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Abstract

This study compared marginal and conditional modeling approaches for identifying individ-

ual, park and neighborhood park use predictors. Data were derived from the ParkIndex

study, which occurred in 128 block groups in Brooklyn (New York), Seattle (Washington),

Raleigh (North Carolina), and Greenville (South Carolina). Survey respondents (n = 320)

indicated parks within one half-mile of their block group used within the past month. Parks (n

= 263) were audited using the Community Park Audit Tool. Measures were collected at the

individual (park visitation, physical activity, sociodemographic characteristics), park (dis-

tance, quality, size), and block group (park count, population density, age structure, racial

composition, walkability) levels. Generalized linear mixed models and generalized estimat-

ing equations were used. Ten-fold cross validation compared predictive performance of

models. Conditional and marginal models identified common park use predictors: participant

race, participant education, distance to parks, park quality, and population >65yrs. Addition-

ally, the conditional mode identified park size as a park use predictor. The conditional model

exhibited superior predictive value compared to the marginal model, and they exhibited simi-

lar generalizability. Future research should consider conditional and marginal approaches

for analyzing health behavior data and employ cross-validation techniques to identify

instances where marginal models display superior or comparable performance.
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Introduction

Park use is associated with greater community cohesion [1,2], mental health [3], stress reduc-

tion [4,5], and physical activity (PA) [6,7]. Despite this, the percentage of the population that

did not use parks increased from 25% to 30% from 1992 to 2015 [2]. To increase park use [8–

10], it is important to identify key predictors of park use [11,12].

Methods for collecting information on park use predictors are diverse, including assess-

ments of neighborhood, park, and individual-level characteristics [6,13–16]. At the neighbor-

hood or administrative level, geographic information systems (GIS) tools are often used to

map and quantify park availability [17], in conjunction with U.S. Census indicators (e.g.,

median household income) [18]. At the park level, audits conducted with reliable and valid

tools are increasingly common [19], including the Community Park Audit Tool (CPAT) [20].

CPAT measures park access, neighborhood features, activity areas, quality, and safety [21,22].

At the individual level, intercept surveys administered to individuals visiting parks capture

information about behaviors or sociodemographic characteristics [23,24]. While few studies

sample park users and non-users [21,22,25–27], global positioning systems (GPS) and loca-

tion-based resident surveys provide opportunities to study predictors of park use and non-use

[22,28–36].

With more innovative and detailed methods for data collection, analyses that account for

correlated observations are increasingly common. Observations can be clustered if there are

multiple observations for the same individual (at several time points), or if data is hierar-

chically organized in the same geographic location (e.g., city, neighborhood) or organizational

unit (e.g., school, workplace). In general, there are two popular types of statistical models used

to account for correlated observations: conditional and marginal models [37,38]. For condi-

tional models, clustered observations are accounted for through the inclusion of shared ran-

dom effects in the linear predictor [39]. For marginal modeling, the mean function is modeled

directly and the correlation structure is regarded as a nuisance parameter (i.e., it is not of inter-

est) [37,38]. Conditional models specify a model on observation-level data, requiring assump-

tions on the random effect distribution and the independence of clustered observations given

the random effects, which are often impossible to verify [37–40]. Alternatively, marginal meth-

ods model the average response on the population level and are robust to misspecification of

the dependence structure [37,38]. Marginal models also make inferences about population

(not individuals), which is advantageous for studying the impacts of multi-level factors on

neighborhood park use.

In previous studies, analytical techniques that assume independent observations (e.g., ordi-

nary least squares (OLS) regression) have been used to understand the relationship between

multilevel factors and park use [8,21,22,41–44]. Loukaitou-Sideris and Sideris used OLS multi-

ple linear regression to identify factors that bring children to parks, including recreation facili-

ties, sport programs, natural features, and maintenance [42]. Additional studies have

accounted for correlated observations, and largely used such methods to control for non-inde-

pendence between people residing within the same geographic area using mixed regression,

conditional models with random effects [45–52]. Stewart et al. linked GPS and individual

travel diary data with park audit data and GIS measures for park access to examine if park

facilities were related to the amount of park-based PA [53]. Authors used conditional models

with random effects at the individual, park, and individual-park combination level [53].

