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Abstract

Large differences in projected future annual precipitation increases in North America exists

across 27 CMIP6 models under four emission scenarios. These differences partly arise

from weak representations of land-atmosphere interactions. Here we demonstrate an emer-

gent constraint relationship between annual growth rates of future precipitation and growth

rates of historical temperature. The original CMIP6 projections show 0.49% (SSP126),

0.98% (SSP245), 1.45% (SSP370) and 1.92% (SSP585) increases in precipitation per

decade. Combining observed warming trends, the constrained results show that the best

estimates of future precipitation increases are more likely to reach 0.40–0.48%, 0.83–

0.93%, 1.29–1.45% and 1.70–1.87% respectively, implying an overestimated future precipi-

tation increases across North America. The constrained results also are narrow the corre-

sponding uncertainties (standard deviations) by 13.8–31.1%. The overestimated

precipitation growth rates also reveal an overvalued annual growth rates in temperature

(6.0–13.2% or 0.12–0.37˚C) and in total evaporation (4.8–14.5%) by the original models’

predictions. These findings highlight the important role of temperature for accurate climate

predictions, which is important as temperature from current climate models’ simulations

often still have systematic errors.

Introduction

The climate of North America varies due to changes in latitude, and a range of geographic fea-

tures (including mountains and deserts), ranging from the frost-free tropical of southernmost
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Florida to the perennial ice and snow of the northernmost islands of the Greenland. Generally,

on the mainland, the climate of becomes warmer the further south one travels, and drier the

further west, until one reaches the West Coast. The annual mean precipitation, temperature

and evapotranspiration are 562 mm, -3.2˚C and 342 mm, respectively. The current population

of Northern America is around 0.38 billion. However, North America has experienced severe

droughts in recent decades [1,2], which has negatively influenced agriculture, energy produc-

tion, food security, forestry, drinking water, and tourism [3–5]. Typically, the main drivers of

drought are below-average precipitation and/or above-average temperature and evaporation

[6]. Thereby, accurate predictions of future precipitation, temperature and total evaporation

are crucial for mitigating the climate-driven drought risks [4].

Earth System models (ESMs) are widely used to investigate past climate variations and

future climate predictions in response to various radiative forcings [7]. Despite consideration

of physical, chemical, and biological processes, ESMs often poorly predict the most basic quan-

tities, such precipitation, temperature, and evaporation, as seen in a series of publications of

the Fifth Phase of the Coupled Model Intercomparison Project (CMIP5) [8–10]. For example,

the spread of future increases in global mean surface temperatures during 2081–2100 across

CMIP5 models is large, ranging from 0.3˚C to 1.7˚C (RCP2.6), 1.1˚C to 2.6˚C (RCP4.5), 1.4˚C

to 3.1˚C (RCP6.0) and 2.6˚C to 4.8˚C (RCP8.5) [11]. The future global mean precipitation

feedbacks with temperature also exhibits substantial uncertainties (0.5–4% ˚C-1) [11]. The new

generation of ESMs (CMIP6) that has higher horizontal-vertical resolutions and more com-

prehensive experimental designs [12], still yields considerable uncertainties in predicting the

basic climate variables [13–15]. This inaccurate information makes planning climate mitiga-

tion and adaptation measures more challenging [16].

In recent years, the emergent constraint technique that is based on the significant statistical

relationship between simulated changes of historical climate variable X and predicted changes

of future climate variable Y across an ESM ensemble has emerged [17–22] (See methods). This

empirical relationship, combined with observed changes of climate variable X, has successfully

reduced uncertainties in predicted changes of future climate variable Y (e.g., permafrost melt

[23,24], marine primary production [25], Arctic sea-ice albedo feedback [26] and precipitation

extremes [27]).

The key of the emergent constraint technique is to explore the mechanisms that underpin

the emergent constraint relationship [16]. Thereby, we first explore the main driving factor

(i.e. variable x) which dominates the large spread of predicted future annual precipitation

growth rates (i.e. variable y) across the 27 CMIP6 models. The identified factor then is used to

build the emergent constraint relationship with future annual precipitation growth rates across

the CMIP6 models under scenarios SSP126, SSP245, SSP370 and SSP585. SSP126 represents

the sustainable and “green” pathway with minimizing material resource and energy usage.

SSP245 is the medium pathway that the world follows a path in which social, economic, and

technological trends do not shift markedly from historical patterns. SSP370 has the high GHG

emissions that a low international priority for addressing environmental concerns leads to

strong environmental degradation in some regions. SSP585 has a very high GHG emissions

(CO2 emissions triple by 2075) that inequality is rising. Some regions suffer drastic environ-

mental damage. By combing the observations, we aim to reduce the uncertainty of future

annual precipitation in North America during 2015–2100. To verify the robustness of the

emergent constraint relationships from CMIP6, 33 CMIP5 models under RCP45 and RCP85

are also used for cross-checking of the constraint relationship on a new model ensemble, using

exactly the same constraint processes. Finally, the constrained future precipitation changes,

with smaller uncertainties relative to the raw model predictions, are used to re-estimate growth

rates of future temperature and evapotranspiration in North America.
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Materials and methods

Emergent constraint technique

In this study, we built the emergent constraint relationships between annual growth rates of

simulated historical temperature and that of future precipitation across the CMIP6 and

CMIP5 models (S1 and S2 Tables), by using the least-squares linear regression method (Eq 1).

