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Abstract

The COVID-19 pandemic prompted governments worldwide to implement a range of con-

tainment measures, including mass gathering restrictions, social distancing, and school

closures. Despite these efforts, vaccines continue to be the safest and most effective

means of combating such viruses. Yet, vaccine hesitancy persists, posing a significant

public health concern, particularly with the emergence of new COVID-19 variants. To

effectively address this issue, timely data is crucial for understanding the various factors

contributing to vaccine hesitancy. While previous research has largely relied on traditional

surveys for this information, recent sources of data, such as social media, have gained

attention. However, the potential of social media data as a reliable proxy for information on

population hesitancy, especially when compared with survey data, remains underex-

plored. This paper aims to bridge this gap. Our approach uses social, demographic, and

economic data to predict vaccine hesitancy levels in the ten most populous US metropoli-

tan areas. We employ machine learning algorithms to compare a set of baseline models

that contain only these variables with models that incorporate survey data and social

media data separately. Our results show that XGBoost algorithm consistently outperforms

Random Forest and Linear Regression, with marginal differences between Random For-

est and XGBoost. This was especially the case with models that incorporate survey or

social media data, thus highlighting the promise of the latter data as a complementary

information source. Results also reveal variations in influential variables across the five

hesitancy classes, such as age, ethnicity, occupation, and political inclination. Further, the

application of models to different MSAs yields mixed results, emphasizing the uniqueness

of communities and the need for complementary data approaches. In summary, this study

underscores social media data’s potential for understanding vaccine hesitancy, empha-

sizes the importance of tailoring interventions to specific communities, and suggests the

value of combining different data sources.
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Introduction

The impact of the COVID-19 pandemic has resulted in governments worldwide having to

implement a slew of different measures to contain the spread of the disease. Such measures,

for example, included canceling mass gathering activities, mandating social distancing, school

closures, and travel restrictions [1]. However, while these efforts have had some efficacy in

slowing disease spread, vaccinations still remain the safest, most effective, and viable approach

[2, 3]. As of January 2024, more than 13.5 billion doses of a COVID-19 vaccine had been

administered globally. This has resulted in about 71% of the world population having received

at least one dose of a vaccine, and 65% being fully vaccinated [4]. Previously, adults 80 years or

older were found to be more predisposed to COVID-19; following which, there was increased

susceptibility in young adults (aged 18–24 years), and among children and adolescents (aged

0–17 years) [5]. Now, several variants later, with new variants on the rise [6] and with recent

COVID-19 outbreaks reported [7], it’s critical more than ever to vaccinate in order to continue

slowing the disease’s transmission. This is vital so that those within the population who cannot

be vaccinated, including the very young and immunocompromised, are still protected [8]. Fur-

ther, while achieving herd immunity may not be feasible due to the evolving nature of the

virus [9, 10], ongoing vaccination efforts remain essential to mitigating its impact and safe-

guarding public health.

Globally, while the total number of people that have received a COVID-19 vaccine has

improved over time, these numbers vary by country. In the US, for example, only about 67%

of the US population have been fully vaccinated [11]. However, at the state level, these num-

bers vary, with the lowest and highest vaccination rates being 52.8% (i.e., Wyoming) and

92.2% (i.e., District of Columbia) respectfully [12], and with even further discrepancy at more

disaggregated spatial levels. Such variations in vaccination rates within and amongst countries

have prompted investigations of the underlying factors that lead people to delay acceptance, or

refuse vaccines despite their availability, a phenomenon referred to as vaccine hesitancy [13].

Factors that have been associated with vaccine hesitancy include ethnicity, working status, reli-

gious beliefs, political views, gender, age, education, income [14], online misinformation [15],

and specific moral values [16]. Yet the majority of such work has depended on conventional

surveys to collect data from individuals or groups using questionnaires or interviews that can

be in-person (e.g., [17]), online (e.g., [18]), or over the phone (e.g., [19]). While these data

sources have contributed to a large and diverse knowledge base on vaccine hesitancy, it’s

important to consider their limitations (e.g., various biases or sample size) which may limit the

applicability and effectiveness of the results (discussed further in the next section).

More recently, newer sources of data, in particular, social media, has emerged as a promis-

ing source of information on vaccine hesitancy. Currently, about 60% of the global population

(i.e., 4.9 billion people) use social media services, such as X (formerly known as Twitter and

henceforth used interchangeably) and Facebook, with this number expected to increase to 5.9

billion people by 2027 [20]. During the COVID pandemic, many people turned to social

media as a way of keeping connected and informed about the pandemic [21]. Twitter, in par-

ticular, saw a 10.3% increase in users from 2019 to 2020 (the peak of pandemic) [22]. Other

social media platforms, such as Facebook, also saw a notable increase of 8.7% [23]. The large

number of users on social media makes it a rich source of information on peoples’ opinion

and sentiments towards various topics, including the pandemic, providing valuable insights

into public attitudes and trends [24, 25].

Although there there exists a substantial body of research that have utilized social media

data to examine various aspects of vaccines, much of the research have focused only on a few

themes. These include analyzing misinformation campaigns and particular communities, such
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as the anti-vaccination movement (e.g., [26, 27]), exploring the network interactions among

hesitant community members (e.g., [28, 29]), understanding sentiments towards vaccines

(e.g., [30, 31]) and the role of social media in influencing public attitude towards them (e.g.,

[32–34]), and analyzing topics of discourse surrounding vaccines (e.g., [35, 36]). However, the

potential of social media data as a viable proxy for understanding vaccine hesitancy and its

underlying determinants, particularly when juxtaposed against traditional survey data,

remains an area that has garnered relatively little attention. Such an investigation is of signifi-

cant importance given the profound and ongoing impacts of COVID-19 on our society, and

the increasing influence of social media in our interconnected digital age. Further, given that

pandemics are expected to continue to occur [37], it is important to continue to identify

opportunities for collecting reliable information at scale, reasonable cost, and in a timely man-

ner to help inform public health strategies and interventions. To address this gap, the primary

research objective of this study is to evaluate the utility of social media data as a proxy measure

for understanding vaccine hesitancy. Additionally, we aim to explore the determinants of vac-

cine hesitancy using modern machine learning approaches across a broader geographical

scope compared to previous work.