Most past research on multi-level park use predictors employs conditional modeling. Lim-

ited research has compared conditional and marginal modeling techniques to determine

advantages and disadvantages of different approaches for analyzing and interpreting multilevel

park use predictors [38]. Therefore, this study will compare marginal and conditional
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modeling techniques for identifying neighborhood, park, and individual level park use predic-

tors. Methods from our study can be replicated to inform decision making on model selection

for research on multilevel predictors of park use and other behavioral outcomes, and results

can provide robust input on significant predictors of park use.

Materials and methods

Study design and setting

Data came from a parent study, ParkIndex, which is described fully elsewhere [21,54]. Data

collection and recruitment occurred from Spring to Fall 2017 in four major U.S. localities:

Brooklyn, NY, Greenville County, SC, Seattle, WA, & Raleigh, NC.

Census block groups (CBG) were classified into quartiles for park availability and income.

CBGs in each location were enumerated by identifying all CBGs that fall within city and

county limits (using Census shapefiles). Park availability and income quartiles were based on

the number of parks intersecting the CBG and American Community Survey (ACS) 2011–

2015 5-year estimates [18]. Using methods similar to other studies [45], 32 CBGs were selected

within each location (128 total). This study included all public parks designed to facilitate

active or passive use with an area size� .25 acres. GIS park files for pre-selected CBGs were

obtained from local parks and recreation agencies. A sample of residents in pre-selected CBGs

were recruited to use an online, map-based survey (Maptionnaire.com) that included written

consent (although consent was waived for this study) and displayed neighborhood parks to

report park use and non-use and answer related questions [21]. Study procedures were granted

exempt status by the University of South Carolina Institutional Review Board.

Data collection

From June to October 2017, all parks in the study areas were audited in person by trained

research staff using the CPAT [55]. CPAT contains four sections related to park information,

access and surrounding area, activity areas, and quality/safety [55], and has demonstrated

excellent inter-rater reliability and validity [46,56–59]. Overall, 275 parks were audited across

the study areas: 94 in Seattle, 64 in Brooklyn, 71 in Raleigh, and 46 in Greenville County.

Adult residents within each CBG were recruited to take part in the study. Addresses in 32

CBGs per city were identified and mailed postcards containing a brief study description and

online survey link. Postcards were mailed to verified residential addresses from June to Octo-

ber 2017, three separate times over a three-month period. Maptionnaire was used for adminis-

tering the online survey [60]. Participants were shown a map of their neighborhood (i.e., area

within a half-mile of the resident’s CBG) and were asked to locate and answer questions about

parks they had used within the past month, until the participant indicated they had not used

any other parks in their neighborhood within the past month.

Outcome measure

Park visitation. Participants were matched to parks within a ½-mile of their CBG and each of

the person-park pairs was assigned yes/no based on reported park use in the past month.

Explanatory measures–Neighborhood level

Count of neighborhood parks. The count of parks within a ½-mile (calculated by measuring the

Network distance on ArcGIS 10.2.2) of each participant’s CBG of residence.
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Median household income. CBG-level data for the park addresses were downloaded from U.

S. Census Bureau’s ACS (5-year estimates, 2011–2015) [18]. Median household income was

categorized into site-specific tertiles (low, intermediate, high).

Population density. CBG-level data for park addresses were downloaded from U.S. Census

Bureau’s ACS (5-year estimates, 2011–2015) [18]. Population density (population/area) was

calculated and categorized into site-specific tertiles (low, intermediate, high).

Age structure. CBG-level data on the percentage of the population over the age of 65 years

were downloaded from the U.S. Census Bureau’s ACS (5-year estimates, 2011–2015) [18].

Racial and ethnic composition. CBG-level data for the park addresses were downloaded

from the U.S. Census Bureau’s ACS (5-year estimates, 2011–2015) [18], to calculate the per-

centage of the population identifying as non-Hispanic White.

Walkability. CBG-level National Walkability Index (1–20), based on the Environmental

Protection Agency’s Smart Location Mapping Database [61].