The prediction error of the regression (σy) is estimated by Eq 2, following the method from

Cox et al [21] and Chai et al [22]. Combining the observed temperature from four different

data sets, the emergent relationship provides a tight constraint on future annual precipitation

growth rates.

yi ¼ axi þ b ð1Þ

where yi (future predicted climate variable y, i.e., future annual precipitation growth rates) is

the value given by xi (historical simulated climate variable x, i.e., simulated historical annual

temperature growth rates); a and b are the slope and intercept values, respectively;

sy xð Þ ¼ s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ
1

N
þ

x � �xð Þ
2

N � s2
x

s

ð2Þ

where s is used for minimizing the least-squares error, calculating by Eq 3; N is the number of

models. σx is the variance of xi Eq 4; �x is the mean value;

s2 ¼
1

N � 2

XN

n¼1

y � yið Þ
2

ð3Þ

sx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

n¼1

xi � �xð Þ
2
=N

s

ð4Þ

Calculation of probability density function (PDF)

For checking how significant the changes of future annual precipitation growth rates before

and after applying the emergent constraint technique, we estimated the PDFs of the future

annual precipitation growth rates before applying the technique (Eq 5). After the constraint,

the PDFs for the constrained future annual precipitation growth rates (PDF(F)) is calculated

by numerically integrating PDF(F/ob) and PDF(ob) (Eq 6).

PDF y=xð Þ ¼
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2p � s2

y

q exp �
y � f xð Þð Þ

2

2s2
y

( )

ð5Þ

where PDF(y/x) is the PDF around the best-fit linear regression, representing the PDF of y
given x.

PDF Fð Þ ¼
Z þ1

� 1

PDF F=obð Þ � PDF obð Þ � dob ð6Þ

where PDF(F/ob) is the probability density for the “future climate projected variable” given the

“historical observable variable”; and PDF(ob) is the observation-based PDF for “historical

observable variable”.
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Clausius–Clapeyron relation

The Clausius–Clapeyron relations (Eqs 7 and 8) indicate that the saturation specific humidity

(qs) increases by about 7% per degree of warming, i.e. α = 7% K−1 [28].

dqs

dT
¼

qs � Lv

Rv � T2
ð7Þ

Dqs

qs
¼

Lv

Rv � T2
DT ¼ a � DT ð8Þ

Where qs and T are the saturation specific humidity and the temperature, respectively. Lv and

Rv are the latent heat of condensation at temperature T and the gas constant for water vapour

(461.5 J kg−1 K−1), respectively. Here we assumed that Lv = 2.5 106 J kg−1 and the total pressure

is much larger than the water vapour pressure.

Thermodynamic equations indicating a linear relationship between

precipitation and temperature

Held and Soden [29] proposed a thermodynamic scaling where precipitation (Pre) can be

approximated as a product of convective mass flux (Mf) and specific humidity (q), near the

global land surface (Eq 9). Thus, combining Eqs 8 and 9, we can further obtain the Eq 10 [28].

Under a unchanged atmospheric circulation (ΔMf = 0), Eq 10 shows a linear positive relation-

ship between precipitation and temperature, i.e. per increase in temperature will lead to 7%

increase in precipitation.

Pre ¼ Mf � q ð9Þ

DPre
Pre
¼
DMf

Mf
þ
Dqs

qs
¼
DMf

Mf
þ 0:07 � DT ð10Þ

Global land hydrological budget equation

The changes in precipitation (ΔP) are normally accompanied by coinciding changes in land

surface runoff (ΔR), total evaporation (ΔET), soil water storage (ΔSW). These closely con-

nected processes make up the land water cycle, which is described by Eq 11 [30–32].

DP ¼ DRþ DET þ DSW þ ε ð11Þ

Ɛ is the other minor components in land water cycle (e.g., snow melting and human water

uses).

Multiple regression technique

To estimate the relative contribution of each potential driving factor (i.e., temperature, land

surface runoff, soil water content and total evaporation) on the future precipitation changes,

we used the multiple regression method that has been widely applied by previous studies [33–

36]. After building the multiple regression relationships (Eq 12) between future precipitation

changes and the physically relevant observed driving factors, we can obtain the regression

coefficient of each driving factor (Eq 12). Then, the regression coefficients are used to estimate
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the standardized coefficient of each potential driving factor (Eq 13).