Related work

Although research on vaccine hesitancy is not new [38, 39], the advent of the recent COVID-

19 pandemic has sparked a massive resurgence of interest surrounding this topic. In particular

there has been a growing interest in understanding the specific reasons behind individuals’

reluctance to accept the COVID-19 vaccine. Work by [14], for example, delved into the perti-

nent literature and identified several key factors contributing to vaccine hesitancy. These

include apprehension arising from the expedited development of vaccines, the perception of

minimal risk regarding the disease due to prior immunization, skepticism surrounding the

origin and efficacy of existing vaccines, and a pervasive lack of confidence in the institutions

responsible for their production and distribution. Similar findings have been reported by [18,

40–42] with respect to individual determinants of vaccine hesitancy. Other research have

found that a lack of time to get a vaccine [43], distrust in the political entities advocating for

vaccinations [44], infringements on individual autonomy regarding vaccine accessibility at

some locations, conspiracy theories [45], and commercial profiteering [46], further result in

increase hesitancy rates. Studies have additionally reported hesitant populations within more

specialized groups such as medical professionals (e.g., doctors and nurses) [47], and parents

that have not cared for positive COVID-19 cases [48]. Moreover, work by [49, 50] found that

even when provided with scientific information to support the efficacy and safety of vaccines,

some parents still opt to not vaccinate their children. This suggests that much broader social

and cognitive processes may be at play when it comes to making a decision on whether or not

to vaccinate [51].

Most of the aforementioned studies have relied on the use of traditional survey instruments,

through in–person meetings or online surveys, to elicit insights into vaccine hesitancy. How-

ever, these approaches come with inherent limitations that pose challenges in effectively gath-

ering data about vaccines and understanding individuals’ reservations towards them. As it

relates to in–person surveys; these are very labor intensive, time consuming, and require sub-

stantial financial resources [52]. Such costs can be as much as $40 per-person for in-person

surveys, or $22 per person for more cost effective options, such as the use of mobile phones

using interactive voice response [53], and with data collection costs increasing [54]. This

makes it difficult, or at least very costly, to up-scale such work to large geographical scales.
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Another concern that has been recognized is that of biases. In the acquiescence bias, survey

respondents exhibit a tendency to favor positive response options or express a positive senti-

ment in a disproportionately frequent manner [55]. Previous work by [56] using China and

the US as case studies, for example, showed that acquiescence bias can inflate estimated inci-

dence of conspiratorial beliefs and political perceptions by as much as 50%. Related to this is

the dissent bias where people tend to express a negative agreement in a more frequent manner

[57]. Survey results can also be affected by social desirability bias wherein respondents choose

responses that they believe will make them be viewed favorably by others [57].

In addition to these concerns, traditional surveys face a range of challenges related to partic-

ipation and timeliness. Declining response rates over time [58], can lead to issues with unit

non-response, where participants do not respond to all questions or do not provide enough

information for the response to be deemed usable. This is further compounded by the issue of

item non-response, in which participants respond to questions but do not provide a usable

response to a particular item or items [59]. Beyond participation, surveys can suffer from prob-

lems of temporal relevancy, which represents the need to have data collected as close as possi-

ble in time to the event of interest [60, 61]. As such, they must be planned ahead of time,

which would typically mean having knowledge about an event that is either yet to happen, or

the ability to collect participants’ information on short notice following an event. For mass

emergency and rapidly unfolding events, such as natural disasters and epidemics, advanced

prior knowledge may be limited, and participants may otherwise be pre-occupied during these

times to take part in surveys. Further, because surveys typically represent the current view of

participants as of the date of the survey, they are unable to adequately address issues from bias

stemming from experiences that may have occurred prior to the administered survey date

[60]. For example, data collected from people after they have had severe side effects from a vac-

cine may lead to a negative view towards vaccines, and could influence other members within

their social circle to not vaccinate. Collectively, these biases can convolute public opinion,

potentially leading to distorted interpretations of the true beliefs and perceptions landscape.

In light of the shortcomings of traditional surveys, other sources of data have been explored.

One such source is social media data collected from online platforms such as Twitter and Face-

book. Compared to survey data, social media presents several advantages, including the ability

to scale data collection efforts at reasonable cost, permit archival searches to capture more tem-

poral relevant data surrounding events of interest, as well as other relevant information that

were not included in the original survey instrument [60]. With respect to the latter, whereas

surveys tend to be restricted to what is required, thus leading to a higher possibility of issues

with unit and item non-response, the content on social media remains largely unbounded.

This, in turn, can increase the potential for capturing additional useful information about the

particular event or phenomenon that can be of value. These benefits are also expected to

extend to instances of acquiescence and dissent bias as well, with social media allowing for

more freedom of expression [62], compared to the use of poorly constructed survey instru-

ments that typically lead to such issues [63].

Prior research on surveys has demonstrated that respondents experience lower social anxi-

ety and social desirability when participating in online surveys as opposed to face–to–face

interactions, which can be attributed to the heightened anonymity provided by the virtual

environment [64]. In the case of social media platforms, such as Twitter, individuals have the

option to adopt pseudonyms, helping to safeguard their real identity [65] and thereby helping

to reduce these concerns. Further, during the pandemic, many people turned to social media

as a way of combating depression and anxiety manifested from the event; discussing a range of

different topics, including vaccines, along with individuals’ perspectives, beliefs, and attitudes

toward them [45, 66]. This makes social media a rich source of information on vaccine
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hesitancy that can be curated and analysed, providing important insights that can be used to

better understand this issue. Finally, from a more technical perspective, many social media

platforms provide a dedicated Application Programming Interface (API), offering a flexible

pathway for data retrieval that is often not available in conventional survey methodologies

[67].

When it comes to vaccine hesitancy, several studies have explored this subject through the

lens of social media. [68], for example, applied topic modelling to Twitter messages to gather

information on the contributing factors of immunization uptake. That study identified various

factors relating to access (e.g., location of vaccine), affordability (e.g., price of additional ser-

vices), awareness (e.g., knowledge about vaccines), acceptance (e.g., perceived vaccine safety),

activation (e.g., incentives), and assurance (e.g., protection) for variations in uptake. Similar

applications of topic modelling include work by [35, 36, 69, 70]. A number of studies have also

applied sentiment analysis to social media to gauge the general sentiment and attitudes of indi-

viduals towards vaccines and vaccination efforts [30, 71–74]. Work by [30, 31], for instance,

used sentiment analysis to study the public’s emotional stance surrounding the pandemic;

with the public mainly having a negative view. More recently, research by [75] explored the

association between vaccine hesitancy rates and socio-demographic characteristics derived

from survey and social media data (i.e., Twitter). This study achieved notable accuracy levels

for age (91%), gender (75%), and political ideology (77%). Moreover, a comparison of vaccine

hesitancy figures from both survey data and Twitter posts across different time frames yielded

Pearson’s correlation coefficients in the range of 0.57 to 0.8.

Additional work by [26, 27] have studied misinformation campaigns about the pandemic.

