment techniques

such as public cloud, hybrid cloud, and private clouds, delivered through delivery models such

as Software-as-a-Service (SaaS), Platform-as-a-Service (PaaS), Infrastructure-as-a-Service

(IaaS), and Container-as-a-Service (CaaS).

Platforms for cloud computing include a large concentration of users and information

resources, making them attractive targets for hackers. For instance, the cloud service provider

Blackbaud fell victim to a Ransom ware attack in 2020 which prohibited users from accessing

data and servers. The hackers hacked into their networks and tried to install Ransom ware.

This attack resulted in significant financial losses and user privacy leaks [2, 3].

Cloud computing security risks are becoming increasingly prevalent. The security of cloud

computing is a problem that is currently generating research topics. Cloud computing security

considerations include end-user data security, network traffic security, file system security,

and host system security. The employment of algorithmic techniques in process and data sys-

tems is becoming increasingly visible as worries about cloud services and information security

grow [4]. Encryption is one of the most effective techniques for data security and privacy pres-

ervation. Encrypted data is safeguarded because it is altered and sent through cryptography,

rendering it unreadable to unauthorized users [5].

The use of encryption algorithms help maintain cloud data access control, cloud data trust

management, verified computing, cloud data authorization, authentication, and safe data stor-

age [6, 7]. However, because run times is dependent on data size (O (N)), these cryptographic

algorithms add overhead expenses to cloud infrastructure [8]. This has an influence on the

Fig 1. Cloud computing architecture and features.

https://doi.org/10.1371/journal.pone.0301760.g001

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 2 / 18

https://doi.org/10.1371/journal.pone.0301760.g001
https://doi.org/10.1371/journal.pone.0301760


Quality of Service, including performance and security [9]. Also, this causes wear and tear on

cloud equipment as well as the demand for huge data bandwidth to transfer data, which adds

on to the costs of cloud providers and cloud clients [8].

1.1 Identified problem

A developing and innovative method of providing offshore computer and storage services,

which has recently become more risky in terms of security is cloud computing. When a third

party controls and manages data and assets of an organization, a number of risks including

those related to confidentiality, privacy, data leakage, data theft, reliability, capacity, and per-

formance evaluation, are present. Researchers have suggested cryptographic algorithms as suit-

able tools for assuring the security of subscribers’ data on the cloud, as a result of these security

issues. Although several cryptographic techniques have been proposed by professionals, secu-

rity still prevents cloud computing from being widely used [10, 11]. Again, the relationship

between run time and data size for these cryptographic schemes suggests that run time

increases linearly with an increasing data size (O (N)) [12–15]. In addition, predictable run

times allow hackers to attack vulnerabilities based on execution time hypothesis.

1.2 Novelty of proposed algorithm

Research has demonstrated that data size affects run time [14, 39] proportionally.

In light of these considerations, this paper presents a lightweight, non-linear(F − kv2)

stream cipher with shorter run times dubbed Secret Key 4 Optimization Algorithm (SK4OA).

This cryptographic scheme is an integration of Cousin Primes, Pseudo Random Number Gen-

erator, Sliding Window Algorithm, Greatest Common Divisor and the XOR circuit gate. The

integration helps to improve the security of cloud infrastructure and safeguard cloud data.

Again, the cryptographic scheme has the potential to utilize less bandwidth to transfer large

amounts of data since the run time is determined by the secret key rather than the data size.

Furthermore, because the execution times of this cryptographic technique is unpredictable, it

will be able to withstand security attacks such as brute force.

Therefore, the contribution of this research is as follows;

• The existing algorithms are linear causing the run time to increase linearly as the data size

increases [12–15]. The proposed Secret Key 4 Optimization Algorithm (SK4OA) is non-lin-

ear which makes the run time independent of data size leading to less bandwidth use in data

transfer.

• The existing algorithms give room for predictable run times that allow hackers to attack vul-

nerabilities based on execution time hypothesis. However, the proposed SK4OA algorithm

being nonlinear prevents such predictions and makes it resistant to attack.

2. Literature review

Data sharing in the cloud is a well-known way to give people and businesses scalable, limitless

storage and computing capabilities. The use of the cloud, however, also raises a number of

security and privacy issues, including data integrity, confidentiality, dependability, fault toler-

ance, and other issues. The most secure method of thwarting these security concerns is the

employment of cryptographic techniques.

Sajay, Babu, and Vijayalakshmi proposed a hybrid approach to improving cloud data secu-

rity that uses an encryption method. To enhance cloud security, their work coupled

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 3 / 18

https://doi.org/10.1371/journal.pone.0301760


homographic and blowfish encryption [16]. Encryption approaches were generally used to

safeguard or store large volumes of data on the cloud. Their approach was unique, yet the exe-

cution times were long and linear.

An effective real-time service-centric feature sensitivity analysis (RSFSA) technique was put

up by Siva Kumar et al. [17], to achieve cloud data security. The RSFSA model examined how

sensitively certain characteristics were used by various services at various levels. The method

computed the FLAG value for the user in accordance with the provided profile by checking

the set of features being accessed at each level and the number of features to which the user has

access permissions. The user had either been given access to the service or not, depending on

FLAG’s value. Although their method had significantly reduced run times, the trend of the run

time was linear, making it predictable. The authors [18] integrated a nature-inspired optimiza-

tion, such as a moth search algorithm (MSA) with ECC, to choose the right and ideal value of

the elliptic curve in order to provide more secure data encryption. The DNA encoding and

ECC means of encryption were combined in the suggested scheme. With less computing

resources, the DNA-encoded ECC technique offered multi-level security. Anuj Kumar’s study

in 2021 also suggested combining a DNA-based algorithm and the AES Algorithm. Data

encryption and decryption were performed using DNA cryptography technology and the AES

strategy [19]. The proposed algorithm attained cloud security but the trend of the execution

times was linear. Deoxyribonucleic acid (DNA)-based cryptographic scheme was also sug-

gested by Joseph and Mohan [20], as a way to improve data security when sharing data over

the internet. The Grey Wolf Optimization (GWO) Algorithm was used in this process to

implement an optimized encryption model in order to produce the best encrypted data while

sharing. Kumar’s and Joseph’s study were very novel, however their computational times was

linear.

Vidhya and Mohan Kumar [21] suggested using a Fusion-based Advanced Encryption

Algorithm (FAEA) as a cost-effective, practical security solution for using Big Data in the

cloud. The FAEA technique outperforms the existing Hadoop Distributed File System (HDFS)

and Map Reduce Encryption Scheme (MRE) by 98%, according to an examination of its effi-

ciency, scalability, and security. The results of their cloud deployment revealed that run times

were linear (O(N)), with run times dependent on data size. Adee and Mouratidis’ [22], paper

suggested combining the Least Significant Bit steganography with the RSA cryptographic sys-

tem, Advanced Encryption Standard, and identity-based encryption techniques. The four

phases were data sharing, data backup and recovery, steganography, and data encryption to

safeguard and secure cloud data. The proposed scheme was novel however, the run time was

linear.