Explanatory measures–Park level

Distance to neighborhood parks. Distance between participant addresses to each verified park

entrance was calculated using Network distances on ArcGIS 10.2.2. Distances from residences

to parks ranged from 0.01 to 12.7 miles (mean = 0.99, median = 0.82), since participants were

asked to report park use within a half-mile buffer of their CBG of residence.

Park quality. Park quality (0–100) was calculated using CPAT average park access, facilities,

amenities, quality concerns, aesthetics, and facility quality. For each component, scores were

determined using yes/no responses to presence, usability and condition [21,22].

Park size. We calculated total acreage of each park, using GIS files for all selected parks.

Explanatory measures–Participant level

Physical activity. Participants indicated the number of days and minutes per day spent

engaged in moderate and vigorous PA in the past 7 days using the short form International

PA Questionnaire [62]. Total number of weekly minutes of moderate and vigorous PA

(MVPA) were summed for each participant [63], and categorized into low, intermediate,

and high tertiles.

Socio-demographics. Respondents reported their race (White, American Indian, Alaskan

native, Asian, Black or African American, Native Hawaiian, Pacific Islander, other), and gen-

der (male, female, other). Age (in years) was calculated using the date of survey completion

and reported date of birth. Race (White/Non-White) and gender (male/female) were

dichotomized.

Data management

A total of 360 residents completed the survey, and their data was merged with audit data for all

parks within a ½-mile of their CBG of residence. The resultant long-form dataset included

3247 observations, representing all available neighborhood parks for each person. A total of 40

participants (relating to 157 observations) were removed from the analytic sample because

they did not have any parks within a ½-mile of their CBG of residence or they only reported

using parks outside the ½-mile CBG buffer, resulting in a final sample of 3090 observations

and 320 participants. Each observation (n = 3090) included individual-level data (which was

the same for all observations from the same participant), park-level data (i.e., audit data unique

to each observation/park, reported park use), and CBG-level data (i.e., specific to each park

address). On average, participants had 15 observations (i.e., 15 parks within the half-mile CBG

buffer).
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Statistical analyses

Descriptive statistics. Descriptive information for participants included in this study

were calculated and included ANOVA and chi-square tests to determine crude relationships

between participant characteristics and park use. To account for participant non-response of

survey data related to age (missing = 74), gender (missing = 45), PA (missing = 105), race and

ethnicity (missing = 19), and education (missing = 48), hot deck single imputation was used

(with PROC SURVEYIMPUTE, SAS 9.4). Hot deck imputation is a method for handling miss-

ing data in which each missing value is replaced with an observed response from a "similar"

unit [64].

Conditional model. To evaluate park use predictors identified using varying statistical

techniques, a two-level hierarchical conditional model was used with the imputed dataset.

Level 1 was the participant-level and level 2 were the clusters of the units/participants nested

within the same CBGs. The number of observations per participant related to the number of

parks they could potentially report using in their CBG. Generalized Linear Mixed Models

(GLMM) were used to examine the level 1 outcome (i.e., participant park use) as a function of

predictors on level 1 and 2 using PROC GLIMMIX (SAS 9.4 software; see S1 File) with a quad-

rature estimation technique. Park-level clustering was not specifically accounted for, given that

participants in the same CBGs were assigned to the same neighborhood parks. Participant’s

use of each park was treated as a binary outcome with a logit link function. Variance compo-

nents were estimated for participant and neighborhood (i.e., CBG) level random effects. Mod-

els were presented after adjustment and included participant and CBG level random

intercepts, fixed effects for different park visits, and individual level exposures. The equation

below illustrates the conditional model predicting park use (Yij, binary outcome) of participant

i in park j:

Level 1 : LogitðPðYij ¼ 1ÞÞ ¼ b0j þ b1Xij þ Ri

Level 2 : b0j ¼ g0 þ g1Zj þ Uj

where Xij and Zj are the exposure variables, and Rij and Uj are participant and CBG level ran-

dom effects. Random effects are assumed to be normally distributed with Var(Rij) = σ2 and