Those studies show that anti–vaccination communities on Twitter leaned mainly to the far

right direction of the political spectrum, with references to websites and content with already

questionable credibility. Moreover, [28, 29] studied the network interactions of members in

vaccine–hesitant communities to understand their scale of impact, and the specific topics that

were being propagated on social networks. Such studies, while informative, have mainly used

the textual content embedded within social media posts to understand contributing factors

towards hesitancy, missing the equally important social, demographic, and economic factors

that also play a role in increased hesitancy rates [76].

In an attempt to address this issue, several studies have explored the use of such data for

understanding the determinants of vaccine hesitancy. Studies by [77–79], for example, have

identified low income, race, and level of education, to be important socio-demographic factors

influencing hesitancy. Such work, however, have mainly relied on the use traditional surveys

to collect this data; thus being exposed to some of their aforementioned issues with their use.

Many countries collect large amounts of social, demographic, and economic data as part of

national population census surveys, providing the ability to study such factors at scale. [80], for

example, classified various socio-demographic variables into high and low socioeconomic

groups to study topic prevalence within each group. That study showed that whereas the high

group focused primarily on topics surrounding getting the vaccine, the low group mainly dis-

cussed an urgent need for medical and government support for the vaccine. Other work by

[81] further built several regression models to understand the link between populations of

unvaccinated persons and various socio–economic variables using census tracks data for the

state of Texas in the US. That study reported main determinants to be neighborhoods with

lower socio–economic standing and communities with signs of distrust in government.

Further work by [61] explored the performance of various machine learning algorithms

using Twitter data for predicting vaccine hesitancy at the zip code level in the US. In that

study, variables derived from Twitter messages (i.e., hashtags and sentiment score) were com-

bined with different social, demographic, and economic variables (i.e., real estate value and
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number of different health, educational, professional, scientific and technical service providing

establishments) and used to predict vaccine hesitancy derived from Gallup poll survey data.

That study found that while there was an improvement in model performance with the inclu-

sion of Twitter data, overall performance was low, with reported root mean square error values

between 0.3 and 0.4. More recent work by [82] further analysed the spatial and temporal

impacts of neighbourhood variables on COVID-19 outbreaks. The results of that work showed

the proportion of Hispanic residents, residents with earnings below the poverty line, and resi-

dents ages fifteen to twenty–four to have high correlation with high incidence of disease.

Moreover, [51] extracted topics from both Twitter and survey data to compare co–variation in

belief in vaccine hesitancy. Using tweets to infer stance (i.e., level of agreement or disagree-

ment), the authors concluded that there was good qualitative agreement between the first prin-

cipal component loading and scores using survey and Twitter data.

Most studies combining these forms of social data and social media data, while providing a

more holistic view of vaccine hesitancy, do not directly examine the value of social media, as

compared to the use of survey data, when trying to understand this issue. Several studies have

examined this question for different areas, including, health [83], the economy [84], and enter-

tainment [85], but to the authors’ knowledge, there has been limited work with respect to vac-

cine hesitancy. The one exception is the study by [61]. However, as mentioned earlier, the

reported accuracy values in that study were very low. Also, the data used were limited to real

estate and types of establishments, providing an opportunity to explore other social, demo-

graphic, and economic variables, including those often investigated in related studies on vac-

cine hesitancy. Further, our study covers a much larger geographical area and integrates

modern machine learning and deep learning approaches as part of our methodological

workflow.

Methodology

Our research methodology involves the collection and preprocessing of two primary data

sources: public opinion survey data concerning vaccine hesitancy and relevant Twitter data.

These data were gathered within the geographical scope of the US, focusing specifically on

understanding the attitudes and sentiments towards COVID-19 vaccination among US partic-

ipants. The survey data captured the inclination of individuals receiving a COVID-19 vaccine.

On the other hand, Twitter data, obtained from various repositories, were categorized into

three distinct hesitancy stances: “pro” (favoring vaccines), “anti” (opposing vaccines), or “neu-

tral” (neither favoring nor opposing vaccines). These two data sources were collected to facili-

tate a comparison between baseline models for different hesitancy groups. These models

utilized only socio-demographic and economic variables, while others were augmented with

either survey data or social media data. All data were collected at the county level, which aligns

with the analytical focus of our study. The mixed methods matrix presented in Table 1 pro-

vides an overview of the steps undertaken, illustrating the integration of socio-demographic

and economic data with survey data, and with Twitter data to enhance our understanding of

vaccine hesitancy. These steps (i.e., data collection, data processing, and model development

and comparison) are discussed in greater detail in the subsections that follow.

Data

As previously discussed, studies have reported multiple reasons influencing an individual’s

decision to not vaccinate. Therefore it was important to first identify these variables that con-

tribute to vaccine hesitancy in order to develop our baseline models. To accomplish this, we

first conduct an in-depth literature survey using online scholarly databases that included
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Google Scholar [86], Web of Science [87], and Scopus [88] to identify variables relevant to vac-

cine hesitancy. Following the compilation of variables, applicable data sources were identified

for the US as shown in Table 2. The collection of data was undertaken at the county scale. In

instances where county-level data was unavailable, data at a higher spatial scale (e.g., zip code)

was gathered and subsequently aggregated to the county level using a summative approach.

With the exception of the social vulnerability variable [89], all other were data provided as

counts of people. The social vulnerability variable is an index that measures the level of con-

cern for a difficult roll-out on a range from 0 (lowest concern) to 1 (highest concern). This

data includes multiple characteristics of the people that live in counties.

County level vaccine hesitancy rates were collected from the US Department of Health and

Human Services (HHS) [97]. This data consisted of estimated COVID-19 hesitancy rates for

each county in the US. To generate these estimates, the data initially utilized the Census

Bureau’s Household Pulse Survey (HPS) data at the state level and subsequently extrapolated

county-level rates using the Census Bureau’s 2019 ACS Public Use Microdata Sample (PUMS).

HPS participants were asked if they would receive the COVID-19 vaccine when it became

available. Five responses were captured: “definitely get a vaccine”, “probably get a vaccine”,

“unsure”, “probably not get a vaccine”, and “definitely not get a vaccine”. Responses were used

by HHS to compute data for three hesitancy groups: “strongly hesitant,” “hesitant,” and “hesi-

tant or unsure.” The strongly hesitant group refer to people that stated they would “definitely

not” receive a COVID-19 vaccine. The hesitant group refer to people that indicated that they

would “probably not” or “definitely not” receive a COVID-19 vaccine. Finally, the hesitant or
unsure group refer to people that stated they would “probably not” or “unsure” or “definitely

not” receive a COVID-19 vaccine. Further, we use the HHS data to derive two additional

group measures. The unsure group was derived by subtracting the percentage of people that

Table 1. Mixed methods matrix showing the data, processing, and model development steps used in our study.