In the study of Kaur et al. [6], a triple encryption strategy to attain cloud data security was

proposed. The scheme was designed to offer complete data protection across the whole data

life cycle, including data in storage and transit. They created a hash value using the SHA256,

AES, and XOR processes to protect the privacy of cloud data. Despite the potentials of their

scheme, they had lengthier and linear run times. In the same year, Guo et al. [23], proposed a

cryptographic scheme using the Blockchain-aided ABE with escrow-free (BC-ABE-EF) system,

to achieve cloud data security. Their strategy primarily overcame the key escrow issue by

substituting a consortium Blockchain for the established key authority. A secure key-issuing

protocol was used to produce the keys between the Blockchain and the data user. The Block-

chain could not access the user’s whole key on its own but used the decryption cloud server to

plan pre-decryption tasks as well. Additionally, their system, added a group manager to update

the group keys of users which could not be retrieved and created re-encryption keys. Their

investigation led to the conclusion that the relationship between data size and run-time cost

was directly proportional. A hybrid technique that combined RSA with the Gaussian

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 4 / 18

https://doi.org/10.1371/journal.pone.0301760


Interpolation Formula was suggested by the authors in the same year, 2022, to ensure the secu-

rity of cloud data [24]. Although the algorithm’s runtime was shorter, it was predictable

because of its linear run time trend.

To encrypt data to attain cloud security, Kousalya and Baik [25] recommended utilizing

Improved RSA-based role-based access control (RBAC) with extended access connectivity

markup language (XACML). This method enabled the connected computer to store data using

cryptographic principles and data made accessible through a simple admission management

system. Sensitive data was protected globally, thus a technique of encryption was used that

combined a traditional homogeneous encryption approach with an unstable information dis-

semination mechanism. Their proposed scheme was able to achieve the targeted objective but

the run time was linear. The use of a Cloud Secure Storage Mechanism (CSSM) to ensure

cloud security was also suggested by Ramachandran et al. [26]. Data invasions at the storage

layer were prevented via CSSM’s provision of encrypted, chucked, and scattered storage,

which combined data dispersion with distributed storage to attain cloud data security. In

order to prevent any illegal access to cryptographic materials, CSSM also utilized a system of

management levels, user passwords, and secret sharing method. The combination of mCryp-

ton with salsa20 was suggested by Hameed and Hoomod [27], as a way to safeguard data stored

in the cloud. Their algorithm was a simple one that could be used in embedded systems. How-

ever, because run time is dependent on data amount, the linear run time might potentially

harm the performance of these systems when large sizes of data are to be transmitted. A hybrid

cryptosystem based on the fusion of the RSA and DNA algorithms was suggested by Bhati

et al. in 2023 [28]. They combined the benefits of symmetric-key (private-key) and asymmet-

ric-key (public-key) cryptosystems in their technique. Despite being a revolutionary algorithm,

their execution time depended on the amount of data executed. In the study of [29], the

authors introduced the Soldier Ant Algorithm (SAA), which is a hybrid algorithm. The Diffie-

Hellman algorithm and the Newton Forward and Backward Interpolation (Delta Encoding)

method were integrated to improve cloud data security. Although their approach could with-

stand man-in-the-middle attack, the runtime was based on the size of the data to be executed.

Kumar et al. [30] proposed a deoxyribonucleic acid (DNA) computing to achieve data secu-

rity. A 512-bit secret key was generated and used for data encoding by the owner of the data,

which was later outsourced to the cloud. Although the algorithm performance is promising,

the run time trend is linear.

According to the linked studies reviewed, all of the proposed solutions by various research-

ers were capable of ensuring cloud data security. However, the linearity of the run times (O

(N)) is a drawback shared by all of these cryptographic techniques. Data size and run times

had a clear correlation that lead to cloud infrastructure tear and wear. Once more, predictable

run times provide hackers the chance to exploit vulnerabilities based on execution time

hypotheses. Table 1 provides an overview of the relevant works, including the Author(s), the

year of publication, the security issue to be resolved, the used cryptographic system, and the

run time trend.

3. Methodology

In this paper a Security Key 4 Optimization Algorithm (SK4OA) is proposed to ascertain the

security of cloud data. Security Key 4 Optimization Algorithm (SK4OA) is able to give accurate

results irrespective of the noise FN(X) present in the chosen dataset as compared to other algo-

rithms that output inaccuracies in many real-world contexts owing to noise [31]. SK4 Optimi-

zation Algorithm (SK4OA) is an integration of Cousin Prime [32], Pseudo Random Number

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0301760


Generator (PRNG), Fixed Sliding Window Algorithm, Great Common Divisor and XOR cir-

cuit gate.

SK4OA has four levels of key generation and an encryption and decryption levels. The four

levels for the generation of the secret key aims at strengthening the security of the proposed

algorithm. In this algorithm, two cousin primes are selected and their products computed. The

resultant is used as a seed value for the PRNG to generate 100,000 numbers. From the 100,000

numbers generated, fifty (50) numbers are randomly selected. The Sliding Window Algorithm

is used to select ten (10) numbers from the randomly selected fifty (50) numbers using a sub-

array of
b j r½ �ð Þ

5

� �
. The maximum of two numbers whose Greatest Common Divisor (GCD) is

one (1) is selected as a secret key for the encryption and decryption of the data applying a sub-

array of
b j r½ �ð Þ

5

� �
as shown in Fig 2 and Algorithm 1.

Algorithm 1: SK4OA
Input: P = Plaintext, p = prime number

1: Select (p, p+4) // Cousin Prime
2: Xn = Product (p, p + 4)

Table 1. A comparison of cryptographic algorithms for cloud data security.

Author (s) Year of

Publication

Security

Challenge

Scheme Run Time

Trend

Sajay, Babu &

Vijayalakshmi [16]

2019 Cloud Data

Security

Homographic encryption and blowfish encryption Linear

Siva Kumar et al. [17] 2021 Cloud Data

Security

Real-Time Service-Centric Feature Sensitivity Analysis • Linear

• Lower Run

time

Kumar & Kumar Bhatt

[18]

2020 Cloud Data

Security

DNA encoding with ECC encryption algorithm Linear

Anuj Kumar [19] 2021 Cloud Data

Security

DNA-based algorithm and the AES Algorithm. Linear

Joseph & Mohan [20] 2022 Cloud Data

Security

Deoxyribonucleic acid (DNA)-based cryptographic Linear

Vidhya &Mohan Kumar

[21]

2022 Cloud Data

Security

Fusion-based Advanced Encryption Algorithm (FAEA) Linear

Adee and Mouratidis [22] 2022 Cloud Data

Security

RSA, AES and Steganography Linear

Kaur et al. [6], 2023 Cloud Data

Security

Triple Encryption Strategy Linear

Guo et al. [23], 2023 Cloud Data

Security

Blockchain-aided ABE with escrow-free (BC-ABE-EF) Linear

Dawson et al. [24] 2022 Cloud Data

Security

RSA and Gaussian Interpolation Formula Linear

Kousalya & Baik [25] 2023 Cloud Data

Security

Improved RSA-based role-based access control (RBAC) with extended access

connectivity markup language (XACML).