P ¼ b1 � Rþ b2 � ET þ b3 � SW þ b4 � T þ ε ð12Þ

Stc R ¼ b1 �
std Rð Þ
std Pð Þ

ð13Þ

Where P, R, ET, SW and T are the precipitation, land surface runoff, total evaporation, soil

water content and temperature, respectively. Ɛ is the residual error term. β1, β2, β3 and β4 are

the regression coefficient of each driving factor. Stc_R is the standardized coefficient of runoff

(Eq 13). Similarly, we can obtain the standardized coefficients of total evaporation (Stc_ET),

soil water content (Stc_SW) and temperature (Stc_T).

The higher the value of standardized coefficient of a driving factor it is, the more large the

effects of this factor will be[36]. Thereby, we used the Eq 14 to estimate the relative contribu-

tion of runoff (C_R) on the future precipitation changes. Similarly, we can obtain the contribu-

tions of total evaporation (C_ET), soil water content (C_SW) and temperature (C_T).

C R ¼
jStc Rj

jStc Rj þ jStc ETj þ jStc SWj þ jStc Tj
ð14Þ

Definition and calculation of annual extreme light rain days

Extreme light rainfall days here are defined as the days with rainfall (including days without

rainfall) lower than the long-term 10th percentile. Based on the outputs of the daily precipita-

tion during 2015–2100 from 12 CMIP6 models, we estimated the annual extreme light rainfall

days in each grid. The mean value of the annual extreme light rainfall days in all terrestrial

grids is regarded as the average number of annual drought days in North America.

Results and discussion

Mechanisms of emergent constraint technique

The basic idea of emergent constraint technique is to identify a variable x of the observable cli-

mate that both varies significantly across an ESM ensemble and that exhibits a statistically sig-

nificant relationship with variations in some relevant variable y (i.e., Future annual

precipitation growth rates in this study) describing the ESM’s future simulated climate state

[37] (See schematic diagram in S1 Fig). The observed variable x normally has smaller uncer-

tainties compared to the range of simulated values (S1 Fig) [16]. Thereby, by projecting the

observed estimate of the variable x with its uncertainty onto the y-axis using an empirical lin-

ear relationship, we can obtain a more reliable and accurate variable y with smaller difference

across models (See details in the caption of S1 Fig).

In North America, although the 27 CMIP6 models and the 33 CMIP5 models all indicate a

trend of increasing precipitation during 2015–2100 (Figs 1a, 1b and S2), the predicted trend

values have large differences across the models. We estimated that the future annual precipita-

tion growth rates (i.e., future climate variable y in S1 Fig) from CMIP6 models are predicted to

reach 0.3538 ± 0.1676 mm.year-1 (SSP126), 0.7043 ± 0.2182 mm.year-1 (SSP245),

1.0752 ± 0.3470 mm.year-1 (SSP370), and 1.4364 ± 0.4165 mm.year-1 (SSP585). Accordingly,

the ranges across the CMIP5 models are also large (0.5248 ± 0.1825 mm.year-1 under RCP45

and 1.0139 ± 0.2393 mm.year-1 under RCP85). Before using the emergent constraint technique

PLOS ONE Emergen constraint on future water availability

PLOS ONE | https://doi.org/10.1371/journal.pone.0301759 May 22, 2024 5 / 18

https://doi.org/10.1371/journal.pone.0301759


to reduce the uncertainties, we need to explore the dominant factor (i.e., Climate veriable x in

S1 Fig) that drives the large inter-model spread of future precipitation changes.

The Clausius-Clapeyron equation (C–C, Eqs 7 and 8) indicates that a warming climate can

have an increase of about 7% K-1 in the atmospheric water-holding capacity. Thereby,

increases in the water vapor holding capacity of the atmosphere due to global warming largely

Fig 1. Future annual precipitation growth rate and its potential driving factors in North America. (a) presents the simulated annual average daily

precipitation (mm day-1) from 27 CMIP6 models (1970–2100) and the observed precipitation from HadCRUT4 data set (1970–2014) (b) presents the large

difference of predicted future annual precipitation growth rates (mm year-1) across the 27 CMIP6 models (See name of each model in S1 Table) under the

emission scenarios of SSP126, SSP245, SSP370 and SSP585 and across the 33 CMIP5 models (See name of each model in S2 Table) under the emission

scenarios of RCP45 and RCP85. (c) is the linear regression relationships between the observational temperature anomaly and the observed precipitation

anomaly for the period of 1970–2014 from the HadCRUT4 data set, following the least-squares criterion. Each circle represents a year. (d) presents the linear

relationships between future temperature and future annual precipitation for the CMIP6 models under the emission scenarios of SSP126, SSP245, SSP370, and

SSP585 during 2015–2100. Each circle represents a year. (e) presents the linear relationships between the future annual growth rates in precipitation and in

temperature for the CMIP6 models under SSP585 during 2015–2100. Each dot represents a model. (f) presents the relative contributions of temperature, total

evaporation, soil water content and land surface runoff on the future precipitation changes in North America for the CMIP6 ensemble under SSP585 during