Var(Uj) = τ2. Model assumptions include: 1. distribution of the data conditional on the ran-

dom effects is known, 2. probability of participant park use takes the form of a logistic mixed

model, 3. random effects are normally distributed, 4. objective function for the optimization is

a function of either the actual log likelihood, an approximation to the log likelihood, or the log

likelihood of an approximated model [65]. Median Odds Ratio (MOR) quantified the amount

of variance in the outcome for each level of the hierarchical model [66], using

MOR ¼ expð
ffiffiffiffiffiffiffiffiffiffi
2∗Va

p
∗0:6745Þ, where Va is the area level variance and 0.6745 is the 75th per-

centile of the cumulative distribution function of the normal distribution with mean 0 and var-

iance 1 [66–68]. Before adjustment, CBG level MOR = 1.5 indicates that if a person were to

move to a CBG with higher park use, median increase in the odds of park use (over all possible

CBG) would increase by 50% [66]. Person level MOR = 1.5 indicate that if we compare all

pairs of people in the same CBG, median OR, arranged such that the person with higher odds

of park use is in the numerator, is 1.5 [66].

Marginal model. For analyzing marginal models for this study, a hierarchical structure

with individuals nested within similar CBGs was used to estimate population level averages

with the imputed dataset. As stated previously, the data for this study included multiple obser-

vations per participant, with different observations relating to unique neighborhood parks and

their characteristics. Relationships between park use and participant and park-level exposure
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variables were assessed using Generalized Estimating Equations (GEE) with a specified binary

outcome distribution and a logit link function (i.e., PROC GEE, SAS 9.4 software; see S1 File).

Repeated statements for CBGs and individuals nested within the same CBGs were included,

and non-independence of the same parks used by different participants was accounted for on

the CBG level. Quasi-likelihood-based criteria (QIC) values for the models with an indepen-

dence correlation structure and with an exchangeable working correlation structure were com-

pared to ensure independent correlation structure was best for this data. Model assumptions

include: 1. the error terms for the same participant/geographic unit are correlated, 2. there is a

linear relationship between the covariates and the transformation of the response (using logit

link function, in this case), and 3. the covariance structure is correctly specified (GEE are

robust to this last assumption). In addition, it is necessary that the sample size is sufficiently

large (overall and within CBGs) for robust estimation of standard errors [38]. Models were

presented after adjustment for different park visits and independent exposures. The equation

below illustrates the marginal model predicting park use (Yij, binary outcome) of participant i

in park j:

LogitðPðYij ¼ 1ÞÞ ¼ b0X0 þ b1X1 þ b1t1 þ b2X2∗b2t2 þ b3X3 þ � � � þ bpXp

where X are explanatory variables, and t refers to unique park visits for each person.

Model comparisons. We compared the direction of beta estimates for the same explana-

tory variables in full, adjusted GLMM and GEE models. We also compared which explanatory

variables were significant predictors of park use in final (or reduced) GLMM and GEE models.

Final, reduced models were chosen using backwards stepwise selection (based on α = 0.05 cut-

off) and model fit. To assess model fit, penalized-likelihood information criteria were calcu-

lated for the GLMM model (i.e., Akaike & Bayesian Information Criterion), and quasi-

likelihood-based criteria (i.e., QIC) were calculated for the GEE model. Marginal model odds

ratios were interpreted as population averages, and the conditional model odds ratios were

interpreted for the participant/CBG (i.e., holding all values fixed, including random effects).

The out of sample prediction error for each modeling approach were compared using ten-

fold cross validation methods [69]. Cross validation can assess the performance of predictive

models to determine the generalizability of results [69], by randomly partitioning the original

sample into 10 equal size subsamples. A single subsample is used as the validation data for test-

ing the model, and the remaining 9 subsamples are used as training data. This process is

repeated 10 times until each of the 10 subsamples are used once as validation data, and then

the 10 results are averaged to produce a single estimation (S1 File) [69]. To compare predictive

value using cross validation, we compared GLMM and GEE predictions based on fixed and
random effects. To assess generalizability, we compared predictions based on only fixed effects.

Data for this study can be found in S2 File.

