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Abstract

This work aims to investigate the analytical solution of a two-dimensional fuzzy fractional-

ordered heat equation that includes an external diffusion source factor. We develop the

Sawi homotopy perturbation transform scheme (SHPTS) by merging the Sawi transform

and the homotopy perturbation scheme. The fractional derivatives are examined in Caputo

sense. The novelty and innovation of this study originate from the fact that this technique

has never been tested for two-dimensional fuzzy fractional ordered heat problems. We pre-

sented two distinguished examples to validate our scheme, and the solutions are in fuzzy

form. We also exhibit contour and surface plots for the lower and upper bound solutions of

two-dimensional fuzzy fractional-ordered heat problems. The results show that this

approach works quite well for resolving fuzzy fractional situations.

1 Introduction

Over the past thirty years, the fractional calculus (FC) study has attracted a lot of interest. The

majority of the scientists have contributed to this topic by incorporating multiple operators

with fractional numbers in various works. Modern calculus yielded more realistic results than

traditional calculus. The structures of numerous situations in practical life involving two inte-

gers were described by FC. In addition, fractional operators provided more degrees of freedom

than integer differential operators [1, 2]. Numerous investigators have examined the phenom-

enon of fractional calculus in several valuable fields of engineering and science. The investiga-

tion of geometrical and physical foundations of fractional-order derivatives was first presented

by Podlubny [3]. Diethelm and Ford [4] investigated the dynamical results of the fractional

order problems under the different operators. Kumar et al. [5] investigated the complicated

behavior of a dynamical structure using fractional and fractal-fractional derivative operators

and showed that non-classical derivatives are particularly effective in examining the hidden

behavior of the systems. Many researchers employed the fundamental principles and proper-

ties of operators given within the context of FC to examine simulations showing viruses,
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bifurcation, chaos, control theory, image processing, quantum fluid flow, and several other

related areas [6–8].

Fuzzy set theory is an effective technique for simulating unpredictable challenges. This has

led to the modeling of a wide range of natural phenomena using fuzzy laws. The fuzzy frac-

tional differential equation is a popular framework in a variety of scientific domains, including

population modeling, physical science, mechanical work, chemical reactions, and civil engi-

neering. As a result, the study of fuzzy calculus has gained attraction in the field of fractional

derivatives. The concept of fuzzy set was associated with geometrical function theory in 2011

with the introduction of fuzzy subordination [9]. Agarwal et al. [10] considered the fuzzy dif-

ferential equations by incorporating it into the dynamical system with uncertainty for the first

time. Van Hoa [11] investigated the existence and uniqueness of solutions to fuzzy fractional

functional differential equations with Caputo generalized Hukuhara differentiability. Long

et al. [12] present two new results on the existence of generalized Hukuhara-weak solutions

fuzzy fractional partial differential equations. One depends on the Banach fixed point theorem

with the Lipschitz condition and the other is depending on a nonlinear alternate on the Schau-

der type fuzzy-valued continuous functions without the Lipschitz condition. Salahshour et al.

[13] considered fuzzy Laplace transforms for the solution of fuzzy fractional differential equa-

tions under Riemann-Liouville H-differentiability. Iqbal et al. [14] proposed an iterative trans-

form method for the approximate solution of fractional fuzzy acoustic wave model.

Fuzzy integral equations have several applications in various practical problems such as

industrial engineering, scientific computing, physical sciences and neural network. It is studied

that the existing study problem with fractional order derivatives can be turned to uncertain

problems [15, 16]. As a result, several scholars focused on such frameworks in order to exam-

ine their solutions analytically or numerically. In [17], authors discussed existence, uniqueness

and numerical examination under fractional-order ideas and obtained the analytical results of

several linear and nonlinear fuzzy fractional models. Arfan et al [18] developed an algorithm

based on the HPS to analyze the analytical results for two dimensional fuzzy fractional heat

problem consisting of external source term. [19] introduced two different schemes to find out

the approximate and analytical results of fuzzy fractional problems. Hamoud and Ghadle [20]

considered the homotopy analysis strategy and obtained the solution of the first order fuzzy

Volterra-Fredholm integro-differential equations. Ali and Hadhoud [21] used Haar wavelet

scheme to derive the series solution of nonlinear fuzzy integro-differential problems. In [22],

authors provided the differential inclusions idea for the solution of fuzzy problems. Arqub and

Al-Smadi [23] discussed the singularity, existence, and other features of fuzzy conformable

fractional differential problems.

Consider the two-dimensional fuzzy fractional heat problem such as

Da
t
~Wðx; y; tÞ ¼ D2

x
~Wðx; y; tÞ þ D2

y
~Wðx; y; tÞ þ gðx; y; tÞ; ð1Þ

with initial condition

~Wðx; y; 0Þ ¼ ~f ðx; yÞ; ð2Þ

where α represents the Caputo fractional derivative and

g 2 Cð½0;1Þ � ½0;1Þ � ½0;1Þ; ½0;1ÞÞ, ~f 2 ð½0;1Þ � ½0;1Þ; ½0;1ÞÞ. It is pointed out that,

2D heat problem represents the heat transfer through an infinite thin sheet. In Eq (1), the term

“~W” represents the temperature of a particle at instance spot within a very small sheet. This

phenomenon of heat changing can study to various discipline of science and engineering.

Therefore, the analysis of two-dimensional fuzzy fractional heat equations has much more

application in various domains, such as heat transfer analysis in materials with uncertain
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properties, modeling of temperature distribution in environmental systems, or analysis of

thermal processes in complex systems with imprecise parameters.

The Homotopy perturbation scheme (HPS) was first proposed by He [24], which is the

combination of the homotopy scheme and classical perturbation technique. In recent years,

many researchers [25–27] studied the multiple forms of linear and nonlinear differential prob-

lems. Sene and Fall [28] used homotopy perturbation Laplace transform method to obtain the

approximate solution of fractional diffusion equation and the fractional diffusion-reaction

equation. The significance feature of HPS is that it provides better performance when it is cou-

pled with other techniques to obtain the approximations of fractional challenges such as Lal

and Vir [29] presented the coupled scheme of Laplace transform and HPS for the solution of

Fokker-Planck problems. Jani and Singh [30] coupled Abdooh transform with HPS in order to

obtain the solution of fractional order atmospheric internal waves model. Elzaki and Biazar

[31] proposed a method by combining Elzaki transform and HPS to achieve the analytical

results of nonlinear partial differential equations. Maitama and Zhao [32] proposed homotopy

perturbation Shehu transform method to solve wave-like fractional models and obtained the

closed form results. The efficiency of HPS in solving homogeneous and nonhomogeneous par-

tial differential equations is also shown in [33–35].