Data collection Data processing Model development and comparison Outcome

COVID-19 vaccine

hesitancy rates

(1) Extract rates for different hesitancy

groups at the county level within each

MSA study area.

(1) Hesitancy rates for different groups

used to build our baseline models.

Socio-demographic

and economic

(1) Review literature and identify factors

related to vaccine hesitancy.

(1) Develop a set of baseline models, each representing

a specific hesitancy rate group based on socio-

demographic and economic variables.

(1) Baseline models used for explaining

each hesitancy group.

(2) Identify variables from relevant data

sources.

(3) Extract variables at the county level

within each MSA study area.

(4) Selection of most relevant variables for

each hesitancy group.

Survey (1) Extract percentage of people within

each hesitancy group at the county level

within each MSA study area.

(1) Integrate survey data into each baseline model. (1) Models highlighting the added value

of incorporating survey data to each

baseline model.

Social media (1) Collect labelled tweets on vaccine

hesitancy for different hesitancy stances.

(1) Use labelled tweets to build a multi-class model to

classify tweets for each hesitancy stance.

(1) Models highlighting the added value

of incorporating social media data to each

baseline model.

(2) Collect unlabelled tweets on vaccine

hesitancy.

(2) Apply model to unlabelled tweets.

(3) Extract tweets at the county level within

each MSA study area.

(3) Extract percentage of tweets within each hesitancy

stance at the county level within each MSA study area.

(4) Integrate social media data into each

baseline model.

https://doi.org/10.1371/journal.pone.0301488.t001
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answered that they would “probably not” or “definitely not” receive a COVID-19 vaccine from

the hesitant or unsure group. The probably not group was derived by subtracting the percent-

age of people that stated they were “unsure” or “definitely not” receive a COVID-19 vaccine

from the hesitant or unsure group. Computed values for these hesitancy groups represent our

five target variables in this work.

Survey public opinion data were collected from the Delphi Survey, a product from the Del-

phi group at Carnegie Melon University [98]. The survey asked US participants, if a vaccine to

prevent COVID-19 were offered to you today, would you choose to get vaccinated? Responses

were: (1) Yes I would definitely choose to get vaccinated, (2) Yes I would probably choose to

get vaccinated, (3) No I would probably not choose to get vaccinated, or (4) No I would defi-

nitely not choose to get vaccinated. This data were used by the Delphi group to compute two

measures of hesitancy, and made available for public use. The “somewhat’ group is computed

as the proportion of respondents who answered “no” or “I don’t know” to the second question

Table 2. Data sources used in our study.

Variable Description Data source Reference Year(s)

Age Number of persons in different age groups American Community Survey, US Census

Bureau

[90] 2019

Ethnicity Number of persons in different ethnic groups American Community Survey, US Census

Bureau

[90] 2019

Education Number of persons at different education levels American Community Survey, US Census

Bureau

[90] 2019

Cohabitation Number of couples cohabiting American Community Survey, US Census

Bureau

[90] 2019

Occupation Number of people in different job classifications US Bureau of Labor Statistics [91] 2021

Employment Number of people employed and unemployed US Bureau of Economic Analysis [92] 2021

Income Number of people in different income groups American Community Survey, US Census

Bureau

[90] 2019

Political party Number of people that have voted for a specific political group Harvard Dataverse [93] 2020

COVID-19 cases Number of COVID-19 cases The New York Times [94] 2021

COVID-19

vaccination

Percentage of people that have received the primary dose of a COVID-

19 vaccine

Center for Disease Control [95] 2021

COVID-19

vaccination

Percentage of people that have received the complete series of a

COVID-19 vaccine

Center for Disease Control [95] 2021

Social vulnerability Social Vulnerability Index Center for Disease Control [96] 2021

Social vulnerability Level of concern of vaccine rollout (value between 0 and 1) Surgo Ventures [89] 2021

Survey Percentage of people that are vaccine hesitant US Department of Health and Human

Services

[97] 2021

Survey Percentage of people that answered yes to specific questions on vaccines Delphi survey, Carnegie Mellon University [98] 2022

Social media Twitter posts labelled as Pro-vaccine, Antivaccine, and Neutral Twitter [99] 2015 to

2021

Social media Twitter posts labelled as Pro-vaccine, Antivaccine, and Neutral Twitter [100] 2015 to

2020

Social media Twitter posts labelled as Pro-vaccine, Antivaccine, and Neutral Twitter [101] 2019 to

2021

Social media Twitter posts labelled as Pro or Neutral Twitter [102] 2017 to

2020

Social media Unlabelled Twitter posts Twitter [103] 2016 to

2021

Boundaries Geographic boundaries—217 counties accross 10 metropolitan

statistical areas

American Community Survey, US Census

Bureau

[90] 2021

https://doi.org/10.1371/journal.pone.0301488.t002
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divided by the total number of respondents who gave any answer to the first question. The

“all” group is computed as the proportion is the number of respondents who answered “yes”,

“no” or “I don’t know” to the second question divided by the total number of respondents who

gave any answer to the first question. Percentages of the population in each group were pro-

vided for each US county. There represent our two survey variables.

Our work also leverages two types of Twitter data. Labeled tweets were collected from sev-

eral sources [99–102], which each categorized them as one of three different hesitancy stance-

s:“pro”, “anti”, or “neutral”. The count distribution of these tweets were 8,213, 2,322, 7,017 for

“pro”, “anti”, and “neutral” stances respectfully. In some instances, only tweet IDs were pro-

vided from the online repositories, whereas the corresponding tweeted message was required.

To collect these messages, the tweet ID was utilized to access the Twitter API, and the corre-

sponding text message was saved.

Unlabelled Twitter data consisted of tweets that include not only vaccine hesitancy-related

tweets related to COVID-19, but also discussions about other diseases such as measles,

mumps, and rubella, which similarly sparked online conversations on social media during this

time frame [99, 104, 105]. This diversity in hesitancy across multiple diseases is also reflected

in the labelled data as well. The unlabelled data were collected from the Twitter platform using

their API. A set of keywords that included “vaccine”, “vax”, “vaccine hesitancy”, “vaccine hesi-

tant”, “anti-vax”, “anti-vaxx”, “antivax”, and “antivaxx”, were employed to query the API.

These keywords were chosen based on previous research that delved into vaccine hesitancy

through social media analysis. For instance, [15] utilized both Twitter and Facebook data and

concluded that vaccine-hesitant individuals are more likely to post vaccine misinformation

online compared to other groups. Similarly, [106] reported a significant presence of vaccine-

hesitant groups across popular social media platforms, posting anti-vaccination messages.