2015–2100. The geographical distribution of study area can be referred to Roque-Malo et al [38].

https://doi.org/10.1371/journal.pone.0301759.g001
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attributed to the future increases in precipitation [39,40]. Assuming an unchanged atmo-

spheric circulation, the thermodynamic equations (Eqs 9 and 10) from Kjellsson [28] also pres-

ent a similar linear relationship between precipitation and temperature. That is, a degrees K

increase in temperature will lead to 7% increase in precipitation [28]. Certainly, by considering

radiative balance, positive sensitivity of precipitation to temperature will be also constrained

by radiative cooling [41], and thus the increase rates in precipitation will be weakened by

4–6% K-1 [41,42], but generally precipitation still present a positive feedback behavior to tem-

perature (1–3% K-1).

Supporting by this mechanism, the warming temperature in North America is identified as

an important driving factor on the local precipitation increases, which is also verified by tight

observational relationships (r = 0.38, p-value<0.001) between temperature and precipitation

anomalies during 1901–2014 (Figs 1c and S3). The predictions from CMIP6 models also indi-

cate a positive precipitation feedback to temperature changes under all the four emission sce-

narios (Fig 1d, r�0.92, p-value<0.001), with the strong correlations (p-value<0.001) over

most of North America’s land surface (covering 68.7–83.6% of the totals), which also confirms

a strong constraint of temperature on local precipitation change.

However, the North American climate is also affected by other climate factors (e.g., mon-

soon, El Niño Southern Oscillation and the Arctic Oscillation) that can lead to extreme tem-

peratures and precipitation [43–45]. These abnormal values can non-linearly affect trends in

the climate of North America and possible cause us to obtain spurious precipitation–temper-

ature relations. To exclude the interference of extreme climates, we smooth out extreme fluc-

tuations using a series of moving windows with different lengths (5–10 years). This improves

the reliability of the identified positive feedback behavior of precipitation to temperature

[19,22] and indicates even tighter positive relationships between precipitation and tempera-

ture both in observations and simulations with the correlation coefficient increasing from

0.38 to 0.6–0.65 (S4 Fig). Furthermore, positive feedback behavior has been enhanced due to

the increased sensitivity of precipitation to temperature (i.e., slope values in S4 Fig). This

indicates that the dominant role of temperature in driving the local precipitation changes is

robust, and becomes even more distinct after accounting for the disturbance other climate

conditions.

The land water balance (Eq 11) indicates that precipitation changes may also be affected by

other potential factors such as changes in total evaporation, soil moisture and land surface run-

off [46–48]. Using a multiple regression (See Methods), we estimated the relative contributions

of these drivers on the future precipitation changes. The results still indicate a primary role of

temperature in affecting future precipitation changes persists under all the four SSPs, with the

contributions of 47.6–80.8% (Figs 1f and S5, depends on the SSPs). By contrast, total evapora-

tion (12.1–28.3%), soil moisture (3.4–20.8%) and land surface runoff (3.3–16.4%) all have

much smaller contributions.

The linear relationships between annual growths in precipitation and in temperature (Figs

1e, S6 and S7, each circle represents a CMIP6/CMIP5 model) is tight for all historical periods

or all future period under all the emission scenarios (0.60�r�0.88, p-value<0.001). These pos-

itive relationships indicate that the precipitation increases proportionally to the warming

trends in North America. In other words, a warmer model (higher temperature) tens to exhibit

a stronger precipitation increase, while a model with less warming tends to has a less strong

precipitation increases. Thus, as long as the temperature increases, a stronger feedback implies

more precipitation in both the past and the future. Thereby, due to the key role of warming on

precipitation changes in North America, simulated historical annual temperature growth rate,

we consider it the variable x for building the emergent constraint relationship with future

annual precipitation growth rates (S1 Fig).
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Emergent constraint on future annual precipitation growth rates

During 1970–2014, the multi-model CMIP6 ensemble mean estimate of the annual precipita-

tion growth rate is 0.58 ± 0.042 mm.year-1 per year. Based on the four observational datasets of

HadCRUT4, NOAA, GISS and GHCN, the observed precipitation growth rate is 0.11 ± 0.17

mm.year-1 per year. We conclude that the CMIP6 models largely overestimate the historical

precipitation increase trend in North America.

By building linear relationships between annual growth of simulated historical temperature

and that of future precipitation across the 27 CMIP6 models (Fig 2, p value<0.001), we found

the strong correlations between them under all emission scenarios (i.e., SSP126, SSP245,

SSP370 and SSP585). After cross-checking using the 33 CMIP5 models’ simulations, the tight

constraint relationships still hold under both the emission scenarios of RCP45 and RCP85 (S8

Fig), implying the reliability of our introduced emergent constraint. These empirical relation-

ships can reduce the uncertainties of the predicted future annual precipitation changes in

North America by combining it with observations. Due to the large discrepancy of the obser-

vations across different data sets, the observed temperature from the four data sets (i.e., Had-

CRUT4, NOAA, GISS and GHCN, See vertical shadings in left panels of Fig 2) are collected

for the same constraint processes for obtaining the reliable constrained results.