In this study, we combined the Sawi transform and the homotopy perturbation scheme to

determine an approximation for a two-dimensional fuzzy fractional heat problem. The key

advantages of this strategy is that it does not require any assumption in main problem, so it

overcomes the impediments of the classical perturbation technique and consumes less time in

the truncated series. This method gives a power series results in the sense of rapid convergent

series that leads the high accuracy only a few iterations. The SHPTS does not involve rounding

errors, assuming linearization, perturbation, or descretization. In addition, the proposed

scheme can overcome the fractional order by utilizing He’s polynomials in dealing with diffi-

cult terms of the problem. The numerical results demonstrate that this technique remains

more robust, convergence, and straightforward compared to other numerical approaches. The

proposed scheme demonstrates how effective the applied strategy is in obtaining the solutions

for supplied local fractional partial differential equations. Some visualizations are also provided

to demonstrate its performance in the presence of graphical limitations. We introduce the con-

cept of the Sawi transform and provide definitions in Section (2). In Sections (3) and (4), we

expand the concepts of HPS and SHPTS for fractional problem with lower and upper bound.

Section (5) includes an explanation of the convergence theorem. We demonstrate several

examples in Section (6) to verify the efficiency and validity of suggested approach. We summa-

rize the conclusion in final Section (7).

2 Preliminaries

This section presents the concepts of Sawi transform along its some basic properties that are

required during the development of the SHPTS.

Definition 2.1 The Sawi transform is defined such as [36, 37]

S½Wð}Þ� ¼ <ðyÞ ¼
1

y
2

Z 1

0

Wð}Þe
�

}

y dt; } � 0; k1 � y � k2;

where θ is the transform variable. If ϑ(}) is piecewise continuous and of exponential order, the

ST of the function ϑ(}), }� 0 exist otherwise ST may or may not exist. If R(θ) is the ST of ϑ
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(}) then ϑ(}) is the inverse of R(θ) such that,

S� 1½<ðyÞ� ¼ Wð}Þ; S� 1 is called the inverse Sawi transform:

Definition 2.2 If S{ϑ1(})} = <1(θ) and S{ϑ2(})} = <2(θ), then [38, 39]

Sfa1W1ð}Þ þ a2W2ð}Þg ¼ Sfa1W1ð}Þg þ a2SfW2ð}Þg;

that yields the linear property as

Sfa1W1ð}Þ þ ba2W2ð}Þg ¼ a<1ð}Þ þ b<2ð}Þ:

where a and b are arbitrary constants.

Definition 2.3 Since S{ϑ(})} = <(θ), then the following properties can be stated as

a) SfW0ð}Þg ¼
<ðyÞ

y
�
Wð0Þ

y
2
;

b) SfW00ð}Þg ¼
<ðyÞ

y
2
�
Wð0Þ

y
3
�
W
0
ð0Þ

y
2
;

c) SfWmð}Þg ¼
<ðyÞ

y
m �

Wð0Þ

y
mþ1
�
W
0
ð0Þ

y
m � � � � �

W
m� 1
ð0Þ

y
2

:

Definition 2.4 The Caputo’s derivative of ϑ(}) under the fractional-order is expressed as,

Da
}
Wð}Þ ¼

1

Gðn � aÞ

Z }

0

ð} � sÞn� a� 1
W
n
ðsÞ ds; n � 1 < a � n: n 2 N

Definition 2.5 The Sawi transform in fractional derivative is given as

S½Da
}
Wð}Þ� ¼

1

y
a S½Wð}Þ� �

Xn� 1

k¼0

1

y

� �a� ℏþ1

W
k
ð0Þ:

Definition 2.6 [40] A fuzzy number u 2 E1 is called to be positive if uð1Þ � 0, strict positive

if uð1Þ > 0, negative if �uð1Þ � 0 and strict negat ive if �uð1Þ < 0. The set of positive (negative)

fuzzy numbers is denoted by E1
þ
ðE1
�
Þ.

Definition 2.7 The lower and upper bounds of all fuzzy numbers must satisfy the following

conditions [41]

• (i) kðrÞ is a nondecreasing bounded left-continuous function over the interval [0, 1].

• (ii) �kðrÞ is a nonincreasing bounded right-continuous function over the interval [0, 1].

• (iii) kðrÞ � �kðrÞ; 0 � r � 1.

if kðrÞ ¼ �kðrÞ ¼ r, where r is the crisp factor.

Theorem 2.1 Suppose there are two positive fuzzy numbers u and v such that ϑ = uv where

ϑ(r) = ½WðrÞ; �WðrÞ�. The following properties are true [42]

W ðrÞ ¼ uðrÞvð1Þ þ uð1ÞvðrÞ � uð1Þvð1Þ;

and

�WðrÞ ¼ �uðrÞ�vð1Þ þ �uð1Þ�vðrÞ � �uð1Þ�vð1Þ;

in which r 2 [0, 1] is a fuzzy positive digit. Let ϑ be a fuzzy-valued function, and let D be its
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domain. Let us define Wð. . . ; rÞ; �Wð:; :; rÞ : D! R for all 0� r� 1. These functions are known

as the left and right r-level functions of ϑ.

Theorem 2.2 Let W : Rþ � Rþ ! E1 be a continuous fuzzy-valued function. Suppose the

functions 1

s2 e�
}
sWðI; }Þ;

1

s2
e
�

}

s
@
n
WðI; }Þ

@I
n are inappropriate fuzzy Riemann-integrable in terms

of } on [0,1). Subsequently, the coming fact are

S
@
n
WðI; }Þ

@I
n

� �

¼
@
n

@I
n S½WðI; }Þ�;

where S[ϑ(I, })] shows the Sawi transform of function ϑ.