Only English tweets within the US were considered in this work. All personally identifiable

information were removed from both labelled and unlabelled tweets and records were anon-

ymized to protect the privacy of individuals. Additionally, to ensure data integrity and consis-

tency, a rigorous data preprocessing pipeline was implemented, including steps such as

removing duplicates, filtering out irrelevant tweets, and standardizing text formats. Moreover,

procedures were carefully taken to ensure compliance with Twitter’s terms of service and use

of data usage agreements.

Finally, we collect administrative boundary data for the ten of the most populous Metropol-

itan Statistical Areas (MSAs) in the US [90]. It is important to note that these MSAs serve as

our primary study areas. They represent well-defined geographic regions with substantial eco-

nomic and social significance, each with their own specific local behaviour and regional trend

[107]. Further, recognizing that social media use tends to be concentrated in regions with

larger populations and greater technological access, known as the digital divide [108–110], the

use of MSA as our study areas helps to reduce such concerns. The MSAs are Atlanta-Sandy

Springs-Alpharetta (GA), Chicago-Naperville-Elgin (IL-IN-WI), Dallas-Fort Worth-Arlington

(TX), Washington-Arlington-Alexandria (DC-VA-MD-WV), Houston-The Woodlands-

Sugar Land (TX), Los Angeles-Long Beach-Anaheim (CA), Miami-Fort Lauderdale-Pompano

Beach (FL), New York-Newark-Jersey City (NY-NJ-PA), Philadelphia-Camden-Wilmington

(PA-NJ-DE-MD), and Phoenix-Mesa-Chandler (AZ). These will henceforth be labelled as

Atlanta (Atl), Chicago (Chi), Dallas (Dal), Washington DC (DC), Houston (Hou), Los Angeles

(LA), Miami (Mia), New York (NYC), Philadelphia (Phl), and Phoenix (Phx), respectfully.

Readers interested in more details on the specific collection and processing steps for the vari-

ous data used in this research are referred to their specific reference in Table 2.
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Data processing

Following the extraction of socio-demograhic and economic variables (discussed in the previ-

ous section), with the exception of the the social vulnerability variable, all other variables were

transformed from the absolute number of individuals within that variable group to a percent-

age value. This was done using total population data for counties provided by the American

Community Survey [90]. Since no information is provided on the number of people or per-

centage of the population within each level of concern sub-category for social vulnerability,

this data could not be transformed into a percentage value. Nonetheless, many studies have

used this variable as a seminal measure to understand vaccine hesitancy (e.g., [111, 112]); thus,

the decision was made to keep it as a variable in this work.

After variables were transformed, there was need to identify the most relevant subset of var-

iables for each baseline hesitancy target group (i.e., strongly hesitant, hesitant, hesitant and

unsure, unsure, and probably not). As emphasized by [113], this process is important for elimi-

nating irrelevant, noisy, or unreliable variables, ultimately improving predictions and/or mini-

mizing model complexity. Moreover, this approach mitigates the risk of over-fitting and

enhances model runtime efficiency. For determining the optimal subset of explanatory vari-

ables for modeling, the BorutaSHAP [114] algorithm was used. This process yielded five dis-

tinct subsets of variables.

The BorutaSHAP algorithm combines the advantages of both the Boruta [115] and SHapley

Additive exPlanations (SHAP) [116] algorithms to identify the most optimal subset of explana-

tory variables. The Boruta algorithm operates through iterative comparison of the importance

of original variables against shadow variables, which are created by shuffling the original vari-

ables. Variables demonstrating significantly lower importance than their shadow counterparts

are excluded from the variable set, while those performing notably better than the shadow vari-

ables are retained [115]. In the context of BorutaSHAP, the SHAP metric is utilized to ascer-

tain variable relevance [117], often resulting in improved overall accuracy compared to Boruta

[118]. Prior research has indicated that BorutaSHAP serves as a reliable feature selection tech-

nique [119–122], making it suitable for application within this study.

Concerning the Twitter data, all unlabelled data were spatially clipped to each respective

MSA study area resulting in an approximate count of five million tweets. To ensure data qual-

ity, tweets further underwent a cleaning process involving the removal of URLs, emails, and

usernames, the expansion of contracted words, and the replacement of emojis with their corre-

sponding textual descriptions as suggested by previous related work [123–125].

The Delphi survey data consisted of two hesitancy groups: ‘somewhat’ and ‘all’. The per-

centage of each group per county was used to compute the corresponding percentage for the

respective MSA. This aggregation involved utilizing the weighted sum of the population per-

centages within each MSA, and computation for each MSA as follows. Let Ci 2 C 8i 2
1; . . . ; n where C is the set of all counties in an MSA. The percentage of interest within the met-

ropolitan statistical area, H(M), is given by:

HðMÞ ¼
Sn

i¼1
ðHðCiÞ � PðCiÞÞ

Sn
i¼1
PðCiÞ

;

where H(M) represents the percentage of the population within an MSA, H(Ci) is the percent-

age of interest for the ith county of the MSA, and P(Ci) is the total number of people for the ith

county of the MSA. Similar to the Twitter data, the computed percentages of hesitant popula-

tion at the MSA level were added as an attribute to each county within the respective MSA.
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Model development and comparison

Leveraging the Twitter labeled dataset with text, a classification model was constructed utiliz-

ing BERTweet [126], a pre-trained English tweet language model [127]. The model develop-

ment followed an 80/20 training/testing split strategy. For model refinement and the

identification of optimal hyperparameters, the Ray-Tune optimization framework, employing

a population-based scheduler, was used in Python [128]. The resulting model achieved an F-

score of 0.83, a metric value consistent with previous studies indicating a good model fit [38,

101, 129, 130]. The developed classification model was then applied to unlabeled data, classify-

ing tweets as “pro”, “anti”, and “neutral” respectfully. Following this, the percentage of tweets

per MSA, for each hesitancy group, was computed. These values were then added as an attri-

bute to all counties within the respective MSA. This was done in order to account for distribu-

tional differences in tweets within MSAs, and to identify their broad regional hesitancy

patterns. Moreover, aggregating the data to a higher geographic scale allows for a larger sample

size, improving the statistical power of the analysis. This is crucial for making confident infer-

ences and identifying meaningful correlations with other variables used in this study.

Next, a series of baseline models, that only contain the social, demographic, and economic

explanatory variables were developed and compared with models that were augmented with

either the survey or social media data. Three distinct modeling techniques were employed for

this comparison: linear regression, random forest regression, and XGBoost regression. These

methods were specifically chosen as they allow for the comparison of similar performance

metrics, namely, R2 and mean absolute value. Additionally, these modeling techniques are

widely utilized in similar contexts and are all available within various open-source Python

packages (i.e., Scikit-Learn [131] for linear regression and random forest, and xgboost [132]

for XGBoost), which were utilized in this study.