Linear

Ramachandran et al. [26] 2023 Cloud Data

Security

Cloud Secure Storage Mechanism Linear

Hameed & Hoomod [27] 2023 Cloud Data

Security

Integration of mCrypton and salsa20 Linear

Bhati et al. [28] 2023 Cloud Data

Security

Hybrid RSAand DNA Linear

Dawson et al. [29] 2023 Cloud Data

Security

Diffie-Hellman Algorithm and Newton Forward and Backward Interpolation Linear

Kumar et al. [30] 2023 Cloud Data

Security

Deoxyribonucleic acid (DNA) technique Linear

https://doi.org/10.1371/journal.pone.0301760.t001

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 6 / 18

https://doi.org/10.1371/journal.pone.0301760.t001
https://doi.org/10.1371/journal.pone.0301760


3: Xn+1 = (aXn + C)% m // Compute PRNG
4: While i � 100000

{
5: y = Rand (Xn+1)%m
6: i++
7: }
8: end while
9: z = Rand (y, 50)
10: k ¼ b j r½ �ð Þ

5

� �
// (2).

11: if GCD h[k][g] = 1// GCD = 1
{
maxvalue = max (h[k][g])
}

12: E = P ⊕max % (b(j[r])/5) // Encryption 6
13: P = E ⊕max % (b(j[r])/5) // Decryption 7

Output: Plaintext (P)

3.1 Key generation

The Key Generation stage is made up of four stages. This helps to strengthen the security of

SK4OA.

3.1.1 Stage 1: Cousin prime generation. Cousin Prime are prime numbers that differ by

four [26]. For instance let n� 3 be a given integer. The proposition 1 is true to be considered a

Cousin Prime.

Proposition 1:

(n, n +4) is considered pair of cousin primes when the tuple C(n) contains neither 0 nor 2

[33].

P nð Þ kð Þ 6¼ 0; 2 8k ¼ 1; . . . :m

Fig 2. Work flow diagram for proposed algorithm SK4OA.

https://doi.org/10.1371/journal.pone.0301760.g002

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 7 / 18

https://doi.org/10.1371/journal.pone.0301760.g002
https://doi.org/10.1371/journal.pone.0301760


The products of any two generated Cousin Primes (P, P + 4) are used as the seed value for

the Pseudo Random Number Generator (PRNG)

3.1.2 Stage 2: Pseudo random number generator (PRNG). Pseudo-Random Number

Generator (PRNG) is a computational function that uses a deterministic procedure to produce

a series of random integers [34]. Because most cryptographic protocols need the production

and use of private values that must be kept hidden from outsiders, PRNG is employed in this

cryptographic scheme to generate 100, 000 numbers. During the creation of the series of values

between R0, R1, R2 as well as m- 0, m-1, the recursive relation of Eq 1 is used.

Xnþ1 ¼ aXn þ cð Þmodm ð1Þ

where Xn the product of the Cousin Primes, m −moduls, a −multiplier, c − increment fulfilling

the conditions:

m; 0 < m � moduls

a; 0 < a < m � multiplier

c; 0 � c < m � increment

Xn; � product of Cousin Prime

The Fixed Sliding Window Algorithm is then applied on a set of fifty (50) numbers selected

randomly from the 100,000 numbers generated.

3.1.3 Stage 3: Application of sliding window algorithm. A sliding window algorithm is

applied when determining the outcomes for a variety of integers in an array. The goal of this is

to minimize the complexity of time from (O (t2) to O (t) by combining several nested loops

into a single loop. In this scheme a sub-array as indicated in Eq 2 is applied on the fifty (50)

numbers to generate ten (10) numbers

b j r½ �ð Þ

5

� �

ð2Þ

b jr½ � ¼ bs þ 5rð Þ þ bs þ 5r þ 1ð Þ þ bs þ 5r þ 2ð Þ þ bs þ 5r þ 3ð Þ þ bs þ 5r þ 4ð Þ; ð3Þ

where s = {0, 1, 2. . .49} representing the list of 50 randomly selected numbers

b = {0, 1, 2. . .9} indicating the list of the sum of the each five (5) numbers

r = {0, 1, 2. . .4} showing the list of the first five (5) numbers

This is expansion of Eq 2 is demonstrated in Eq 4 as;

b jr½ � ¼

bo þ bjþ1 þ bjþ2 þ bjþ3 þ bjþ4

bjþ5 þ bjþ6 þ bjþ7 þ bjþ8 þ bjþ9

bjþ10 þ bjþ11 þ bjþ12 þ bjþ13 þ bjþ14

bjþ15 þ bjþ16 þ bjþ17 þ bjþ18 þ bjþ19

bjþ20 þ bjþ21 þ bjþ22 þ bjþ23 þ bjþ24

bjþ25 þ bjþ26 þ bjþ27 þ bjþ28 þ bjþ29

bjþ30 þ bjþ31 þ bjþ32 þ bjþ33 þ bjþ34

bjþ35 þ bjþ36 þ bjþ37 þ bjþ38 þ bjþ39

bjþ40 þ bjþ41 þ bjþ42 þ bjþ43 þ bjþ44

bjþ45 þ bjþ46 þ bjþ47 þ bjþ48 þ bjþ49

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð4Þ

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0301760


3.1.4 Stage 4: Conditioning using greatest common divisor (GCD). Select the maxi-

mum of any two numbers from the ten arrays whose GCD is 1 using Eq 5.

byþ cv ¼ 1; ð5Þ

where b, y, c and v are integers.

Proof
If b; c 2 Z

m ¼ gcd b; cð Þ

;
f
b
and

f
c

f
byþ cv

where f =1

;f ¼ �1

Thus the greatest common divisor for f = 1

The maximum value selected from the application of the GCD is used as the secret key for

the encryption and decryption process.

3.2 Encryption

At the encryption level, the modulus of the maximum value and the sub-array
b j r½ �ð Þ

5

� �
are com-

puted, and then XORed with the ASCII values of the plaintext using Eq 6.

E ¼ P �maxmod
b j r½ �ð Þ

5

� �

ð6Þ

Where E is the Ciphertext and P the plaintext

3.3 Decryption

The decryption formula is applied on the Ciphertext using Eq 7.

P ¼ E�maxmod
b j r½ �ð Þ

5

� �

ð7Þ

The modulus of the maximum value and the sub-array
b j r½ �ð Þ

5

� �
is computed. The output

binary values are XORed with the eight bit binary values for the ASCII of the Ciphertext to

produce the plaintext.

3.4 Security analysis of SK4OA

We provide a quick analysis of our suggested algorithm’s impact on cloud data security in this

part. Number randomization in SK4OA is the primary security defense against brute force

attacks in cloud computing. By employing SK4OA, a hacker cannot access any message since

each message’s execution time is randomly generated based on 100,000 numbers, of which

50,000 are randomly chosen using a sub-array of
b j r½ �ð Þ

5

� �
to produce 10 numbers. The secret

key for the encryption and decryption of the massage is difficult, if not impossible, to con-

struct. As a result, constraining the maximum and lowest numbers whose GCD is 1 helps to

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 9 / 18

https://doi.org/10.1371/journal.pone.0301760


increase SK4OA security. The hacker must create a secret key by applying the sliding window

technique in order to decipher the Ciphertext and carry out illegal data access. Since the secret

key is produced at random, the hacker is unable to produce it. As a result, SK4OA is protected

from brute force attacks.