Proof. Since ϑ(I, }) be (i)-differentiable and from above equation, we can have

S
@nWðI; }Þ

@I
n

� �

¼ ðFRÞ
Z 1

0

1

s2
e�

}
s �

@nWðI; }Þ

@I
n d}

¼

Z 1

0

1

s2
e�

}
s
@nWðI; }; rÞ

@I
n d};

Z 1

0

1

s2
e�

}
s
@n�WðI; }; rÞ

@I
n d}

� �

¼
@n

@I
n

Z 1

0

1

s2
e�

}
sWðI; }; rÞd};

Z 1

0

1

s2
e�

}
s�WðI; }; rÞd}

� �

¼
@n

@I
n S½WðI; }Þ�:

Lemma 2.3 Consider ~W on [0, b] is a subest of region R and a continues fuzzy parameter.

The fuzzy fractional integral associated with } in the Riemann-Liouville theory is expressed as

[18]

Iz~Wð}Þ ¼
Z }

0

ð} � �Þ
z� 1~Wð�Þ

GðzÞ
dz; � 2 ð0;1Þ:

Further, if ~W 2 CF½0; b� \ LF½0; b�, in which CF[0, b] is fuzzy continues space functions and

LF[0, b] is fuzzy Lebesgue integrable space functions, then we have

½Iz~Wð}Þ�r ¼ ½I
zW r ð}Þ; I

z�Wrð}Þ�; 0 � r � 1;

thus

IzW r ð}Þ ¼
Z }

0

ð} � �Þ
z� 1
Wrð�Þ

GðzÞ
d�; z; � 2 ð0;1Þ;

Iz�Wrð}Þ ¼
Z }

0

ð} � �Þ
z� 1�Wrð�Þ

GðzÞ
d�; z; � 2 ð0;1Þ:

Lemma 2.4 Let ~W 2 CF½0; b� \ LF½0; b� so that ½W rð}Þ;
�Wrð}Þ�; r 2 ½0; 1� and }0 2 (0, b), thus,

the fuzzy Caputo fractional derivative is expressed as

½Dz~Wð}0Þ�r ¼ ½D
zW r ð}0Þ;D

z�Wrð}0Þ�; 0 < z � 1;
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where

Dz
W r }0ð Þ ¼

Z }

0

ð} � �Þ
m� z� 1 dmm

d�m Wrð�Þ

Gðm � zÞ
d�

" #

}¼}0

;

Dz�Wr }0ð Þ ¼

Z }

0

ð} � �Þ
m� z� 1 dm

d�m
�Wrð�Þ

Gðm � zÞ
d�

" #

}¼}0

;

such that the integral on the right side converges andm = dze. Since z 2 (0, 1] som = 1.

3 Basic ideas of the HPS

In this section, we demonstrate the idea of HPS where the solutions are derived in terms of

series solution. Consider the following general problem

LðWÞ � f1ðrÞ ¼ 0; r 2 D; ð3Þ

with conditions

M W;
@W

@r

� �

¼ 0; r 2 G; ð4Þ

where L andM are expressed as a general function and boundary operator respectively, f1(r) is

known parameter and Γ as a interval of the domain D. Now, if we split L into two operators

such that A1 and A2 are identified as linear and nonlinear operators respectively, then Eq (2)

follows as

A1ðWÞ þ A2ðWÞ � f1ðrÞ ¼ 0: ð5Þ

Let Wðr; pÞ : D� ½0; 1� ! R, such that

HðW; pÞ ¼ ð1 � pÞ½A1ðWÞ � A1ðW0Þ� þ p½A1ðWÞ � A2ðWÞ � f1ðrÞ�;

or

HðW; pÞ ¼ A1ðWÞ � A1ðW0Þ þ pLðW0Þ þ p½A2ðWÞ � f1ðrÞ� ¼ 0;

where ϑ0 is starting point of relation (3) that completes the boundary conditions, and p 2 [0, 1]

is homotopy element. The above equations may also be written as

HðW; 0Þ ¼ A1ðWÞ � A1ðW0Þ ¼ 0;

HðW; 0Þ ¼ AðWÞ � f1ðrÞ ¼ 0:
ð6Þ

The function ϑ(r, p) transforms ϑ0(r) to ϑ(r) due to the rising value of p from zero to one. In

topology, this is known as deformation, where A1(ϑ) − A1(ϑ0) and A(ϑ) − f1(r) are expressed as

homotopic. As p 2 [0, 1] is a basic number, so that we can handle the solution of Eq (3) in the

form of power series such that

W ¼ W0 þ pW1 þ p2W2 þ p3W3 þ � � � ¼
X1

i¼0

piWi: ð7Þ

PLOS ONE Solution of fuzzy heat problem under Caputo-type fractional derivative

PLOS ONE | https://doi.org/10.1371/journal.pone.0301719 April 19, 2024 6 / 24

https://doi.org/10.1371/journal.pone.0301719


Let p = 1, the above Eq (7) yields as

W ¼ lim
p!1

W ¼ W0 þ W1 þ W2 þ W3 þ � � � ¼
X1

i¼0

Wi: ð8Þ

4 Development of SHPTS

In this segment, we propose the concept of SHPTS for the analytical results of fuzzy fractional

two dimensional heat problem. Our proposed strategy demonstrates that there is no require-

ment of assumption and restriction of variables during the development. In this work, we con-

sider the fractional order α for the lower bound solution and the fractional order β for the

upper bound solution.