For each modeling method, a set of three models aimed at predicting hesitancy were built,

one for each target variable (i.e., ‘strongly hesitant,’ ‘hesitant,’ ‘hesitant and unsure,’ ‘unsure,’

and ‘probably not’). To illustrate, for the ‘strongly hesitant’ group of models, there were three

baseline models, each corresponding to the three modeling techniques employed. Addition-

ally, there were three models that incorporate our survey variables and another three that

incorporate our social media variables for the same target variable, again aligning with the

three modeling techniques. To assess model performance, each model underwent 500 ran-

domized 80/20 training/testing data splits, and their average adjusted R2 accuracy was

recorded.

Similar to recent work by [61], a significance analysis was also carried out to determine the

effectiveness of the best model. We used the Mann-Whitney U test statistic [133] and com-

pared the baseline models against their social media and survey counterparts to determine

whether the performance of these later models can be attributed to chance alone. Specifically

we compute the p-value from this test statistic using the distribution of average R2 values. To

address the potential for inflated significance due to multiple testing, we applied the Bonfer-

roni correction on the p-value threshold of 0.05. This adjustment reduces the p-value threshold

below the 0.05 threshold to account for multiple tests. We found even with the correction that

that there was no change in the significance of our results before and after applying the Bonfer-

roni correction in terms of comparing adjusted R2 value of the models.

Moreover, we assess the extent to which models can be applied generally. To achieve this,

we follow a similar approach to [134], initially partitioning the data by MSA. Subsequently, we

employed all three models (baseline, social media, and survey) for every technique and each

hesitancy group within each MSA study area. This allowed for comprehensive comparisons
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across regions. The evaluation of each model’s effectiveness was based on their respective R2

values.

Results

The primary objective of this study was to evaluate the utility of social media data as a proxy

measure for understanding vaccine hesitancy. This objective is assessed in the first two subsec-

tions that follow, where we compare the performance of models utilizing social media data

with those using survey data. Through this analysis, we aim to determine the effectiveness of

social media data in capturing and predicting vaccine hesitancy trends, along with exploring

the influence of geographic variation.

The secondary goal was to explore the determinants of vaccine hesitancy using modern

machine learning approaches. This objective is assessed in the final subsection, where we

examine the factors contributing to vaccine hesitancy identified by the developed models. By

leveraging machine learning techniques, we aim to identify key determinants such as demo-

graphic variables and socioeconomic factors that influence individuals’ attitudes towards

vaccination.

Model performance and significance analysis

The information presented in Table 3 provides an overview of the performance metrics for

various developed models and techniques. These metrics encompass average root mean

squared error (RMSE), adjusted R2, and the percentage change in adjusted R2 with the addition

of the social media and survey data into the baseline models. The RMSE values demonstrate

strong model fit across all hesitancy models, particularly for the unsure, probably not, and

strongly hesitant models. However, a closer examination of models’ adjusted R2 values reveal

larger variability among these values. Specifically, the range of adjusted R2 values spans from

50% to 95%, highlighting differences both between models and across techniques. The linear

approach has the largest performance range, with adjusted R2 values spanning from 50.4% to

89.5%. The adjusted R2 range for both random forest and XGBoost is comparable, lying

between 75.8% and 94.1% for random forest, and 73.1% and 92.5% for XGBoost. Notably,

XGBoost is the best performing method with an average of 87.2% and a standard deviation of

0.06. Nonetheless, these figures align closely with those of random forest, having an average of

86.9% and a standard deviation of 0.07. Furthermore, XGBoost consistently outperforms the

other two methods across all models, while random forest also demonstrates superior perfor-

mance compared to the linear method for all models.

Turning to the utility of models utilizing social media data versus those leveraging survey

data, Table 3 highlights that, except for the probably not model, models utilizing survey data

consistently outperform both baseline models and those utilizing social media data across all

approaches. For the probably not model, the performance disparity between the XGBoost

model using social media data and its survey data counterpart is marginal at 0.16% higher for

the former. Likewise, with the exception of the unsure model, models using social media data

outperform all baseline models. Concerning the unsure model, linear and random forest base-

line models exhibit better performance, achieving slight increases in R2 values of 5.53% and

0.02%, respectively, in comparison to the social media model. Notably, the performance values

for the linear method remain relatively low, ranging from 55% to 57%. A comparison between

the performance of social media models and those utilizing survey data underscores differ-

ences in the range of 0.16% to 12%. The most substantial differences are observed for the linear

method, with disparities for random forest and XGBoost ranging from 0.15% to 3.1%. More

generally, our findings show that with the additional of social media or survey data, model
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Table 3. Model performance (Bolded values represent the best performing model for each approach).

Method Model RMSE Adjusted R2 % Improvement in Adjusted R2

Hesitant

Linear Baseline 0.0216 0.7384 N/A

Linear Social media 0.0163 0.8480 10.97

Linear Survey 0.0135 0.8952 15.68

Random Forest Baseline 0.0146 0.8771 N/A

Random Forest Social media 0.0123 0.9132 3.62

Random Forest Survey 0.0103 0.9392 6.21

XGBoost Baseline 0.0162 0.8491 N/A

XGBoost Social media 0.0125 0.9113 6.23

XGBoost Survey 0.0115 0.9249 7.58

Unsure

Linear Baseline 0.0091 0.5595 N/A

Linear Social media 0.0097 0.5042 -5.53

Linear Survey 0.0090 0.5673 0.79

Random Forest Baseline 0.0069 0.7582 N/A

Random Forest Social media 0.0068 0.7580 -0.02

Random Forest Survey 0.0068 0.7595 0.13

XGBoost Baseline 0.0071 0.7311 N/A

XGBoost Social media 0.0070 0.7393 0.82

XGBoost Survey 0.0069 0.7503 1.92

Hesitant or unsure

Linear Baseline 0.0247 0.7616 N/A

Linear Social media 0.0240 0.7704 0.88

Linear Survey 0.0172 0.8840 12.23

Random Forest Baseline 0.0184 0.8673 N/A

Random Forest Social media 0.0168 0.8899 2.26

Random Forest Survey 0.0146 0.9145 4.72

XGBoost Baseline 0.0204 0.8393 N/A

XGBoost Social media 0.0172 0.8835 4.42

XGBoost Survey 0.0148 0.9129 7.35

Probably not

Linear Baseline 0.0090 0.6741 N/A

Linear Social media 0.0075 0.7698 9.58

Linear Survey 0.0062 0.8412 16.71

Random Forest Baseline 0.0051 0.8942 N/A

Random Forest Social media 0.0039 0.9391 4.49

Random Forest Survey 0.0038 0.9416 4.74

XGBoost Baseline 0.0061 0.8488 NA

XGBoost Social media 0.0046 0.9164 6.75

XGBoost Survey 0.0046 0.9147 6.59

Strongly hesitant

Linear Baseline 0.0141 0.7270 N/A

Linear Social media 0.0120 0.8008 7.38

Linear Survey 0.0095 0.8734 14.64

Random Forest Baseline 0.0112 0.8308 N/A

Random Forest Social media 0.0097 0.8744 4.36

Random Forest Survey 0.0084 0.9051 7.43

(Continued)
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performance can be improved by as much as 17%, dependent on the specific model and tech-

nique being used.