After the observed constraint, we find that the probability density functions (PDFs) of the

constrained future annual precipitation growth rates have been shifted to the lower values

under all the four SSPs (Colorized curves in Fig 2), in relative to the raw CMIP6 predictions

(Black curves). The CMIP6 models originally predicted that the best estimates of future annual

precipitation growth rates (Gray histograms in right panels of Fig 2) are 0.3538 mm.year-1

Fig 2. Emergent constraint (EC) on the future annual precipitation growth rates (2015–2100) in North America combining the observed annual

temperature growth rates (1970–2014) for the CMIP6 projections. (a), (b), (c), and (d) are the emergent constraint relationships between the simulated

historical annual temperature growth rates and the predicted future annual precipitation growth rates across the CMIP6 models under the emission scenarios of

SSP126, SSP245, SSP370, and SSP585, respectively. Green shading is the 90% prediction error of the linear regression. Each dot represents a model. Four vertical

shadings are the observed annual temperature growth rates (Mean ± one standard deviation) from HadCRUT4 (0.0357 ± 0.0050 ˚C year-1), NOAA

(0.0346 ± 0.0048 ˚C year-1), GISS (0.0394 ± 0.0056 ˚C year-1) and GHCN (0.0365 ± 0.0050 ˚C year-1) data sets, respectively. Black curves and colorized curves are

the PDFs of the future annual precipitation growth rates before and after the emergent constraint, respectively. Gray histograms and colorized histograms in the

right panels of Fig 2 the constrained and unconstrained future annual precipitation growth rates (Mean ± one standard deviation), respectively.

https://doi.org/10.1371/journal.pone.0301759.g002
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(SSP126), 0.7043 mm.year-1 (SSP245), 1.0752 mm.year-1 (SSP370), and 1.4364 mm.year-1

(SSP585). The constrained results indicate that the best estimates are more likely to reach

0.2903–0.3455 mm.year-1 (Depends on observational data sets), 0.6012–0.6748 mm.year-1,

0.9569–1.0742 mm.year-1, and 1.2691–1.3926 mm.year-1 respectively (Colorized histograms in

right panels of Fig 2 and S6 Table). This shifting presents a largely overestimated future annual

precipitation growth rates in North America by the original CMIP6 models’ predictions. The

overestimated percentages of future water availability are 2.3–17.9% (SSP126), 4.2–14.6%

(SSP245), 0.1–11.0% (SSP370) and 3.0–11.6% (SSP585).

In contrast, the raw 33 CMIP5 models’ predictions have underestimated the future terres-

trial water supply from precipitation. After the constraint, the future annual precipitation

growth rates have been increased from the raw predictions of 0.5248 mm.year-1 (RCP45) and

1.0139 mm.year-1 (RCP85) to the constrained values of 0.5445–0.5959 mm.year-1 and 1.0661–

1.1533 mm.year-1(Depends on observational data sets), respectively (S8 Fig and S7 Table).

Thereby, the CMIP5 models have underestimated future precipitation increases (3.8–13.7%),

which is contrary to the constrained results of the CMIP6 models[49]. The main reason of this

difference might be due to a stronger positive cloud feedback from decreasing extratropical

low cloud coverage and albedo in CMIP6 models that tends to enhance the responses of tem-

perature to increasing atmospheric CO2 concentration and then leads to an overestimated pre-

dictions of future precipitation increases.

No matter which observed data set we use, the PDFs of the constrained results (Colorized

curves in Figs 2 and S8) all have been shifted tightly for each emission scenario in comparison

with the raw CMIP5 and CMIP6 predictions (Black curves). The original standard deviations

of future annual precipitation growth rates from CMIP6 models (Gray histograms in right

panels of Fig 2) are 0.1676 mm.year-1 (SSP126), 0.2182 mm.year-1 (SSP126), 0.3470 mm.year-1

(SSP126) and 0.4165 mm.year-1 (SSP126). After the constraint, the standard deviations (Color-

ized histograms in right panels of Fig 2) have been successfully decreased to 0.1155–0.1303

mm.year-1, 0.1548–0.1712 mm.year-1, 0.2742–0.2869 mm.year-1 and 0.3326–0.3591 mm.year-1

respectively. Accordingly, the percentages of the reduced uncertainties are up to 13.8–31.1%

after the constraint, indicating a more reliable and accurate estimate of future annual precipi-

tation growth rates in relative the raw CMIP6 predictions. Consistently, the uncertainties of

predictions from the 33 CMIP5 models are also reduced by 10.9–24.1% after constraining by

the observed warming trends (S8 Fig).