4.1 Methodology for lower bound solution

We encounter a fractional differential problem of order α in lower bound form

Da
}
W ðI; B; }Þ ¼ L1WðI; B; }Þ þ L2WðI; B; }Þ þ gðI; B; }Þ; ð9Þ

with initial condition

W ðI; B; 0Þ ¼ f ðI; BÞ; ð10Þ

Using ST on Eq (9), we obtain

S½Da
}
W ðI; B; }Þ� ¼ S½L1WðI; B; }Þ þ L2WðI; B; }Þ þ gðI; B; }Þ�:

The Sawi transform in fractional derivative is used as

1

y
a S½W ðI; B; }Þ� �

1

y
aþ1
WðI; 0Þ ¼ S½L1WðI; B; }Þ þ L2WðI; B; }Þ þ gðI; B; }Þ�:

We can solve it as

S½W ðI; B; }Þ� ¼
1

y
f ðI; BÞ þ yaS L1WðI; B; }Þ þ L2WðI; B; }Þ þ gðI; B; }Þ

h i
:

Operating inverse ST on above equation, we obtain

W ðI; B; }Þ ¼ QðI; B; }Þ þ S� 1

�

y
aSfL1WðI; B; }Þ þ L2WðI; B; }Þ

o�

; ð11Þ

where

QðI; B; }Þ ¼ S� 1
1

y
f ðI; BÞ þ yaS½gðI; B; }Þ�

� �

:

Now, HPS yields as

W ðI; B; }Þ ¼
X1

i¼0

piW iðI; B; }Þ; ð12Þ
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and

L2W ðI; B; }Þ ¼
X1

i¼0

piHiðWÞ: ð13Þ

The components ofHi are defined as

HnðW 0 ; W 1
; � � � ; W nÞ ¼

1

n!

@
n

@pn

 

L2ð
X1

i¼0

piW iÞ

!

p¼0

; n ¼ 0; 1; 2; � � �

Putting Eqs (12) and (13) into Eq (11), we get

X1

i¼0

piW i ðI; B; }Þ ¼ GðI; B; }Þ þ S � 1

"

y
a
B
n
L1

X1

i¼0

piW iðI; B; }Þ þ
X1

i¼0

piHiðWÞ
o
#

: ð14Þ

By examining the related factors of p, we arrive at

p0 : W0ðI; B; }Þ ¼ GðI; B; }Þ;

p1 : W1 ðI; B; }Þ ¼ S
� 1

"

y
aS
n
W0 ðI; B; }Þ þH0ðWÞ

o
#

;

p2 : W2 ðI; B; }Þ ¼ S
� 1

"

y
aS
n
W1 ðI; B; }Þ þH1ðWÞ

o
#

;

p3 : W3 ðI; B; }Þ ¼ S
� 1

"

y
aS
n
W2 ðI; B; }Þ þH2ðWÞ

o
#

;

..

.
:

In other words

W ðI; B; }Þ ¼ W
0
ðI; B; }Þ þ W

1
ðI; B; }Þ þ W

2
ðI; B; }Þ þ � � � : ð15Þ

4.2 Methodology for upper bound solution

We encounter a fractional differential problem of order β in upper bound form

Db
}
�WðI; B; }Þ ¼ L1

�WðI; B; }Þ þ L2
�WðI; B; }Þ þ gðI; }Þ; ð16Þ

subjected to the condition

�WðI; B; 0Þ ¼ f ðI; B; 0Þ; ð17Þ

Employing ST on Eq (16), we get

S½Db
}
�WðI; B; }Þ� ¼ S½L1

�WðI; B; }Þ þ L2
�WðI; B; }Þ þ gðI; B; }Þ�:

The Sawi transform in fractional derivative is used as

1

y
b
S½�WðI; B; }Þ� �

1

y
bþ1

�WðI; B; 0Þ ¼ S½L1
�WðI; B; }Þ þ L2

�WðI; B; }Þ þ gðI; B; }Þ�:
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We can solve it as

S½�WðI; B; }Þ� ¼
1

y
f ðI; B; 0Þ þ ybS L1

�WðI; B; }Þ þ L2
�WðI; B; }Þ þ gðI; B; }Þ

� �
:

Operating inverse ST on above equation, we obtain

�WðI; B; }Þ ¼ GðI; B; }Þ þ S� 1

"

y
bS
n
L1

�WðI; B; }Þ þ L2
�WðI; B; }Þ

o
#

; ð18Þ

where

GðI; B; }Þ ¼ S� 1
1

y
f ðI; B; 0Þ þ ybS½gðI; B; }Þ�

� �

:

Now, HPS yields as

�WðI; B; }Þ ¼
X1

i¼0

pi�WiðI; B; }Þ; ð19Þ

and

L2
�WðI; B; }Þ ¼

X1

i¼0

piHið
�WÞ: ð20Þ

The components ofHi are defined as

Hnð
�W0;

�W1; � � � ;
�WnÞ ¼

1

n!

@
n

@pn

 

L2ð
X1

i¼0

pi�WiÞ

!

p¼0

; n ¼ 0; 1; 2; � � �

Putting Eqs (19) and (20) into Eq (18), we get

X1

i¼0

pi�W iðI; B; }Þ ¼ GðI; B; }Þ þ S � 1 y
bS
�

L1

X1

i¼0

pi�WiðI; B; }Þ þ
X1

i¼0

piHið
�WÞ

�" #

: ð21Þ

By examining the related factors of p, we arrive at

p0 : �W0ðI; B; }Þ ¼ GðI; B; }Þ;

p1 : �W1ðI; B; }Þ ¼ S� 1 y
bS
�

�W0ðI; B; }Þ þ H0ð
�WÞ

�� �

;

p2 : �W2ðI; B; }Þ ¼ S� 1 y
bS
�

�W1ðI; B; }Þ þ H1ð
�WÞ

�� �

;

p3 : �W3ðI; B; }Þ ¼ S� 1 y
bS
�

�W2ðI; B; }Þ þ H2ð
�WÞ

�� �

;

..

.
:

In other words

�WðI; B; }Þ ¼ �W0ðI; B; }Þ þ
�W1ðI; B; }Þ þ

�W2ðI; B; }Þ þ � � � : ð22Þ
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5 Convergence analysis

Theorem 5.1 Suppose [a, b] × [0, T] be the rectangular interval that establishes the Banach

space B� C([a, b] × [0, T]). Then, Eq (22) WðI; B; }Þ ¼
P1

i¼0
WiðI; B; }Þ is continuous if ϑ0 2

B is bounded where kϑi+1k � kϑik, 8ϑi 2 B with 0< μ< 1.

Proof: Using a series fF rg as a partial result of Eq (22), we get

F 0 ¼ W0ðI; B; }Þ;

F 1 ¼ W0ðI; B; }Þ þ W1ðI; B; }Þ;

F 2 ¼ W0ðI; B; }Þ þ W1ðI; B; }Þ þ W2ðI; B; }Þ;

..

.