Additionally, Table 4 shows the outcomes of the significance analysis. This table demon-

strates that models developed for unsure, employing both social media and survey data, exhibit

Table 3. (Continued)

Method Model RMSE Adjusted R2 % Improvement in Adjusted R2

XGBoost Baseline 0.0121 0.8023 N/A

XGBoost Social media 0.0102 0.8597 5.74

XGBoost Survey 0.0091 0.8864 8.41

https://doi.org/10.1371/journal.pone.0301488.t003

Table 4. Significance analysis.

Method Model P-value

Hesitant

Linear Social media 9.57 × 10−108

Linear Survey 8.43 × 10−155

Random Forest Social media 4.47 × 10−18

Random Forest Survey 2.05 × 10−88

XGBoost Social media 3.57 × 10−59

XGBoost Survey 5.49 × 10−99

Unsure

Linear Social media 1

Linear Survey 9.99 × 10−1

Random Forest Social media 9.99 × 10−1

Random Forest Survey 9.99 × 10−1

XGBoost Social media 9.99 × 10−1

XGBoost Survey 3.78 × 10−1

Hesitant or unsure

Linear Social media 3.07 × 10−24

Linear Survey 1.79 × 10−144

Random Forest Social media 1.56 × 10−4

Random Forest Survey 1.42 × 10−50

XGBoost Social media 1.90 × 10−25

XGBoost Survey 1.00 × 10−107

Probably not

Linear Social media 2.33 × 10−78

Linear Survey 3.26 × 10−128

Random Forest Social media 1.47 × 10−43

Random Forest Survey 2.98 × 10−52

XGBoost Social media 3.42 × 10−58

XGBoost Survey 2.79 × 10−58

Strongly hesitant

Linear Social media 1.72 × 10−85

Linear Survey 5.43 × 10−139

Random Forest Social media 2.68 × 10−13

Random Forest Survey 8.84 × 10−62

XGBoost Social media 9.05 × 10−28

XGBoost Survey 4.06 × 10−80

https://doi.org/10.1371/journal.pone.0301488.t004
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p-values well below the 0.05 significance threshold. Compared with the performance outcomes

shown in Table 3, it is evident that the improvements in performance in these unsure models

are minimal compared to other hesitancy models, ranging from 0.13% to 1.92%. Conse-

quently, we accept the null hypothesis in this instance, concluding that these models’ results

can be attributed to random chance. Conversely, all other models present significantly small p-

values, indicating robustness and results that are not contingent on random chance. These

findings parallel the performance metrics in Table 3, wherein the models with the weakest per-

formance are predicated on linear methods. In the context of XGBoost, with the exception of

the probably not hesitancy model, this method continues to outperform all others.

Model generalizability to metropolitan statistical areas

Table 5 shows the performance, measured by R2, of the models applied to their respective

MSAs. The table highlights the performance variation across each MSA. Negative R2 values in

this context indicate that the model’s performance is below average, reflecting poor perfor-

mance. For Miami, Los Angeles, and Phoenix, the performance of all models are particularly

poor in this respect. These MSAs had 4, 2, and 2 counties respectively compared to other the

number of counties in other MSAs that were in the range of 12 to 54. In this case, the lower

amount of counties participating in the training data may skewed the performance to MSAs

with a larger number of counties. For the remaining MSAs, models’ performance is much

higher, with values exceeding 82% on average for random forest and XGBoost. This trend

aligns with the patterns discussed in the previous section, where XGBoost consistently outper-

formed linear regression and random forest methods. It is important to highlight that linear

regression is consistently the least effective modeling method in terms of performance.

Notably, while the distinction between the performances of XGBoost and random forest is

evident, the margin of differentiation is comparatively small. Furthermore, in line with earlier

findings, models incorporating survey data consistently demonstrate superior performance

when juxtaposed against baseline models or models relying on social media data.

Determinants of vaccine hesitancy

Vaccine hesitancy poses a complex and multifaceted challenge that is influenced by multiple

contributing factors. Those factors pertaining to the models investigated within this study are

outlined in Table 6. The table highlights the diverse array of factors operating within distinct

models. In a descending order based on the number of variables are the hesitant or unsure (16

variables), unsure (14 variables), hesitant (13 variables), probably not (7 variables), and

strongly hesitant (7 variables) models respectfully. The factors associated with the hesitant

model primarily revolve around levels of education, cohabitation, occupation, income, politi-

cal inclinations, as well as the prevalence of COVID-19 cases and vaccination rates. A similar

pattern is observed in the unsure model, which also includes ethnicity. On the other hand, the

hesitant or unsure model encompasses a broader spectrum of factors, utilizing most variables

examined in this study, and span categories that include age, ethnicity, education, cohabita-

tion, occupation, income, political leaning, vaccine distribution, and social vulnerability. Fur-

ther, the probably not and strongly hesitant models are very similar, sharing factors linked to

education, occupation, and income. The probably not model also includes employment status

as an important factor.

Discussion

Vaccine hesitancy is a worldwide phenomena that poses a significant challenge to public health

efforts to control or eradicate preventable, but potentially harmful diseases [135]. While not a
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Table 5. MSA model performance (Bolded adjusted R2 values represent the best performing model for each modelling technique and MSA).