Results

Sample characteristics

A total of 320 participants were included in the analytic sample, with 68.1% (n = 218) who

reported using any neighborhood park(s) in the past month and 31.9% (n = 102) who did not

(Table 1). Participants mostly reported intermediate PA levels (37.5%, n = 120), identified as

White (69.1%, n = 221), were female (58.4%, n = 187), and had 2–4 years of college education

(46.2%, n = 148). Average age of the sample was 47.1 years (SD = 15.3) (Table 1). Participants

also had, on average, 57.4 park acres and 18.5 parks in their neighborhoods. These parks were

1.2 miles away and had a park quality score of 48.5, on average. Table 1 also shows the crude

relationships between participant-level characteristics and park use. Results show that only
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education level (χ2 = 12.4, p = 0.0021) and park distance (F = 17.4, p< .0001) had a significant

relationship with park use.

Model specifications

MOR estimates showed that if a person moves to another CBG with a higher probability of

park use, their risk of park use will (in median) increase 3.1 times (MOR = 3.07). Block group

level effects explained a large proportion of the variance in the outcome. This median increase

in the OR is larger than the estimated OR for any predictor included in our model (see

Table 2).

Comparison of predictors of park use

Marginal and conditional models identified the same significant predictors of park use (and

similar effect estimates) in the full model, aside from park size (Table 2 and S1 Fig). Significant

predictors of park use in the reduced, conditional model included participant race, participant

education, distance to parks, park size, park quality, and percent of the neighborhood popula-

tion age 65 and older (Table 2). For the participant level, there were 43% decreased odds of

Table 1. Sample characteristics and park use estimates for the study participants across four cities, N = 320.

Total

N (%) or Mean (SD)

Park user

N (%) or Mean (SD)

Not a park-user

N (%) or Mean (SD)

F/χ2 statistic

(p-value)

Total 320 (100) 218 (68.1) 102 (31.9) -

Physical activity level

High 95 (29.7) 62 (28.4) 33 (32.4) .91 (0.6352)

Intermediate 120 (37.5) 81 (37.2) 39 (38.2)

Low1 105 (32.8) 75 (34.4) 30 (29.4)

Race

Non-White 99 (30.9) 74 (33.9) 25 (24.5) 2.9 (0.0888)

White 221 (69.1) 144 (66.1) 77 (75.5)

Gender

Male 133 (41.6) 95 (43.6) 38 (37.2) 1.1 (0.2848)

Female 187 (58.4) 123 (56.4) 64 (62.8)

Other 0 (0%) 0 (0%) 0 (0%)

Age (in years) 47.1 (15.3) 46.8 (15.9) 47.7 (14.1) 0.27 (0.6065)

Education

Less than college 53 (16.6) 41 (18.8) 12 (11.8) 12.4 (0.0021)

2–4 year college 148 (46.2) 110 (50.5) 38 (37.2)

Advanced degree 119 (37.2) 67 (30.7) 52 (51.0)

Study site 4.8 (0.1845)

Brooklyn, NY 46 (14.4) 26 (11.9) 20 (19.6)

Greenville County, SC 56 (17.5) 37 (17.0) 19 (18.6)

Raleigh, NC 82 (25.6) 55 (25.2) 27 (36.5)

Seattle, WA 136 (42.5) 100 (45.9) 36 (35.3)

Average size of neighborhood parks (in acres) 57.4 (443.6) 66.1 (444.5) 117.4 (748.8) 0.2 (0.7020)

Average distance to neighborhood parks (in miles) 1.2 (1.3) 1.4 (1.6) 0.9 (0.3) 17.4 (< .0001)

Average quality of neighborhood parks (out of 100) 48.5 (5.6) 48.5 (5.4) 48.5 (6.0) 0.6 (0.4489)

Count of neighborhood parks 18.5 (42.2) 17.3 (41.0) 23.1 (56.3) 0.3 (0.5806)

Bolded values are significant with α = .05

https://doi.org/10.1371/journal.pone.0301549.t001
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Table 2. Predictors of participant park use identified using conditional and marginal models, N = 3090.