F r ¼ W0ðI; B; }Þ þ W1ðI; B; }Þ þ W2ðI; B; }Þ þ . . .þ WrðI; B; }Þ:

ð23Þ

We then show fF rg
1

r¼0
is a Cauchy sequence in B so that this theorem can be verified. Thus,

k F rþ1 � F r k ¼k Wrþ1ðI; B; }Þ k;

� m k WrðI; B; }Þ k;

� m2 k Wr� 1ðI; B; }Þ k;

..

.

� mrþ1 k W0ðI; B; }Þ k :

ð24Þ

Thus, for every pair r, n 2 N with r> n, there is

k F r � F n k ¼k ðF r � F r� 1Þ þ ðF r� 1 � F r� 2Þ þ ðF r� 2 � F r� 3Þ þ . . .þ ðF nþ1 � F nÞ k;

�k F r � F r� 1 k þ k F r� 1 � F r� 2 k þ k F r� 2 � F r� 3 k þ . . .þ k F nþ1 � F n k;

� mr k W0ðI; B; }Þ k þm
r� 1 k W0ðI; B; }Þ k þ . . .þ mnþ1 k W0ðI; B; }Þ k;

� b k W0ðI; B; }Þ k :

ð25Þ

in which b ¼
ð1� mr� nÞ
ð1� mÞ

mnþ1. Being that W0ðI; B; }Þ is continuous, so k W0ðI; B; }Þ k<1. Since n
increases and n!1 tends to β! 0 over 0< μ< 1, hence

lim
n!1
r!1

k F r � F n k¼ 0:
ð26Þ

This means fF rg
1

r¼0
shows a Cauchy sequence in B. Therefore, the series solution of Eq (22)

is convergent.

Theorem 5.2 Let
Pn

k¼0
WkðI; B; }Þ shows the approximation of Eq (16), ultimately the abso-

lute error is identified as

�
�
�
�
�
WðI; B; }Þ �

Xn

k¼0

WkðI; B; }Þ

�
�
�
�
�
�

mnþ1

1 � m
k W0ðI; B; }Þ k; ð27Þ

where μ shows a numeric number such that
k Wiþ1 k

k Wi k
� m.
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Proof: Applying Theorem (5.1) to Eq (25), we get

k F r � F n k� b k W0ðI; B; }Þ k; ð28Þ

where

b ¼
ð1 � mr� nÞ

ð1 � mÞ
mnþ1:

Since fF rg
1

r¼0
! WðI; B; }Þ as r!1 and from Eq (23), we obtain F n ¼

Pn
k¼0
WkðI; B; }Þ,

�
�
�
�
�
WðI; B; }Þ �

Xn

k¼0

WkðI; B; }Þ

�
�
�
�
�
� b k W0ðI; B; }Þ k; ð29Þ

where (1 − μr−n)< 1 and 0< μ< 1
�
�
�
�
�
WðI; B; }Þ �

Xn

k¼0

WkðI; B; }Þ

�
�
�
�
�
�

mnþ1

1 � m
k W0ðI; B; }Þ k : ð30Þ

Thus, the truth is proof.

6 Applications

In this section, we put our suggested technique into practice for the analytical results of a heat

problem in two-dimensional fuzzy fractional form with lower and upper-bound solutions. We

analyze the findings in terms of a series that quickly converges. The surface and contour plots

are displayed to show the efficiency of suggested scheme. The results show that this approachis

relatively simple to implement for fractional order fuzzy problems.

6.1 Example 1

Consider the 2D homogeneous time-fractional heat flow problem

Da; b
}

~WðI; B; }Þ ¼ ~WIIðI; B; }Þ þ
~WBBðI; B; }Þ þ Iþ Bþ }; ð31Þ

with the initial condition

~WðI; B; 0Þ ¼ ~ke� ðIþBÞ: ð32Þ

where ~k ¼ ½k ; �k� ¼ ½r � 1; 1 � r�.
6.1.1 For lower bound solution. Since, we have

@
a
W

@}a
¼
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }; ð33Þ

subjected to the condition

W ðI; B; 0Þ ¼ ke� ðIþBÞ: ð34Þ

where k ¼ r � 1.

Apply ST on Eq (33), we get

S
@
a
W

@}a

� �

¼ S
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }

� �

:
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Using the Sawi transform in fractional derivative, we obtain

S½W ðI; B; }Þ� ¼
1

y
WðI; B; 0Þ þ y

aS
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }

� �

:

In other way, we can also write it as

S½W ðI; B; }Þ� ¼
1

y
WðI; B; 0Þ þ y

aS½Iþ Bþ }� þ yaS
@

2
W

@I
2
þ
@

2
W

@B2

� �

:

Using the inverse ST, we get

WðI; B; }Þ ¼ W ðI; B; 0Þ þ I
}a

a!
þ B

}a

a!
þ

}aþ1

ðaþ 1Þ!
þ S� 1 y

aS
@

2
W

@I
2
þ
@

2
W

@B2

� �

:

�

ð35Þ

Implement the idea of HPS on Eq (35), we obtain the He’s iterations such as

X1

i¼0

piWðI; B; }Þ ¼ WðI; B; 0Þ þ I
}a

a!
þ B

}a

a!
þ

}aþ1

ðaþ 1Þ!
þ S� 1 y

aS
X1

i¼0

pi
@

2
Wi

@I
2
þ
X1

i¼0

pi
@

2
Wi

@B2

" #

:

"

By examining the related factors of p, we arrive at

p0 : W0 ðI; B; }Þ ¼ WðI; B; 0Þ ¼ ke
� ðIþBÞ þ I

}a

a!
þ B

}a

a!
þ

}aþ1

ðaþ 1Þ!
;

p1 : W1 ðI; B; }Þ ¼ S
� 1

"

y
aS
n @

2
W0

@I
2
þ
@

2
W0

@B2

o
#

¼ 2ke� ðIþBÞ
}a

a!
;

p2 : W2 ðI; B; }Þ ¼ S
� 1

"

y
aS
n @

2
W1

@I
2
þ
@

2
W1

@B2

o
#

¼ 4ke� ðIþBÞ
}2a

ð2aÞ!
;

p3 : W3 ðI; B; }Þ ¼ S
� 1

"

y
aS
n @

2
W2

@I
2
þ
@

2
W2

@B2

o
#

¼ 8ke� ðIþBÞ
}3a

ð3aÞ!
;

..