Due to complex atmosphere–vegetation–soil interactions, positive feedback behavior of

precipitation to temperature (Fig 1e and 1f) are unexpectedly nonexistent in the southern

regions of North America (10.6–14.4% of total areas of North America with negative correla-

tions), i.e., an increased temperature but with a decreased precipitation. In these regions, the

mechanisms underpin the emergent constraint relationships might be unrealistic, due to dom-

inant role of other factors in driving the local precipitation changes, instead of warming tem-

perature. After excluding these regions, the emergent constraint relationships (red fitting lines

in S8 Fig) basically remained the same under all the SSPs in comparison with the constraint

relationships that include the southern North America (Black lines in S9 Fig and Gray lines in

Fig 2), indicating a slight influence of such regions on the area-averaged emergent constraint

relationships.

Implications on future warming trends

Future annual growth rates of temperature and that of precipitation exist a great positive linear

relationship between them across the 27 CMIP6 models under all the four SSPs (Fig 3a, Each

circle represents a model), i.e., a model with a less precipitation normally associates with a
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colder temperature. In Fig 2, we obtained the more reliable and accurate estimates of future

annual precipitation growth rates after the constraint, which may bring some implications on

future temperature changes in North America. By projecting the constrained future annual

precipitation growth rates (Obtaining from Fig 2) into y-axis through the significant statistical

relationships of Fig 3a, then we can obtain the constrained future warming trends.

Fig 3. Emergent constraints on the future annual growth rates of temperature and that of total evaporation (ET) based on the CMIP6 predictions during

2015–2100. (a) presents the linear relationships between future annual growth rates of precipitation and that of temperature. (b) presents the constrained and the

unconstrained future annual temperature growth rates by applying the constrained future annual precipitation growth rates and the relationships in Fig 3a. (c)

presents the linear relationships between annual growth rates of historical temperature (1970–2014) and that of future precipitation (2015–2100). (d) presents the

constrained and the unconstrained future annual temperature growth rates by applying the observed warming trends and the relationships in Fig 3c. (e) presents

the linear relationships between future annual growth rates of precipitation and that of total evaporation. (f) presents the constrained and the unconstrained

future annual total evaporation growth rates by applying the constrained future annual precipitation growth rates and the relationships in Fig 3e.

https://doi.org/10.1371/journal.pone.0301759.g003
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The constrained results reveal an overestimated future warming trends in North America.

The raw CMIP6 outputs (Gray histograms in Fig 3b) predict an increasing temperature of

0.0158 ± 0.0086 ˚C year-1 (SSP126), 0.0395 ± 0.0105 ˚C year-1 (SSP245), 0.0671 ± 0.0171 ˚C

year-1 (SSP370) and 0.0897 ± 0.0210 ˚C year-1 (SSP585). After the constraint (Colorized histo-

grams in Fig 3b and S8 Table), we estimated that the rates of annual temperature increases

have been decreased to 0.0132–0.0155 ± 0.0057–0.0065 ˚C year-1,0.0356–0.0383 ± 0.0078–

0.0082˚C year-1, 0.0619–0.0670 ± 0.0130–0.0138 ˚C year-1 and 0.0830–0.0879 ± 0.0175–0.0185

˚C year-1, respectively. This shifting indicates that the raw CMIP6 predictions overestimated

the future temperature increases in North America under all the four SSPs, with the overvalued

percentages up to 0.1 ± 16.5%. On the contrary, the future warming trends have been underes-

timated by the CMIP5 models (2.8 ± 11.9%, S10 Fig and S9 Table).

To verify the reliability of the constrained results of future warming trends in Fig 3b, we

introduced a new emergent constraint that relies on the significant statistical relationship

between annual growth rates in historical temperature and that of future temperature (Fig 1c).

The plausible mechanisms underpin the relationships are that the responses of temperature

are proportional to the radiative forcing, and thus, as long as the forcing increases, stronger

feedbacks imply higher temperature in both the past and the future [50,51]. After constraining

by the observed temperature from the four different data sets, we found that the future warm-

ing trends in North America have been overestimated by the raw CMIP6 predictions under all

the SSPs (overvalued by 0.1 ± 26.9%, Fig 3d and S10 Table), while the original CMIP5 outputs

underestimated future temperature increases (3.3 ± 15.6%, S10 Fig). This result (Fig 3c and

3d) is highly in agreement with the conclusions that are obtained by applying the constrained

future precipitation growth rates (Fig 3a and 3b). In particular, the uncertainties of the temper-

ature predictions have been successfully reduced by 31.6–46.0% (CMIP6) and 13.0–24.1%

(CMIP5) due to the narrowed standard deviations (Fig 3d), implying a more reliable and accu-

rate estimate of future temperature changes.