Theorem 1: SK4OA is semantically protected against brute force attack

The hacker has to be able to calculate the product of any two randomly chosen cousin

primes (n, n + 4) and the product used as seed for the PRNG equation Xn+1 = (aXn + C)mod
m. This is based on the criteria m, 0<m, 0< a<m, 0� c<m in order to create 100,000

numbers. This is nearly difficult as, whenever two cousin primes are chosen, the seed value

will continuously changing, increasing the computing time required for the seed value during

the brute force process.

The sliding window algorithm makes it nearly impossible to generate the maximum and

minimum numbers for the generation of the secret key for the encryption and decryption by

using a sub-array of
b j r½ �ð Þ

5

� �
to compute (10) numbers from (50) randomly selected numbers

from the (100,000) numbers. The comparison of the maximum and minimum values whose

GCD is (1 raises the security of SK4OA by making it practically harder to use brute force to

defeat the SKO4A method. Consequently, the suggested SK4OA is capable of withstanding a

brute force attack.

4. Results

This section presents the datasets and experimental environment, and simulation results of the

proposed SK4OA algorithm.

4.1 Datasets and experimental environment

This study’s dataset was derived from the Kaggle database [35]. The dataset is an English-to-

French translation that incorporates text, numbers, and special characters. The dataset was

used to evaluate the resilience of the algorithm in terms of runtime trend, memory utilization,

and throughput. The proposed algorithm was evaluated using data sizes ranging from 3KB to

5KB, 8KB to 12KB, and 16 KB. The data was executed thirty (30) times using the proposed

Secret Key 4 Optimization Algorithm (SK4OA) to assess the validity of runtime parameters,

and their mean μ and standard (σ) deviation computed.

Our experiment was executed on an i7 Lenovo computer with a 2.10GHz CPU and 8GB of

RAM. The programming language used for this experiment is the Hypertext Preprocessor

(PHP) programming language. A message size of 3KB, 5KB, 8KB, 12KB, and 16KB was used to

test the proposed scheme as used in the study of [36]. Tables 2 and 3 depict the mean (μ) and

standard deviation (σ) of 30 different encryption and decryption times generated from

SK4OA, the proposed cryptographic scheme in this study.

Table 2. Total encryption and mean and standard deviation (μσ) times for proposed SK4OA.

File Size (KB) Total Encryption Time (ms) Mean and Standard Deviation (μσ)

3 116.67482 3.889161±5.57115171

5 94.85629 3.161876±1.8519629

8 167.90354 5.596785±2.89910744

12 374.89234 12.49641±7.22735238

16 346.45443 11.54848±5.95766123

https://doi.org/10.1371/journal.pone.0301760.t002

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 10 / 18

https://doi.org/10.1371/journal.pone.0301760.t002
https://doi.org/10.1371/journal.pone.0301760


4.2 Simulation results for the proposed SK4OA

This section presents the experimental graphical view of the required data needed to validate

the proposed SK4OA cryptographic scheme. Fig 3 shows the plaintext, whereas Fig 4 shows

the resultant Ciphertext. The plaintext is transformed to CHAR, and the decoded text is pre-

sented in Fig 5.

A total encryption time of 116.67482 milliseconds was derived from Table 2 with a data size

of 3KB with a corresponding mean and standard deviation (μσ) times of 3.889161±5.57115171

milliseconds. With a comparable (μσ) time of 3.161876±1.8519629 milliseconds, the encryp-

tion time fell to a total encryption time of 94.85629 milliseconds with a data size of 8KB. The

total encryption time rose to 167.90354 milliseconds when the data size was raised to 8 KB,

Table 3. Total decryption and mean and standard deviation (μσ) times for proposed SK4OA.

File Size (KB) Total Decryption Time (ms) Mean and Standard Deviation (μσ)

3 109.78892 3.659631±5.50655733

5 95.28016 3.176005±1.84544873

8 164.83854 5.494618±2.31357713

12 392.96387 13.0988±3.95820553

16 370.24271 12.34142±5.68254727

https://doi.org/10.1371/journal.pone.0301760.t003

Fig 3. Plaintext of file size 2KB to be encrypted.

https://doi.org/10.1371/journal.pone.0301760.g003

Fig 4. Encrypted results for 2KB data.

https://doi.org/10.1371/journal.pone.0301760.g004

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0301760.t003
https://doi.org/10.1371/journal.pone.0301760.g003
https://doi.org/10.1371/journal.pone.0301760.g004
https://doi.org/10.1371/journal.pone.0301760


however. With a data size of 12 KB, the total encryption time increased once more to

374.89234 milliseconds, with an equivalent (μσ) of 12.49641±7.22735238 milliseconds. The

total encryption time decreased to 346.45443 milliseconds with a (μσ) time of 11.54848

±5.95766123 milliseconds while the data size was increased to 16 KB.

From Table 3, a total decryption time of 109.78892 milliseconds was recorded for the pro-

posed SK4OA algorithm with a data size of 3KB and a corresponding μσ time of 3.659631

±5.50655733 milliseconds. The total decryption time decreased to 95.28016 milliseconds but

increased to 164.83854 and 392.96387 milliseconds when data sizes were increased from 8KB

to 16 KB respectively. However, the total decryption time decreased again to 370.24271 milli-

seconds with a μσ time of 12.34142±5.68254727 milliseconds when the data size was increased

to 16 KB.

5. Discussion

5.1 Comparison of proposed SK4OA with RC4, SALSA20, and CHACHA20

To ascertain the algorithm’s performance, a comparison was made with state-of-the-art stream

cipher algorithms such as RC4, Salsa20, and Chaca20. Tables 4 and 5 compares the encryption

and decryption times of RC4, Salsa20 and Chacha20.

Table 4 shows that RC4 had an μσ encryption time of 1.556±0.522 milliseconds and a data

size of 3KB. When the data size was extended to 5KB, 8KB, 12KB, and 16KB, the μσ run times

climbed to 3.462±1.184 milliseconds, 6.297±1.551 milliseconds, 12.364±2.602 milliseconds,

and 16.215±4.103 milliseconds, respectively, making their run times dependent on data size

(O (N)). Table 4’s Salsa20 and Chacha20 likewise showed growing run times as data sizes rose

Fig 5. Decrypted results for a 2KB data.

https://doi.org/10.1371/journal.pone.0301760.g005

Table 4. Comparing the mean and standard deviation (μσ) encryption time of the proposed SK4OA algorithm against RC4, Salsa20, Chacha20 utilizing different

data sizes.