.
:

In other words

WðI; B; }Þ ¼ W0 ðI; B; }Þ þ W1 ðI; B; }Þ þ W2 ðI; B; }Þ þ W3 ðI; B; }Þ þ � � � ;

¼ ke� ðIþBÞ þ I
}a

a!
þ B

}a

a!
þ

}aþ1

ðaþ 1Þ!
þ 2ke� ðIþBÞ

}a

a!
þ 4ke� ðIþBÞ

}2a

ð2aÞ!
þ 8ke� ðIþBÞ

}3a

ð3aÞ!
þ � � � :

ð36Þ

Remark: If gðI; B; }Þ ¼ 0, then above equation becomes as

W ðI; B; }Þ ¼ ke� ðIþBÞ þ 2ke� ðIþBÞ
}a

a!
þ 4ke� ðIþBÞ

}2a

ð2aÞ!
þ 8ke� ðIþBÞ

}3a

ð3aÞ!
þ � � � : ð37Þ

which can be closed form

W ðI; B; }Þ ¼ ke� ðIþBÞ
X1

n¼0

ð2}aÞ
n

ðnaÞ!
: ð38Þ
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6.1.2 For upper bound solution. Since, we have

@
b�W

@}b
¼
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }; ð39Þ

with the initial condition

�WðI; B; 0Þ ¼ �ke� ðIþBÞ: ð40Þ

where �k ¼ 1 � r.
Apply ST on Eq (39), we get

S
@
b�W

@}b

� �

¼ S
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }

� �

:

Using the Sawi transform in fractional derivative, we obtain

S½�WðI; B; }Þ� ¼
1

y
�WðI; B; 0Þ þ y

bS
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }

� �

:

In other way, we can also write it as

S½�WðI; B; }Þ� ¼
1

y
�WðI; B; 0Þ þ y

bS½Iþ Bþ }� þ ybS
@

2�W

@I
2
þ
@

2�W

@B2

� �

:

Using inverse ST, we get

WðI; B; }Þ ¼ �WðI; B; 0Þ þ I
}b

b!
þ B

}b

b!
þ

}bþ1

ðbþ 1Þ!
þ S� 1 y

bS
@

2�W

@I
2
þ
@

2�W

@B2

� �

:

�

ð41Þ

Implement the idea of HPS on Eq (41), we obtain the He’s iterations such as

X1

i¼0

pi�WðI; B; }Þ ¼ �WðI; B; 0Þ þ I
}b

b!
þ B

}b

b!
þ

}bþ1

ðbþ 1Þ!
þ S� 1 y

bS
X1

i¼0

pi
@

2 �Wi

@I
2
þ
X1

i¼0

pi
@

2 �Wi
@B2

" #

:

"

By comparing the related factors of p, we obtain

p0 : �W0ðI; B; }Þ ¼
�WðI; B; 0Þ ¼ �ke� ðIþBÞ þ I

}b

b!
þ B

}b

b!
þ

}bþ1

ðbþ 1Þ!
;

p1 : �W1ðI; B; }Þ ¼ S� 1 y
bS
n @

2 �W0

@I
2
þ
@

2 �W0

@B2

o� �

¼ 2�ke� ðIþBÞ
}b

b!
;

p2 : �W2ðI; B; }Þ ¼ S� 1 y
bS
n @

2 �W1

@I
2
þ
@

2 �W1

@B2

o� �

¼ 4�ke� ðIþBÞ
}2b

ð2bÞ!
;

p3 : �W3ðI; B; }Þ ¼ S� 1 y
bS
n @

2 �W2

@I
2
þ
@

2 �W2

@B2

o� �

¼ 8�ke� ðIþBÞ
}3b

ð3bÞ!
;

..

.
:
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In other words

�WðI; B; }Þ ¼ �W0ðI; B; }Þ þ
�W1ðI; B; }Þ þ

�W2ðI; B; }Þ þ
�W3ðI; B; }Þ þ � � � ;

¼ �ke� ðIþBÞ þ I
}b

b!
þ B

}b

b!
þ

}bþ1

ðbþ 1Þ!
þ 2�ke� ðIþBÞ

}b

b!
þ 4�ke� ðIþBÞ

}2b

ð2bÞ!
þ 8�ke� ðIþBÞ

}3b

ð3bÞ!
þ � � � :

ð42Þ

Remark: If gðI; B; }Þ ¼ 0, then above equation becomes as

�WðI; B; }Þ ¼ �ke� ðIþBÞ þ 2�ke� ðIþBÞ
}b

b!
þ 4�ke� ðIþBÞ

}2b

ð2bÞ!
þ 8�ke� ðIþBÞ

}3b

ð3bÞ!
þ � � � : ð43Þ

In close form, it turns

�WðI; B; }Þ ¼ �ke� ðIþBÞ
X1

n¼0

ð2}bÞ
n

ðnbÞ!
: ð44Þ

Fig 1(a)–1(d) show the lower bound fuzzy results at different fractional order of α. Fig 1(a)

and 1(c) shows the fuzzy surface solutions with space coordinates r = 0.5, 0� I� 1, 0 � B �

1 where the fractional orders are α = 0.5 and α = 1. On the other hand, Fig 1(b) and 1(d) shows

the fuzzy contour solutions with space coordinates } = 0.1, r = 0.5, −2� I� 2, � 2 � B � 2

where the fractional orders are α = 0.5 and α = 1. Fig 2(a) and 2(d) show the upper bound

fuzzy results at different fractional order of α. Fig 2(a) and 2(c) shows the fuzzy surface solu-

tions with space coordinates r = 0.5, 0� I� 3, 0 � B � 3 where the fractional orders are α =

0.5 and α = 1. On the other hand, Fig 2(b) and 2(d) shows the fuzzy surface solutions with

space coordinates } = 0.1, r = 0.5, −3� I� 3, � 3 � B � 3 where the fractional orders are α =

0.5 and α = 1. Fig 3(a) and 3(b) demonstrate the 2D representation at α = 0.5 and α = 1

respectively.