Implications on future total evaporation

Precipitation changes can alter evaporation [52,53]. These potential effects are supported by

the strong positive linear relationships between future annual growth rates of total evaporation

and that of precipitation across the CMIP6 models (Fig 3e, i.e., a model with a higher precipi-

tation normally has a higher total evaporation). After projecting the constrained future annual

growth rates (Obtaining from Fig 2) into y-axis through the relationships in Fig 3e, we esti-

mated that the future annual total evaporation growth rates (Colorized histograms in Fig 3f

and S12 Table) are more likely to reach 0.1613–0.1819 ± 0.0640–0.0684 mm.year-1 (SSP126),

0.2121–0.2586 ± 0.1659–0.1744 mm.year-1 (SSP245), 0.3375–0.4160 ± 0.2519–0.2623 mm.

year-1 (SSP370) and 0.5033–0.5789 ± 0.2890–0.3043 mm.year-1 (SSP585). In comparison with

the raw CMIP6 predictions (Gray histograms in Fig 3f), the constrained results reveal that the

future annual total evaporation growth rates have been overestimated by -4.4–18.5% under all

the four SSPs, due to the overestimated future precipitation increases. On the contrary, the

original CMIP5 outputs underestimated the future water losses from land surface to atmo-

sphere (1.0–14.2%, S13 Table).

“Precipitation minus evapotranspiration” here is used to metric the water availability over

land surface [54–56]. Based on the constrained CMIP6 predictions of precipitation and total

evaporation (Colorized histograms in Figs 2 and 3f), we estimated the constrained future

water availability changes (S14 Table). In relative to the raw CMIP6 outputs, the future water

availability growth rates have been largely overestimated by 2.4–28.2% (S14 Table) due to the

largely overvalued precipitation increases (Fig 2). This is also supported by investigating the

PLOS ONE Emergen constraint on future water availability

PLOS ONE | https://doi.org/10.1371/journal.pone.0301759 May 22, 2024 11 / 18

https://doi.org/10.1371/journal.pone.0301759


negative relationships (S12 Table) between the future annual precipitation growth rates and

the future yearly changes in average annual extreme light rainfall days (See Method). These

negative relationships indicate that a model with a fewer precipitation normally has a higher

frequency of average annual extreme light rainfall days. Thus, a potential overestimated future

annual precipitation growth rates in CMIP6 models represents an underestimated frequency

in future average annual extreme light days.

Conclusions

In this study, we successfully captured the emergent constraint relationships between annual

growth rates of simulated historical temperature and that of future precipitation in North

America, across 27 CMIP6 models (underSSP126, SSP245, SSP370 and SSP585) and 33 CMIP5

models (under RCP45 and RCP85). Combining the observed temperature from four different

data sets, the emergent constraint relationships successfully reduced the uncertainties of precip-

itation predictions by 13.8–31.1%, and also reveal an overestimation of future precipitation

growth rates under all the four SSPs by the raw CMIP6 predictions. Furthermore, the con-

strained future precipitation changes are further applied to capture the more accurate future

temperature trends, which indicate that the future annual temperature growth rates have been

overestimated by the CMIP6 models (overestimated by 0.1 ± 16.5% by the originally predicted),

while the CMIP5 models underestimated the future warming trends by around 2.8 ± 11.9%.

Supporting information

S1 Fig. Schematic diagram of emergent constraint technique. Note: Each circle represents a

model. Red fitting line is the emergent constraint relationship between “simulated historical

climate variable x (i.e., historical annual temperature growth rates in Fig 2)” and “predicted

future climate variable y (i.e., future annual precipitation growth rates)”. Baby blue curve and

gray curve are the probability density functions (PDFs) of the observed climate variable x and

simulated historical climate variable x. Clearly, the observed climate variable x has less uncer-

tainties in compared to the range of simulated values of climate variable x. Thereby, by project-

ing the observed climate variable x into y-axis through the emergent constraint relationship,

we can obtain the more accurate future future climate variable y with less uncertainties in rela-

tive the raw models’ predictions. Dark blue curve and dark curve are the PDFs of the con-

strained and the unconstrained future climate variable y.

(TIF)

S2 Fig. Simulated annual average daily precipitation (mm day-1) from the 33 CMIP5 mod-

els (1970–2100) and the observed precipitation from HadCRUT4 data set (1970–2005). See

name of each model in S2 Table.

(TIF)

S3 Fig. Linear regression relationships between the observational temperature anomaly

and the observed precipitation anomaly for the period of 1970–2014. (a), (b) and (c) are

relations for the data from NOAA, GHCN, and GISS, respectively.

(TIF)

S4 Fig. Linear relationships between future annual precipitation growth rates and future

annual temperature growth rates in North America. Each circle represents a CMIP6 model.

(a), (b) and (c) are the linear relations for the CMIP6 models under SSP126, SSP245, and

SSP370, respectively.