Algorithm μσ Encryption Time (Milliseconds)

3KB 5KB 8KB 12KB 16KB

RC4 1.556±0.522 3.462±1.184 6.297±1.551 12.364±2.602 16.215±4.103

Salsa20 2.589±0.412 3.822±0.374 5.790±0.994 7.617±0.941 14.282±1.190

Chacha20 1.694±0.258 2.959±0.427 4.698±0.954 6.664±1.035 11.004±1.220

SK4OA 2.552±3.539 1.933±0.956 1.644±2.028 7.214±1.952 5.545±2.785

https://doi.org/10.1371/journal.pone.0301760.t004

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 12 / 18

https://doi.org/10.1371/journal.pone.0301760.g005
https://doi.org/10.1371/journal.pone.0301760.t004
https://doi.org/10.1371/journal.pone.0301760


(O (N). The suggested scheme SK4OA with a data size of 3 KB had a μσ encryption time of

2.552±3.539 milliseconds. With a data size of 5KB, this time was reduced to 1.933±0.956 milli-

seconds again for the proposed SK4OA algorithm. Also, the μσ encryption time decreased to

1.644±2.028 milliseconds for data size of 8KB. However, the μσ encryption time increased to

7.214±1.952 milliseconds, and decreased to 5.545±2.785 milliseconds as data sizes increased

from 8KB to 12KB and 16KB correspondingly.

From Table 5, with a data size of 3KB, Chacha20 had a μσ decryption time of 1.654±0.265

milliseconds. This increased to 3.167±0.719 milliseconds, 5.244±1.164 milliseconds, 7.641

±1.317 milliseconds and 12.220±1.473 milliseconds for data sizes of 5KB, 8KB,12KB and 16KB

respectively. The μσ decryption times for RC4 and Salsa20, from Table 5, are linear (O(N)) as

run time is directly proportional to data size. The proposed algorithm SK4OA had a μσ decryp-

tion times of 2.099±2.523 milliseconds for a data size of 3KB. The μσ decryption times

decreased to 1.974±0.910 milliseconds. It further decreased to 1.881±1.451 milliseconds and

increased to 7.944±2.1945 milliseconds when data size increased to 12KB. However, the μσ
decryption times decreased again to 5.149±2.231 milliseconds when the data size was increased

to 16KB.

From Tables 4 and 5, RC4, Salsa20 and Chacha20, had linear (O (N)) mean encryption and

decryption times [37]. This implies that encryption and decryption times increase as data sizes

increased [14, 30, and 38]. Tables 4 and 5, indicates that RC4, had the lowest encryption and

decryption standard deviations of ±0.522 and ±0.363 for data size of 3KB. This implies that,

the encryption and decryption times are clustered tightly around the mean, signifying pat-

terned run times [39]. However, the proposed algorithm SK4OA had the highest encryption

and decryption standard deviations of ±3.539 and ±2.523 for data sizes of 3KB. This indicates

that the encryption and decryption times were more spread out, signifying non- deterministic

run times [39–41].

5.1.1 Throughput time. Any security algorithm’s throughput provides an indication of

how quickly it performs encryption and decryption operations. The throughput time is com-

puted using Eq 8.

Throughput Time ¼
Data Size KBð Þ

Run Time msð Þ
ð8Þ

From Table 6, with a data size of 3KB, RC4 had the highest mean encryption throughput

time of 1.928 KB/ms followed by Cacha20 (1.771 milliseconds). When the data size was

increased to 5KB, the proposed algorithm had the highest mean encryption throughput time

of 2.587 KB/ms. The encryption throughput for SK4OA increased to 4.866 KB/ms when the

data size was increased to 8KB. However, when the data size was increased to 12KB, RC4 had

the lowest encryption throughput time of 0.971KB/ms. However, with a data size of 16KB,

SK4OA had the highest mean encryption throughput time of 2.885 KB/ms.

Table 5. Comparing the mean and standard deviation (μσ) decryption time for the proposed SK4OA algorithm against RC4, Salsa20, Chacha20 algorithms utilizing

different data sizes.

Algorithm μσ Decryption Time (Milliseconds)

3KB 5KB 8KB 12KB 16KB

RC4 1.493±0.363 3.109±1.429 5.692±1.666 12.132±3.600 18.075±3.009

Salsa20 3.732±0.934 4.868±0.714 6.484±0.969 8.011±0.915 15.408±1.1555

Chacha20 1.654±0.265 3.167±0.719 5.244±1.164 7.641±1.317 12.220±1.473

SK4OA 2.099±2.523 1.974±0.910 1.881±1.451 7.944±2.1945 5.149±2.231

https://doi.org/10.1371/journal.pone.0301760.t005

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 13 / 18

https://doi.org/10.1371/journal.pone.0301760.t005
https://doi.org/10.1371/journal.pone.0301760


With a data size of 3 KB, RC4 had the highest mean decryption throughput time of 2.009

KB/ms from Table 7. However, with a data size of 16 KB, RC4 had the lowest mean decryption

throughput time of 0.885 KB/ms. When the data size was increased to 5 KB, SK4OA had the

highest mean decryption throughput time of 2.533 KB/ms.

According to Tables 6 and 7, the μ encryption and decryption times are inversely propor-

tional to throughput time. There is lesser utilization of CPU when encryption and decryption

times are higher and lower with higher throughput time [42].

5.1.2 Memory usage. From Tables 8 and 9, Chacha20 had the lowest μσ encryption and

decryption times for data sizes of 3KB, 5KB, 8KB, and 12KB. However, the same μσ sizes of

memory was utilized by SK4OA for data sizes of 8KB and 12KB.

From Tables 8 and 9, it could be deduced that for RC4, Salsa20, and Chacha20, the μσ mem-

ory utilization increased as data sizes increased. However, the μσ memory utilization for the

proposed SK4OA algorithm had similar μσ memory utilization for data sizes of 8KB and

12KB. Also, with a σ encryption and decryption memory of ±0.111, ±0.122, ±0.168, ±0.146,

±0.201, ±0.111, ±0.122, ±0.146, ±0.168 and ±0.201 respectively for data size of 3KB, 5KB, 8KB,

12KB and 16KB, the memory sizes are clustered around the mean [43]. This implies that, the

size of the memory consumed is close to the mean and the difference of utilized memory is not

very significant [44].

Table 6. Comparing the mean encryption throughput time of the proposed SK4OA scheme against RC4, Salsa20, Chacha20 algorithms utilizing different data

sizes.

Algorithm μ Encryption Throughput Time (KB/ms)

3KB 5KB 8KB 12KB 16KB

RC4 1.928 1.444 1.270 0.971 0.987

Salsa20 1.159 1.308 1.382 1.575 1.120

Chacha20 1.771 1.689 1.703 1.801 1.454

SK4OA 1.176 2.587 4.866 1.663 2.885

https://doi.org/10.1371/journal.pone.0301760.t006

Table 7. Comparing the mean decryption throughput time of the proposed SK4OA scheme against RC4, Salsa20 and Chacha20 algorithms utilizing different data

sizes.