Conditional (GLMM) Conditional (GLMM) Marginal (GEE) Marginal (GEE)

Full Model Reduced Model Full Model Reduced Model

Odds Ratio

(95% Confidence

Interval)

p-value Odds Ratio (95%

Confidence Interval)

p-value Odds Ratio

(95% Confidence

Interval)

p-value Odds Ratio

(95% Confidence

Interval)

p-value

Participant Physical activity level

High 1.17 (0.81, 1.69) 0.3958 1.02 (0.72, 1.43) 0.9282

Intermediate 0.99 (0.68, 1.44) 0.9637 1.21 (0.87, 1.68) 0.2593

Low1 - - - -

Race

White - - - - - - - -

Non-White 0.58 (0.40, 0.82) 0.0025 0.57 (0.41, 0.79) 0.0009 0.61 (0.43, 0.87) 0.0058 0.66 (0.48, 0.91) 0.0115

Education

Less than college - - - - - - - -

2–4 year college 1.47 (0.90, 2.40) 0.1247 1.90 (1.20, 3.01) 0.0061 1.59 (1.08, 2.34) 0.0178 2.04 (1.40, 2.97) 0.0002

Advanced degree 1.89 (1.13, 3.15) 0.0154 2.49 (1.55, 3.98) 0.0002 1.97 (1.33, 2.93) 0.0007 2.58 (1.77, 3.74) <

.0001

Gender

Male 0.92 (0.68, 1.26) 0.6063 0.91 (0.69, 1.21) 0.5280

Female - - - -

Age (in years) 0.99 (0.98, 1.00) 0.0199 0.99 (0.98, 1.00) 0.0132

Park Distance to parks 1.75 (1.48, 2.08) <

.0001

1.78 (1.55, 2.05) <

.0001

1.83 (1.48, 2.27) <

.0001

1.95 (1.67, 2.29) <

.0001

Park size 1.00 (1.00, 1.00) 0.0376 1.00 (1.00, 1.00) 0.0142 1.00 (1.00, 1.00) 0.2487

Park quality score 1.01 (1.00, 1.02) 0.1354 1.02 (1.01, 1.03) <

.0001

1.01 (1.00, 1.02) 0.1612 1.02 (1.01, 1.03) 0.0002

Neighborhood Median household

income

High 1.83 (0.97, 3.43) 0.0611 1.82 (1.00, 3.31) 0.0492

Intermediate 1.25 (0.77, 2.02) 0.3601 1.25 (0.81, 1.93) 0.3201

Low1 - - - -

Percent Non-Hispanic

White

1.00 (0.99, 1.00) 0.2727 1.00 (0.99, 1.00) 0.2083

Population density

High1 - - - -

Intermediate 1.15 (0.72, 1.82) 0.5584 1.07 (0.71, 1.62) 0.7532

Low 1.20 (0.72, 1.98) 0.4893 1.21 (0.78, 1.88) 0.3902

Percent of

population > 65yr

1.04 (1.02, 1.06) 0.0004 1.02 (1.01, 1.03) <

.0001

1.03 (1.01, 1.05) 0.0007 1.02 (1.01, 1.03) <

.0001

National Walkability

Index

1.01 (0.95, 1.07) 0.6929 1.02 (0.96, 1.08) 0.5065

Count of parks 0.97 (0.95, 1.00) 0.0224 0.98 (0.96, 1.00) 0.0435

Model fit statistics AIC/BIC 2800.08/2850.87 3244.95/3271.59 - -

QIC - - 2193.81 2463.15

Ten-fold cross

validation

RMSE (fixed & random

effects)

0.32 0.32 0.35 0.36

MAPE (fixed & random

effects)

0.21 0.22 0.52 0.52

RMSE (fixed effects) 0.35 0.36 0.35 0.36

MAPE (fixed effects) 0.52 0.52 0.52 0.52

Akaike Information Criterion (AIC)

Bayesian Information Criterion (BIC)

Root Mean Squared Error (RMSE) & Mean Absolute Percentage Error (MAPE)
1Referent value for categorical predictors

https://doi.org/10.1371/journal.pone.0301549.t002
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park use for Non-White compared to White participants, and 90% increased odds of park use

for those with 2–4 year college and 149% increased odds of park use for those with an

advanced degree compared to less than college (holding other predictors fixed). For the park

level, there were 78% increased odds of park use for every mile distance to neighborhood

parks, 0.07% increased odds of park use for every one unit increase in park acreage, and 2%

increased odds of park use for every one unit increase in park quality for each given participant

(holding other predictors fixed). For the neighborhood level, there were 2% increased odds of

park use for every percent increase in residents over 65 years (holding other predictors fixed,

including random effects).