(TIF)
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S5 Fig. Linear relationships between future annual precipitation growth rates and future

annual temperature growth rates in North America. Each circle represents a CMIP5 model.

(a) and (b) are the linear relations for the CMIP5 models under RCP45 and RCP85, respec-

tively.

(TIF)

S6 Fig. Linear relationships between observed temperature anomaly and observed precipi-

tation anomaly using moving windows with different lengths (5–10 years). At first, we cal-

culated temperature/precipitation using moving windows with different lengths (5–years)

during 1982–2015. Then, the calculated values are used to build the linear relationships. For

instance,(a) presents the linear relationship between observed temperature anomaly and

observed precipitation anomaly using moving windows with the length of 5 years. Blue histo-

grams in (b) and (c) are the correlation coefficient and the slope values (i.e., sensitivity of pre-

cipitation to temperature) respectively, with different lengths of moving windows (5–years).

Gray histogram is the values without moving windows (i.e., the values in Fig 1c of the Main

Text).

(TIF)

S7 Fig. Relative contributions of temperature, total evaporation, soil water content and

land surface runoff on the future precipitation changes in North America for the CMIP6

ensemble during 2015–2100. (a), (b) and (c) are the contributions for the emission scenarios

of SSP126, SSP245, and SSP370, respectively.

(TIF)

S8 Fig. Emergent constraint (EC) on the future annual precipitation growth rates (2006–

2100) in North America combining the observed annual temperature growth rates (1970–

2005) for the CMIP5 projections. (a) and (b) are the emergent constraint relationships

between the simulated historical annual temperature growth rates and the predicted future

annual precipitation growth rates across the CMIP5 models under the emission scenarios of

RCP45 and RCP85, respectively. Green shading is the 90% prediction error of the linear

regression. Each dot represents a model. Four vertical shadings are the observed annual tem-

perature growth rates (Mean ± one standard deviation) from HadCRUT4, NOAA, GISS and

GHCN data sets, respectively. Black curves and colorized curves are the PDFs of the future

annual precipitation growth rates before and after the emergent constraint, respectively. Gray

histograms and colorized histograms in the right panels of S9 Fig the constrained and uncon-

strained future annual precipitation growth rates (Mean ± one standard deviation), respec-

tively.

(TIF)

S9 Fig. Emergent constraint relationships between simulated historical annual tempera-

ture growth rates and predicted future annual precipitation growth rates across the

CMIP6 models. Each dot represents a model. (a), (b), (c) and (d) are the constraint relation-

ships under SSP126, SSP245, SSP370 and SSP585, respectively. Red fitting lines are the emer-

gent constraint relationships after excluding the regions with negative correlations between

future precipitation and future temperature (See locations of negative regions in Fig 1d of the

Main Text). Dark fitting lines are the emergent constraint relationships including these regions

(i.e., the linear relationships in Fig 2 of the Main Text).

(TIF)

S10 Fig. Emergent constraints on the future annual growth rates of temperature and that

of total evaporation (ET) based on the CMIP5 predictions under emission scenarios of
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RCP45 and RCP85 during 2006–2100. (a) presents the linear relationships between future

annual growth rates of precipitation and that of temperature. (b) presents the constrained and

the unconstrained future annual temperature growth rates by applying the constrained future

annual precipitation growth rates. (c) presents the linear relationships between annual growth

rates of historical temperature (1970–2014) and that of future precipitation (2015–2100). (d)

presents the constrained and the unconstrained future annual temperature growth rates by

applying the observed warming trends. (e) presents the linear relationships between future

annual growth rates of precipitation and that of total evaporation. (f) presents the constrained

and the unconstrained future annual total evaporation growth rates by applying the con-

strained future annual precipitation growth rates.

(TIF)

S11 Fig. Relationships between the future annual precipitation growth rates and the future

yearly changes in average annual light rainfall days based on CMIP6 predictions. (a), (b),

(c) and (d) are the relationships under SSP126, SSP245, SSP370 and SSP585, respectively. Each

Circle represents a CMIP6 model.

(TIF)
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S2 Table. Full name of the CMIP5 models for collecting the monthly data of land surface
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tion under 2015–2100.
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tent during 2015–2100.
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S5 Table. Full name of the CMIP6 models for collecting the monthly data of land surface

runoff during 1970–2100.
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S6 Table. Emergent constraint on the future annual precipitation growth rates in North

America for the period of 2015–2100 based on CMIP6 projections. Overestimated future

precipitation increase =│constrained precipitation–unconstrained precipitation│/uncon-

strained precipitation; Reduced uncertainty =│constrained standard deviation–uncon-

strained standard deviation│/unconstrained standard deviation.
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S7 Table. Emergent constraint on the future annual precipitation growth rates in North

America for the period of 2006–2100 based on CMIP5 projections.
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S8 Table. Constraint on the future annual temperature growth rates in North America for
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S9 Table. Constraint on the future annual temperature in North America for the period of
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