Algorithm μ Decryption Throughput Time (Milliseconds)

3KB 5KB 8KB 12KB 16KB

RC4 2.009 1.608 1.405 0.989 0.885

Salsa20 0.804 1.027 1.234 1.498 1.038

Chacha20 1.814 1.579 1.526 1.570 1.309

SK4OA 1.429 2.533 4.253 1.511 3.107

https://doi.org/10.1371/journal.pone.0301760.t007

Table 8. Comparing the amount of memory utilized by SK4OA and other state-of-the-art algorithms (RC4, Salsa20, Chacha20) during encryption.

Algorithm μσ Encryption Memory Size (MB)

3KB 5KB 8KB 12KB 16KB

RC4 3.832±0.890 5.131±0.942 7.395±1.369 8.977±1.892 15.541±0.928

Salsa20 3.732±0.934 4.864±0.714 6.484±0.969 8.011±0.915 15.408±1.156

Chacha20 1.654±0.265 3.167±0.719 5.244±1.164 7.641±1.317 12.219±1.473

SK4OA 4.037±0.111 6.057±0.122 11.053 ±0.168 11.053 ±0.146 13.067 ±0.201

https://doi.org/10.1371/journal.pone.0301760.t008

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 14 / 18

https://doi.org/10.1371/journal.pone.0301760.t006
https://doi.org/10.1371/journal.pone.0301760.t007
https://doi.org/10.1371/journal.pone.0301760.t008
https://doi.org/10.1371/journal.pone.0301760


It could be deduced that the proposed algorithm SK4OA produced a lower, non-patterned,

unpredictable and secret-key dependent run-times overcoming the theory of RC4, Salsa20 and

Chacha20 as the fastest stream cipher algorithms. This again defeats the notion that Chacha20

uses less memory during execution [45]. From the experimental results, SK4OA could be con-

sidered as a lightweight algorithm that could be better employed in the cloud to attain high

security as it uses less loops and has lower run times [46]. Also, SK4OA could be used in envi-

ronment, where less memory is needed such as ubiquitous computing.

6. Conclusion

Cloud computing services are one of the most current innovations in information technology,

and they provide several advantages to clients. Cloud information security is a major concern

for any firm considering a cloud migration. Cryptographic systems are among the most secure

methods of preventing unwanted access. However, these cryptographic algorithms have linear

run times and are predictable. SK4OA, a cryptographic system with non-linear run times for

cloud data security, is proposed in this paper. The proposed algorithm was run thirty (30)

times with a dataset from the Kaggle database, and the mean and standard deviations were

computed. The suggested scheme SK4OA was compared against state-of-the-art algorithms

(RC4, Salsa20, and Chacha20) in terms of encryption time, decryption time, throughput, and

memory utilization. When a data size of 3KB was executed thirty (30) times, RC4 had the

shortest mean encryption and decryption times of 1.556±0.522 ms and 1.493±0.363 ms,

respectively. Nevertheless, for data sizes of 5KB, 8KB, 12KB, and 16 KB, Secret Key4 Optimiza-

tion Algorithm (SK4OA) had the shortest mean encryption and decryption times. Again,

SK4OA generated non-patterned execution times, making it resistant to hacking since hackers

cannot forecast the run times and instead hack depending on the amounts of the data to be

executed. According to the results of the investigation, the suggested scheme had the highest

throughput time, showing reduced CPU engagement during execution. Again in comparing

memory consumption for RC4, Salsa20, and Chacha20, memory utilization rises as data sizes

rise in those schemes. However, the memory utilization difference for SK4OA for all the data

sizes especially 8KB and 12 KB is insignificant, indicating the economy of memory usage by

the proposed SK4OA. Future studies should be conducted in evaluating the performance of

the proposed algorithm on higher systems considering performance parameters such as

encryption time, decryption time, throughput time, and memory usage.

Author Contributions

Conceptualization: Yaw Marfo Missah, John Kwao Dawson, Samuel Akyeramfo Sam.

Data curation: Yaw Marfo Missah.

Table 9. Comparing the amount of memory utilized by SK4OA and other state-of-the-art algorithms (RC4, Salsa20, Chacha20) during decryption.

Algorithm μσ Decryption Memory Size (MB)

3KB 5KB 8KB 12KB 16KB

RC4 3.832±0.890 5.131±0.942 7.395±1.369 8.977±1.892 15.541±0.928

Salsa20 3.732±0.934 4.864±0.714 6.484±0.969 8.011±0.915 15.408±1.156

Chacha20 1.654±0.265 3.167±0.719 5.244±1.164 7.641±1.317 12.219±1.473

SK4OA 4.037±0.111 6.057±0.122 11.053 ±0.168 11.053 ±0.146 13.067 ±0.201

https://doi.org/10.1371/journal.pone.0301760.t009

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 15 / 18

https://doi.org/10.1371/journal.pone.0301760.t009
https://doi.org/10.1371/journal.pone.0301760


Formal analysis: James Benjamin Hayfron Acquah, Yaw Marfo Missah, John Kwao Dawson,

Ben Beklisi Kwame Ayawli, Philemon Baah, Samuel Akyeramfo Sam.

Investigation: Ben Beklisi Kwame Ayawli.

Methodology: Twum Frimpong, John Kwao Dawson, Ben Beklisi Kwame Ayawli, Samuel

Akyeramfo Sam.

Supervision: Twum Frimpong, James Benjamin Hayfron Acquah, Philemon Baah.

Validation: Twum Frimpong, Philemon Baah.

References
1. Gadde S., Amutharaj J., and Usha S., “A security model to protect the isolation of medical data in the

cloud using hybrid cryptography,” Journal of Information Security and Applications, vol. 73, p. 103412,

Mar. 2023, https://doi.org/10.1016/j.jisa.2022.103412

2. Meng Y., Qu Z., Muhammad G., and Tiwari P., “Secure and efficient data transmission based on quan-

tum dialogue with hyperentangled states in cloud office,” Internet of Things, vol. 24, pp. 100911–

100911, Dec. 2023, https://doi.org/10.1016/j.iot.2023.100911

3. Zhen Y., Qu H., Zhang X., Xu J., and Lin X., “Identity-based proxy matchmaking encryption for cloud-

based anonymous messaging systems,” Journal of Systems Architecture, vol. 142, pp. 102950–

102950, Sep. 2023, https://doi.org/10.1016/j.sysarc.2023.102950

4. Sudhakar G., Azath H., Alias P., and Edwinprabhakar P. B., “A Hybrid Cloud Security System using

Cryptography,” Jul. 2023.

5. Arulkumaran G., Jayagopalan Santhosh, Thanga Mariappan L, and Balamurugan P., “An Effective

Analysis of Proficient Two Level Security Contraptions For Loading Data In Cloud,” Mar. 2023, https://

doi.org/10.1109/ihcsp56702.2023.10127217

6. G. Kaur, N. Bharathiraja, S. Murugesan, K Pradeepa, G. Sudhakar, and Vinoth Kumar M, “A Security

model with efficient AES and Security Performance Trade-off Analysis of Cryptography Systems with

Cloud Computing,” Feb. 2023.