Significant predictors of park use in the reduced, marginal model included participant race,

participant education, distance to parks, park quality, and percent of the neighborhood popu-

lation age 65 and older (Table 2). For the participant level, on average, there were 34%

decreased odds of park use for Non-White compared to White participants, 104% increased

odds of park use for those with 2–4 year college, and 158% increased odds of park use for those

with an advanced degree compared to less than college. For the park level, on average, there

was 95% increased odds of park use for every mile distance to parks and there were 2%

increased odds of park use for every one unit increase in park quality. For the neighborhood

level, on average, there were 2% greater odds of park use for every one percent increase in resi-

dents over 65 years.

Conducting tenfold cross validation with both fixed and random effects for the conditional

model, Root Mean Squared Error (RMSE) for the conditional model was 0.32 compared to

0.36 for the marginal model (Table 2). Mean Absolute Percentage Error (MAPE) for the condi-

tional model was 0.22, compared to 0.52 for the marginal model (Table 2). RMSE and MAPE

were lower for the conditional model, meaning conditional models had superior predictive

value of results. With only fixed effects for the conditional model, RMSE for the conditional

model was 0.36 compared to 0.36 for the marginal model. MAPE for the conditional model

was 0.52, compared to 0.52 for the marginal model (Table 2). RMSE and MAPE were similar

between conditional and marginal models, so generalizability was comparable.

Discussion

Conditional and marginal models identified similar park use predictors on the individual- and

park-levels. Both models identified participant race, participant education, distance to each

park from residence, park quality, and percentage of the neighborhood population over 65

years as park use predictors. Additionally, the conditional model identified park acreage as a

predictor, although the effects of park acreage on park use in the conditional model were mod-

est. Results from ten-fold cross validation showed that the conditional model exhibited supe-

rior predictive value compared to the marginal model, but they exhibited similar

generalizability.

Previous research that used conditional models have reported that number of nearby parks

[46], neighborhood park space [46], park proximity [46,50], neighborhood walkability [48,49],

park quality [46,50], and violent crime were park use predictors [52]. Few studies indicated

that White and higher income or educated groups were more likely to report park use com-

pared to racial minority populations and lower income or educated populations [46,48]. Our

results showed that increased distance to neighborhood parks related to higher odds of park

use. This contradicts past research showing that perceived park proximity positively impacts

park use [48], and other research establishing a null association between objectively-measured

proximity and park use [70]. This finding could in part be explained by the fact that partici-

pants were only able to report parks used within a ½-mile of their CBG of residence (ranging
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0.01 to 12.7 miles). Even the furthest parks were still somewhat proximal to participant resi-

dences. Though logic may indicate that a close park would result in greater visitation, growing

evidence also shows that park use and park-based PA is influenced by a variety of complex fac-

tors, including facilities present, quality, social interaction, safety, and demographic character-

istics [21,22,41–43,45–49,71–74]. Further, our sample was predominately White and educated,

which may indicate greater access to resources that influence travel patterns to parks, such as

car transportation [75–77].