6.2 Example 2

Again, we assume 2D homogeneous heat flow problem in fractional order as

Da; b
}

~WðI; B; }Þ ¼ ~WIIðI; B; }Þ þ
~WBBðI; B; }Þ þ Iþ Bþ }

2; ð45Þ

with the initial condition

~WðI; B; 0Þ ¼ ~k sin½pðIþ BÞ�: ð46Þ

where ~k ¼ ½k ; �k� ¼ ½r � 1; 1 � r�.
6.2.1 For lower bound solution. Since, we have

@
a
W

@}a
¼
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }2; ð47Þ

subjected to the condition

W ðI; B; 0Þ ¼ k sin½pðIþ BÞ�: ð48Þ

where k ¼ r � 1.
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Apply ST on Eq (47), we get

S
@
a
W

@}a

� �

¼ S
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }2

� �

:

(a) (b)

(c) (d)

Fig 1. The 3D surface and contour plots for lower bound solutions at α = 1 of Example 1. (a) Surface plot of WðI; B; }Þ at α = 0.5, (b) Contour plot of WðI; B; }Þ

at α = 0.5, (c) Surface plot of WðI; B; }Þ at α = 1, (d) Contour plot of WðI; B; }Þ at α = 1.

https://doi.org/10.1371/journal.pone.0301719.g001
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Using the Sawi transform in fractional derivative, we obtain

S½W ðI; B; }Þ� ¼
1

y
WðI; B; 0Þ þ y

aS
@

2
W

@I
2
þ
@

2
W

@B2
þ Iþ Bþ }2

� �

:

(a) (b)

(c) (d)

Fig 2. The 3D surface and contour plots for upper bound solutions at β = 1 of Example 1. (a) Surface plot of WðI; B; }Þ at β = 0.5, (b) Contour plot of

WðI; B; }Þ at β = 0.5, (c) Surface plot of WðI; B; }Þ at β = 1, (d) Contour plot of WðI; B; }Þ at β = 1.

https://doi.org/10.1371/journal.pone.0301719.g002
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In other way, we can also write it as

S½W ðI; B; }Þ� ¼
1

y
WðI; B; 0Þ þ y

aS½Iþ Bþ }2� þ y
aS

@
2
W

@I
2
þ
@

2
W

@B2

� �

:

Using inverse ST, we get

WðI; B; }Þ ¼ W ðI; B; 0Þ þ I
}a

a!
þ B

}a

a!
þ 2

}aþ2

ðaþ 2Þ!
þ S� 1 y

aS
@

2
W

@I
2
þ
@

2
W

@B2

� �

:

�

ð49Þ

Implement the idea of HPS on Eq (49), we obtain the He’s iterations such as

X1

i¼0

piW ðI; B; }Þ ¼ WðI; B; 0Þ þ I
}a

a!
þ B

}a

a!
þ 2

}aþ2

ðaþ 2Þ!
þ S� 1 y

aS
X1

i¼0

pi
@

2
Wi

@I
2
þ
X1

i¼0

pi
@

2
Wi

@B2

" #

:

"

By comparing the related factors of p, we obtain

p0 : W0 ðI; B; }Þ ¼ WðI; B; 0Þ ¼ k sin½pðIþ BÞ� þ I
}a

a!
þ B

}a

a!
þ 2

}aþ2

ðaþ 2Þ!
;

p1 : W1 ðI; B; }Þ ¼ S
� 1 y

aS
@

2
W0

@I
2
þ
@

2
W0

@B2

( )" #

¼ � 2kp2sin½pðIþ BÞ�
}a

a!
;

p2 : W2 ðI; B; }Þ ¼ S
� 1 y

aS
@

2
W1

@I
2
þ
@

2
W1

@B2

( )" #

¼ 4kp2sin½pðIþ BÞ�
}2a

ð2aÞ!
;

p3 : W3 ðI; B; }Þ ¼ S
� 1 y

aS
@

2
W2

@I
2
þ
@

2
W2

@B2

( )" #

¼ � 8kp2sin½pðIþ BÞ�
}3a

ð3aÞ!
;

..

.
:

(a) (b)

Fig 3. 2D fuzzy lower and upper bound solutions at different fractional order of Example 1. (a) 2D fuzzy plot of WðI; B; }Þ at α = β = 0.5, (b) 2D fuzzy plot of

WðI; B; }Þ at α = β = 1.

https://doi.org/10.1371/journal.pone.0301719.g003
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In other words

WðI; B; }Þ ¼ W0 ðI; B; }Þ þ W1 ðI; B; }Þ þ W2 ðI; B; }Þ þ W3 ðI; B; }Þ þ � � � ;

¼ k sin½pðIþ BÞ� þ I
}a

a!
þ B

}a

a!
þ 2

}aþ2

ðaþ 2Þ!
� 2kp2sin½pðIþ BÞ�

}a

a!

þ4kp2sin½pðIþ BÞ�
}2a

ð2aÞ!
� 8kp2sin½pðIþ BÞ�

}3a

ð3aÞ!
þ � � � :

ð50Þ

Remark: If gðI; B; }Þ ¼ 0, then above equation becomes as

WðI; B; }Þ ¼ ksin½pðIþ BÞ� � 2kp2sin½pðIþ BÞ�
}a

a!
þ 4kp4sin½pðIþ BÞ�

}2a

ð2aÞ!

� 8kp6sin½pðIþ BÞ�
}3a

ð3aÞ!
þ � � � :

ð51Þ

In close form, it turns

W ðI; B; }Þ ¼ ksin½pðIþ BÞ�
X1

n¼0

ð� 1Þ
n
ð2p2}aÞ

n

ðnaÞ!
: ð52Þ

6.2.2 For upper bound solution. Since, we have

@
b�W

@}b
¼
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }2; ð53Þ

with the initial condition

�WðI; B; 0Þ ¼ �ksin½pðIþ BÞ�: ð54Þ

where �k ¼ 1 � r.
Apply ST on Eq (53), we get

S
@
b�W

@}b

� �

¼ S
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }2

� �

: ð55Þ

Using the Sawi transform in fractional derivative, we obtain

S½�WðI; B; }Þ� ¼
1

y
�WðI; B; 0Þ þ y

bS
@

2�W

@I
2
þ
@

2�W

@B2
þ Iþ Bþ }2

� �

:

In other way, we can also write it as

S½�WðI; B; }Þ� ¼
1

y
�WðI; B; 0Þ þ y

bS½Iþ Bþ }2� þ y
bS

@
2�W

@I
2
þ
@

2�W

@B2

� �

:

Using inverse ST, we get

WðI; B; }Þ ¼ �WðI; B; 0Þ þ I
}b

b!
þ B

}b

b!
þ 2

}bþ2

ðbþ 2Þ!
þ S� 1 y

bS
@

2�W

@I
2
þ
@

2�W

@B2

� �

:

�

ð56Þ
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Implement the idea of HPS on Eq (56), we obtain the He’s iterations such as

X1

i¼0

pi�WðI; B; }Þ ¼ �WðI; B; 0Þ þ I
}b

b!
þ B

}b

b!
þ 2

}bþ2

ðbþ 2Þ!
þ S� 1

"

y
bS

"
X1

i¼0

pi
@

2
Wi

@I
2
þ
X1

i¼0

pi
@

2
Wi

@B2

#

:

By examining the related factors of p, we arrive at

p0 : W0 ðI; B; }Þ ¼
�WðI; B; 0Þ ¼ �ksin½pðIþ BÞ� þ I

}b

b!
þ B

}b

b!
þ 2

}bþ2

ðbþ 2Þ!
;

p1 : W1 ðI; B; }Þ ¼ S
� 1 y

bS
@

2
W0

@I
2
þ
@

2
W0

@B2

( )" #

¼ � 2�kp2sin½pðIþ BÞ�
}b

b!
;

p2 : W2 ðI; B; }Þ ¼ S
� 1 y

bS
@

2
W1

@I
2
þ
@

2
W1

@B2

( )" #

¼ 4�kp2sin½pðIþ BÞ�
}2b

ð2bÞ!
;

p3 : W3 ðI; B; }Þ ¼ S
� 1 y

bS
@

2
W2

@I
2
þ
@

2
W2

@B2

( )" #

¼ � 8�kp2sin½pðIþ BÞ�
}3b

ð3bÞ!
;

..

.
:

In other words

�WðI; B; }Þ ¼ W0 ðI; B; }Þ þ W1 ðI; B; }Þ þ W2 ðI; B; }Þ þ W3 ðI; B; }Þ þ � � � ;

¼ �ksin½pðIþ BÞ� þ I
}b

b!
þ B

}b

b!
þ 2

}bþ2

ðbþ 2Þ!
� 2�kp2sin½pðIþ BÞ�

}b

b!

þ4�kp4sin½pðIþ BÞ�
}2b

ð2bÞ!
� 8�kp6sin½pðIþ BÞ�

}3b

ð3bÞ!
þ � � � :

ð57Þ

Remark: If gðI; B; }Þ ¼ 0, then above equation becomes as

�WðI; B; }Þ ¼ �ksin½pðIþ BÞ� � 2�kp2sin½pðIþ BÞ�
}b

b!
þ 4�kp2sin½pðIþ BÞ�

}2b

ð2bÞ!

� 8�kp2sin½pðIþ BÞ�
}3b

ð3bÞ!
þ � � � :

ð58Þ

In close form, it turns

�WðI; B; }Þ ¼ �ksin½pðIþ BÞ�
X1

n¼0

ð� 1Þ
n
ð2p2}bÞ

n

ðnbÞ!
: ð59Þ

Fig 4(a)–4(d) show the lower bound fuzzy results at different fractional order of α. Fig 4(a)

and 4(c) shows the fuzzy surface solutions with space coordinates r = 0.5, 0� I� 1, 0 � B �

1 where the fractional orders are α = 0.5 and α = 1. On the other hand, Fig 4(b) and 4(d) shows

the fuzzy contour solutions with space coordinates } = 0.1, r = 0.5, −3� I� 3, � 3 � B � 3

where the fractional orders are α = 0.5 and α = 1. Fig 5(a) and 5(d) show the upper bound

fuzzy results at different fractional order of α. Fig 5(a) and 5(c) shows the fuzzy surface solu-

tions with space coordinates r = 0.5, 0� I� 1, 0 � B � 1 where the fractional orders are α =

0.5 and α = 1. On the other hand, Fig 5(b) and 5(d) shows the fuzzy surface solutions with

space coordinates } = 0.1, r = 0.5, −5� I� 5, � 5 � B � 5 where the fractional orders are α =
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0.5 and α = 1. Fig 6(a) and 6(b) demonstrate the 2D representation at α = 0.5 and α = 1

respectively.

7 Conclusion

In this research, we construct the Sawi homotopy perturbation transform scheme (SHPTS) for

the approximate solution of two-dimensional fuzzy fractional heat equation. The obtained

(a) (b)

(c) (d)

Fig 4. The 3D surface and contour plots for lower bound solutions at α = 1 of Example 2. (a) Surface plot of WðI; B; }Þ at α = 0.5, (b) Contour plot of

WðI; B; }Þ at α = 0.5, (c) Surface plot of WðI; B; }Þ at α = 1, (d) Contour plot of WðI; B; }Þ at α = 1.

https://doi.org/10.1371/journal.pone.0301719.g004
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results in terms of series show the validity and accuracy of this proposed scheme. The contour

and surface representations are offered for the lower and upper-bound solutions. By demon-

strating the surface and contour plots for two-dimensional fuzzy fractional heat equation, the

correctness and capabilities of the proposed algorithm is showed. We provide the surface and

contour representations for both the upper- and lower-bound solutions. It has been proved

that the suggested framework will allow it to work with fuzzy fractional partial differential

equations in various dimensions. In further study, this strategy may be utilized to provide

Fig 5. The 3D surface and contour plots for upper bound solutions at β = 1 of Example 2. (a) Surface plot of WðI; B; }Þ at β = 0.5, (b) Contour plot of

WðI; B; }Þ at β = 0.5, (c) Surface plot of WðI; B; }Þ at β = 1, (d) Contour plot of WðI; B; }Þ at β = 1.

https://doi.org/10.1371/journal.pone.0301719.g005
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analytical and approximation results for unstable fractional differential equations under insta-

bility with non-classical and integral boundary scenarios in the context of Caputo-Fabrizio.
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