7. P. Sharma, R. Jindal, and M. D. Borah, “Blockchain-based Integrity Protection System for Cloud Stor-

age,” 2019 4th Technology Innovation Management and Engineering Science International Conference

(TIMES-iCON), Dec. 2019.

8. Dawson J. K., Twum F., Benjamin J., and Missah Y. M., “PRISMA Archetype-Based Systematic Litera-

ture Review of Security Algorithms in the Cloud,” Security and Communication Networks, vol. 2023, pp.

1–17, Jul. 2023, https://doi.org/10.1155/2023/9210803

9. Mishra S. and Lahoti Saurabh, “An Efficient User Protected Encryption Storage Algorithm Used in

Encrypted Cloud Data,” Feb. 2023, https://doi.org/10.1109/icicacs57338.2023.10099610

10. Butt U. A., Amin R., Mehmood M., Aldabbas H., Alharbi M. T., and Albaqami N., “Cloud Security Threats

and Solutions: A Survey,” Wireless Personal Communications, Sep. 2022, https://doi.org/10.1007/

s11277-022-09960-z

11. Alharbi H. A., Aldossary M., Almutairi Jaber, and Elgendy I. A., “Energy-Aware and Secure Task Off-

loading for Multi-Tier Edge-Cloud Computing Systems,” Sensors, vol. 23, no. 6, pp. 3254–3254, Mar.

2023, https://doi.org/10.3390/s23063254 PMID: 36991964

12. R. M. Marzan and A. M. Sison, “An Enhanced Key Security of Playfair Cipher Algorithm,” Proceedings

of the 2019 8th International Conference on Software and Computer Applications, Feb. 2019.

13. A. Gupta and S. Sampalli, “‘From Kilobytes to Kilodaltons’: A Novel Algorithm for Medical Image Encryp-

tion based on the Central Dogma of Molecular Biology,” IEEE Xplore, Jul. 01, 2022. https://ieeexplore.

ieee.org/stamp/stamp.jsp?arnumber=9871499 (accessed May 15, 2023).

14. Dawson J. K., Twum F., Acquah J. H., and Missah Y. M., “Ensuring privacy and confidentiality of data

on the cloud using an enhanced homomorphism scheme,” Informatica, vol. 46, no. 8, Nov. 2022,

https://doi.org/10.31449/inf.v46i8.4305

15. Z. Brakerski, N. Döttling, S. Garg, and G. Malavolta, “Leveraging Linear Decryption: Rate-1 Fully-

Homomorphic Encryption and Time-Lock Puzzles,” ePrint IACR, 2019. https://eprint.iacr.org/2019/720

(accessed Sep. 26, 2023).

16. Sajay K. R., Babu S. S., and Vijayalakshmi Y., “Enhancing the security of cloud data using hybrid

encryption algorithm,” Journal of Ambient Intelligence and Humanized Computing, Jul. 2019, https://

doi.org/10.1007/s12652-019-01403-1

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 16 / 18

https://doi.org/10.1016/j.jisa.2022.103412
https://doi.org/10.1016/j.iot.2023.100911
https://doi.org/10.1016/j.sysarc.2023.102950
https://doi.org/10.1109/ihcsp56702.2023.10127217
https://doi.org/10.1109/ihcsp56702.2023.10127217
https://doi.org/10.1155/2023/9210803
https://doi.org/10.1109/icicacs57338.2023.10099610
https://doi.org/10.1007/s11277-022-09960-z
https://doi.org/10.1007/s11277-022-09960-z
https://doi.org/10.3390/s23063254
http://www.ncbi.nlm.nih.gov/pubmed/36991964
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9871499
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9871499
https://doi.org/10.31449/inf.v46i8.4305
https://eprint.iacr.org/2019/720
https://doi.org/10.1007/s12652-019-01403-1
https://doi.org/10.1007/s12652-019-01403-1
https://doi.org/10.1371/journal.pone.0301760


17. Siva Kumar A., Godfrey Winster S., and Ramesh R., “Efficient sensitivity orient blockchain encryption

for improved data security in cloud,” Concurrent Engineering, p. 1063293X2110085, Apr. 2021, https://

doi.org/10.1177/1063293x211008586

18. Kumar P. and Kumar Bhatt A., “Enhancing multi-tenancy security in the cloud computing using hybrid

ECC-based data encryption approach,” IET Communications, vol. 14, no. 18, pp. 3212–3222, Oct.

2020, https://doi.org/10.1049/iet-com.2020.0255

19. A. Kumar, “Data Security and Privacy using DNA Cryptography and AES Method in Cloud Computing,”

Nov. 2021.

20. Joseph M. and Gobi M., “A Novel Algorithm for Secured Data Sharing in Cloud using GWOA-DNA Cryp-

tography,” International journal of computer networks and applications, vol. 9, no. 1, pp. 114–114, Feb.

2022, https://doi.org/10.22247/ijcna/2022/211630

21. Vidhya A. and Kumar P. M., “Fusion-based advanced encryption algorithm for enhancing the security of

Big Data in Cloud,” Concurrent Engineering, p. 1063293X2210890, May 2022, https://doi.org/10.1177/

1063293x221089086

22. Adee R. and Mouratidis H., “A Dynamic Four-Step Data Security Model for Data in Cloud Computing

Based on Cryptography and Steganography,” Sensors, vol. 22, no. 3, p. 1109, Feb. 2022, https://doi.

org/10.3390/s22031109 PMID: 35161853

23. Guo Y., Lu Z., Ge H., and Li J., “Revocable blockchain-aided attribute-based encryption with escrow-

free in cloud storage,” IEEE Transactions on Computers, pp. 1–12, 2023, https://doi.org/10.1109/tc.

2023.3234210

24. Dawson J. K., Twum F., Acquah J. B. H., Missah Y. M., and Ayawli B. B. K., “An enhanced RSA algo-

rithm using Gaussian interpolation formula,” International Journal of Computer Aided Engineering and

Technology, vol. 16, no. 4, p. 534, 2022, https://doi.org/10.1504/ijcaet.2022.123996

25. Kousalya A. and Baik N., “Enhance cloud security and effectiveness using improved RSA-based RBAC

with XACML technique,” International Journal of Intelligent Networks, Mar. 2023, https://doi.org/10.

1016/j.ijin.2023.03.003

26. M. Ramachandran, K. Gurunathan, D. Ravindran, M. Sanjai, and V. T. Raja, “An Novel Algorithm for

Cloud Secure Storage Using Cloud Dispersion and Block Chain System,” Mar. 2023.

27. Hameed M. I. and Hoomod H. K., “New hybrid encryption algorithm for cloud computing security using

chaotic system and mCrypton-salsa20 algorithms,” Nucleation and Atmospheric Aerosols, Jan. 2023,

https://doi.org/10.1063/5.0119644

28. S. Prashant Bhati, S. Tripathi, Kumari, Shephali Sachan, and R. Sharma, “A Research on DNA and

RSA Cryptography for Hybrid Encryption and Decryption for Cloud Processing via IOT Devices,” May

2023.