Findings showing conditional models had superior predictive value compared to marginal

may partially validate the use of conditional modeling in past research [45–52]. Cross valida-

tion results also demonstrated that generalizability is similar between marginal and condi-

tional models when only comparing predicted values using fixed effects. Past research has

compared conditional and marginal approaches [78–80], and stated that marginal (GEE) mod-

els may be favorable since they are robust to misspecification of the covariance structure

[78,79]. Conditional (GLMM) models only provide unbiased interpretation when the correct

random effects has been selected [78], so the significance of the factors that contribute to the

different behavioral outcomes are more reliable from marginal models [78,79]. Our research

introduced ten-fold cross validation as a method for assessing predictive value and generaliz-

ability of these different statistical approaches that can be replicated [69]. For interpretations,

the conditional model slope coefficients reflect the average within neighborhood parks log(OR)

of park use and the marginal model log(OR) reflects probabilities of park use averaged across
all neighborhood parks, both as a result of significant neighborhood, park, and participant level

predictors [38]. The goal of this research was to estimate park use predictors across all neigh-

borhood parks, so the marginal model may be preferable for interpretation purposes.

This study has important research implications. First, we carefully outlined modeling

approaches for handling multi-level predictors for park use, which can be applied to a wide

range of health behavior outcomes that are influenced by environmental/structural factors.

Researchers can use similar procedures as those outlined in this paper to compare analytical

approaches for complex datasets and conduct more appropriate statistical analyses. As meth-

ods for collecting data on multiple levels of influence become more advanced and multi-level

interventions gain popularity, commentary on related analytic approaches is imperative

[12,81–84]. Second, our study provides input on methods for multi-level data collection.

Researchers should consider available tools for multi-level data collection as they plan their

research and incorporate more distal influences of health behaviors (e.g., policies, neighbor-

hoods), such as those outlined in social ecological models [11,12]. Third, our study used impu-

tation methods to account for missing data on the individual level and minimize bias [85].

Future research can employ more rigorous techniques by incorporating follow up phone calls

or engaging communities in data collection to establish commitment/trust [85–88]. Lastly,

researchers can build on our findings by collecting multi-level data longitudinally to under-

stand if there is a temporal relationship between identified predictors and park use. Longitudi-

nal research can employ GEE weighting methods to account for missing data over time (i.e.,

drop outs, skipped time points) [89,90].

Findings from this research can also be used to ameliorate low park use and promote out-

door PA [91,92]. Specifically, determining neighborhood-, park-, and individual-level park use

predictors in diverse geographic locations was a significant practice-based contribution of this

study. In addition, methods used to collect multi-level data on park use predictors in this study

can be employed by local public health practitioners to better understand community-level

resource access. For instance, Maptionnaire.com surveys for individual-level, CPAT for park-

level, and Census Bureau’s ACS data for neighborhood-level data were carefully chosen by our

study team as accessible, high-quality options for multi-level measurement [15,18,60].
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This research had several limitations. While this study offered granular-level data on park

use patterns for adults in four geographically diverse U.S. cities, the survey sample was more

affluent and had higher percent female than the target population and park users may be more

interested and willing to answer a survey regarding local parks, which may have skewed our

sample/estimates. Conversely, ~68% of participants in our study reported being park users,

which closely matches past estimates of park use [93]. Next, some variables may be subject to

over and under-estimation, such as self-reported PA. While this research employed a valid and

reliable questionnaire [94], findings may reflect this potential bias. Finally, despite repeated

recruitment efforts, the survey sample was smaller than anticipated with only about 300 partic-

ipants and 3,000 potential park visits. Since our study used mail-based recruitment and had

low response rates, future research should adopt novel approaches for community recruit-

ment, such as social media-based recruitment which has showed promise for location-based

sampling and recruiting during COVID-19 [95,96].

Conclusions

This study takes an empirical approach to addressing low levels of park use by comparing

methods for analyzing multi-level predictors of park visitation, including both well-known

conditional and more underutilized marginal approaches. Conditional and marginal modeling

techniques identified similar park use predictors and showed similar generalizability, and con-

ditional models showed superior predictive value. This is the first study to compare these pop-

ular analytical approaches to determine multi-level predictors of park use, and calls attention

to underused marginal modeling approaches and its strengths when handling multi-level data.

Future research can intentionally compare key features of conditional and marginal

approaches for analyzing park use and other health behavior data, including their assumptions,

interpretations, and specific applications outlined in this paper. Adding to this, researchers

can employ cross validation techniques to identify instances where marginal models may dis-

play superior or comparable predictive performance.
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