29. Dawson J. K., Beklisi B., Agyemang S., Baah P., and Akyeramfo-Sam S., “Ensuring Cloud Data Secu-

rity Using the Soldier Ant Algorithm,” Journal of Advances in Information Technology, vol. 14, no. 1,

Jan. 2023, https://doi.org/10.12720/jait.14.1.130-137

30. Kumar T., Namasudra Suyel, and Kumar P., “Providing data security using DNA computing in the cloud

computing environment,” International Journal of Web and Grid Services, vol. 19, no. 4, pp. 463–486,

Jan. 2023, https://doi.org/10.1504/ijwgs.2023.135587

31. H. Wang, H. Qian, and Y. Yu, “Noisy Derivative-Free Optimization With Value Suppression,” Proceed-

ings of the. . . AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.

32. Patel M., Patel A. M., and Gandhi R. B., “Prime numbers and their analysis,” Journal of Emerging Tech-

nologies and Innovative Research, vol. 7, no. 2, pp. 1–5, Mar. 2020, ISSN-2349-5162.

33. D. Bufalo, M. Bufalo, and F. Iavernaro, “A probabilistic approach to the twin prime and cousin prime con-

jectures,” arXiv (Cornell University), Mar. 2023.

34. Pandit A. A., Kumar A., and Mishra A., “LWR-based Quantum-Safe Pseudo-Random Number Genera-

tor,” Journal of Information Security and Applications, vol. 73, p. 103431, Mar. 2023, https://doi.org/10.

1016/j.jisa.2023.103431

35. "Kaggle Datasets", Kaggle.com, 2022. [Online]. https://www.kaggle.com/datasets/morriswongch/

kaggle-datasets. [Accessed: 29- Sep- 2023].

36. Ranganatha Rao B. and Sujatha B., “A hybrid elliptic curve cryptography (HECC) technique for fast

encryption of data for public cloud security,” Measurement: Sensors, vol. 29, p. 100870, Oct. 2023,

https://doi.org/10.1016/j.measen.2023.100870

37. Hooshmand M. K. and Hosahalli D., “Network anomaly detection using deep learning techniques,”

CAAI Transactions on Intelligence Technology, Jan. 2022, https://doi.org/10.1049/cit2.12078

38. Sahu M., Padhy N., Gantayat S. S., and Sahu A. K., “Local binary pattern-based reversible data hiding,”

CAAI Transactions on Intelligence Technology, Aug. 2022, https://doi.org/10.1049/cit2.12130

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 17 / 18

https://doi.org/10.1177/1063293x211008586
https://doi.org/10.1177/1063293x211008586
https://doi.org/10.1049/iet-com.2020.0255
https://doi.org/10.22247/ijcna/2022/211630
https://doi.org/10.1177/1063293x221089086
https://doi.org/10.1177/1063293x221089086
https://doi.org/10.3390/s22031109
https://doi.org/10.3390/s22031109
http://www.ncbi.nlm.nih.gov/pubmed/35161853
https://doi.org/10.1109/tc.2023.3234210
https://doi.org/10.1109/tc.2023.3234210
https://doi.org/10.1504/ijcaet.2022.123996
https://doi.org/10.1016/j.ijin.2023.03.003
https://doi.org/10.1016/j.ijin.2023.03.003
https://doi.org/10.1063/5.0119644
https://doi.org/10.12720/jait.14.1.130-137
https://doi.org/10.1504/ijwgs.2023.135587
https://doi.org/10.1016/j.jisa.2023.103431
https://doi.org/10.1016/j.jisa.2023.103431
https://www.kaggle.com/datasets/morriswongch/kaggle-datasets
https://www.kaggle.com/datasets/morriswongch/kaggle-datasets
https://doi.org/10.1016/j.measen.2023.100870
https://doi.org/10.1049/cit2.12078
https://doi.org/10.1049/cit2.12130
https://doi.org/10.1371/journal.pone.0301760


39. Andrade C., “Understanding the Difference Between Standard Deviation and Standard Error of the

Mean, and Knowing When to Use Which,” Indian Journal of Psychological Medicine, vol. 42, no. 4, pp.

409–410, Jul. 2020, https://doi.org/10.1177/0253717620933419 PMID: 33402813

40. Wang M., Yi H., Jiang F., Lin L., and Gao M., “Review on Offloading of Vehicle Edge Computing,” Jour-

nal of artificial intelligence and technology, Aug. 2022, https://doi.org/10.37965/jait.2022.0120

41. Namasudra Suyel and Deka Ganesh Chandra, Advances of DNA Computing in Cryptography. CRC

Press, 2018.

42. Kumar A., Singh P., Patro K. A. K., and Acharya B., “High-throughput and area-efficient architectures

for image encryption using PRINCE cipher,” Integration, vol. 90, pp. 224–235, May 2023, https://doi.

org/10.1016/j.vlsi.2023.01.011

43. McGrath S. et al., “Estimating the sample mean and standard deviation from commonly reported quan-

tiles in meta-analysis,” Statistical Methods in Medical Research, vol. 29, no. 9, pp. 2520–2537, Jan.

2020, https://doi.org/10.1177/0962280219889080 PMID: 32292115

44. Chi K.-Y., Li M.-Y., Chen C., and Kang Enoch Yi-No, “Ten circumstances and solutions for finding the

sample mean and standard deviation for meta-analysis,” vol. 12, no. 1, Apr. 2023, https://doi.org/10.

1186/s13643-023-02217-1 PMID: 37005690

45. R. Alsharida, M. Hammood, M. A. Ahmed, B. Thamer, and M. Shakir, “RC4D: A New Development of

RC4 Encryption Algorithm,” Selected Papers from the 12th International Networking

Conference, pp. 19–30, 2021.

46. Dawson J. K., Frimpong T., Hayfron Acquah J. B., and Missah Y. M., “Ensuring privacy and confidential-

ity of cloud data: A comparative analysis of diverse cryptographic solutions based on run time trend,”

PLOS ONE, vol. 18, no. 9, p. e0290831, Sep. 2023, https://doi.org/10.1371/journal.pone.0290831

PMID: 37676866

PLOS ONE Securing cloud data using secret key 4 optimization algorithm (SK4OA)

PLOS ONE | https://doi.org/10.1371/journal.pone.0301760 April 16, 2024 18 / 18

https://doi.org/10.1177/0253717620933419
http://www.ncbi.nlm.nih.gov/pubmed/33402813
https://doi.org/10.37965/jait.2022.0120
https://doi.org/10.1016/j.vlsi.2023.01.011
https://doi.org/10.1016/j.vlsi.2023.01.011
https://doi.org/10.1177/0962280219889080
http://www.ncbi.nlm.nih.gov/pubmed/32292115
https://doi.org/10.1186/s13643-023-02217-1
https://doi.org/10.1186/s13643-023-02217-1
http://www.ncbi.nlm.nih.gov/pubmed/37005690
https://doi.org/10.1371/journal.pone.0290831
http://www.ncbi.nlm.nih.gov/pubmed/37676866
https://doi.org/10.1371/journal.pone.0301760