Method Model Atl Chi Dal DC Hou LA Mia NYC Phl Phx

Hesitant

Linear Baseline -0.331 0.283 0.211 -1.973 0.495 -27.81 -1.855 0.449 0.273 0.941

Linear Social media 0.517 0.658 0.530 0.076 0.650 0.591 -45.77 0.699 0.480 -0.259

Linear Survey 0.613 0.633 0.631 0.309 0.755 -8.162 -23.16 0.782 0.376 0.178

Random Forest Baseline 0.889 0.851 0.840 0.535 0.709 -19.49 -1.499 0.945 0.787 0.537

Random Forest Social media 0.877 0.885 0.940 0.723 0.839 -0.223 0.684 0.961 0.963 -4.634

Random Forest Survey 0.806 0.971 0.927 0.932 0.924 0.621 -5.010 0.958 0.954 -1.668

XGBoost Baseline 0.918 0.952 0.763 0.962 0.659 0.931 0.988 0.970 0.985 0.999

XGBoost Social media 0.914 0.995 0.934 0.899 0.901 0.974 -1.738 0.957 0.992 -3.026

XGBoost Survey 0.871 0.921 0.979 0.849 0.762 0.996 0.570 0.972 0.987 0.999

Unsure

Linear Baseline 0.515 0.342 0.108 0.554 0.237 -11.75 -0.298 0.512 0.451 -25.29

Linear Social media 0.468 0.424 0.062 0.581 0.301 0.536 -1.613 0.526 0.433 -7.787

Linear Survey 0.644 0.535 0.222 0.479 0.422 -8.372 0.348 0.464 0.450 -14.36

Random Forest Baseline 0.808 0.732 0.795 0.939 0.941 -2.660 0.953 0.896 0.846 -1.314

Random Forest Social media 0.787 0.835 0.954 0.949 0.863 -2.022 0.952 0.948 0.935 -6.930

Random Forest Survey 0.848 0.896 0.949 0.846 0.719 -16.27 0.976 0.904 0.929 -6.406

XGBoost Baseline 0.875 0.941 0.782 0.889 0.955 -4.445 0.981 0.906 0.961 0.988

XGBoost Social media 0.812 0.447 0.991 0.959 0.993 0.940 1.000 0.911 0.961 -1.687

XGBoost Survey 0.809 0.970 0.976 0.959 0.807 0.885 0.989 0.980 0.982 0.997

Hesitant or Unsure

Linear Baseline -0.054 0.250 -0.226 -0.005 0.541 -12.38 -2.045 0.413 -0.128 -6.389

Linear Social media 0.542 0.569 0.343 0.437 0.895 0.699 -16.80 0.261 0.007 -28.28

Linear Survey 0.700 0.654 0.465 0.604 0.773 -3.452 -1.801 0.608 -0.557 -0.669

Random Forest Baseline 0.839 0.936 0.910 0.672 0.953 -4.641 -0.980 0.900 0.768 -1.139

Random Forest Social media 0.854 0.904 0.871 0.875 0.935 -4.434 0.821 0.858 0.836 -0.436

Random Forest Survey 0.909 0.848 0.911 0.889 0.939 0.358 0.494 0.868 0.695 0.269

XGBoost Baseline 0.932 0.970 0.970 0.964 0.831 0.969 0.987 0.958 0.920 0.907

XGBoost Social media 0.841 0.999 0.913 0.963 0.713 0.152 0.995 0.899 0.819 -14.84

XGBoost Survey 0.952 0.901 0.920 0.978 0.974 0.022 -0.324 0.990 0.905 0.998

Probably not

Linear Baseline -1.001 0.253 -0.171 -1.247 0.315 -0.938 -1.808 0.413 0.607 -167.1

Linear Social media 0.305 0.327 0.065 0.275 0.452 -7.702 -79.68 0.492 0.710 -30.51

Linear Survey 0.373 0.727 0.388 0.252 0.843 -13.82 -19.21 0.741 0.339 -136.2

Random Forest Baseline 0.756 0.856 0.879 0.650 0.882 0.770 -0.479 0.972 0.927 -1.385

Random Forest Social media 0.895 0.895 0.871 0.875 0.935 0.437 0.731 0.979 0.877 0.156

Random Forest Survey 0.807 0.970 0.885 0.959 0.878 -1.575 0.590 0.980 0.986 -6.740

XGBoost Baseline 0.689 0.941 0.978 0.609 0.955 0.914 0.915 0.982 0.928 0.259

XGBoost Social media 0.922 0.447 0.767 0.977 0.993 0.754 0.732 0.968 0.981 -4.122

XGBoost Survey 0.952 0.970 0.976 0.931 0.807 0.781 -0.492 0.973 0.922 -3.368

Strongly Hesitant

Linear Baseline -0.134 0.511 0.042 -1.457 0.529 -398.6 -2.061 0.726 0.382 -3.219

Linear Social media 0.572 0.833 0.501 0.030 0.676 -12.52 -30.01 0.710 0.324 -9.771

Linear Survey 0.578 0.907 0.532 0.088 0.654 -116.7 -12.20 0.802 0.215 -2.399

Random Forest Baseline 0.809 0.908 0.794 0.322 0.943 -174.3 -11.65 0.934 0.783 -2.019

Random Forest Social media 0.845 0.969 0.594 0.880 0.906 -23.54 0.478 0.942 0.904 -0.305

Random Forest Survey 0.531 0.822 0.896 0.937 0.866 -11.39 -0.404 0.939 0.697 0.367

(Continued)

PLOS ONE Understanding vaccine hesitancy in the US through social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0301488 June 6, 2024 16 / 30

https://doi.org/10.1371/journal.pone.0301488


new issue, the problem has become more endemic in wake of the COVID-19 pandemic, lead-

ing to millions of people not being vaccinated globally. [136] estimates that within the first

year of the pandemic alone, almost 20 million deaths were averted due to vaccines. Similarly,

within the US, between 2020 and 2021, vaccines were estimated to prevent approximately 27

Table 5. (Continued)

Method Model Atl Chi Dal DC Hou LA Mia NYC Phl Phx

XGBoost Baseline 0.875 0.907 0.975 0.851 0.659 -324.4 0.972 0.842 0.992 0.987

XGBoost Social media 0.812 0.736 0.994 -0.325 0.901 0.471 -0.233 0.707 0.993 0.999

XGBoost Survey 0.809 0.996 0.867 0.917 0.762 0.811 0.642 0.872 0.901 -4.983

https://doi.org/10.1371/journal.pone.0301488.t005

Table 6. Factors related to vaccine hesitancy.

Variable group Variable Hesitant Unsure Hesitant or

unsure

Probably

not

Strongly

hesitant

Age Age less than 18 years ✓

Ethnicity Black population ✓

Ethnicity Asian population ✓

Education High school education ✓

Education Some college degree ✓ ✓ ✓ ✓

Education Associate degree ✓

Education Bachelor degree ✓

Cohabitation Couple cohabitation ✓

Occupation Manufacturing ✓ ✓ ✓ ✓

Occupation Professional, scientific, and management, and administrative and waste

management service

✓ ✓ ✓ ✓ ✓

Occupation Wholesale trade ✓ ✓ ✓ ✓

Occupation Sales and office ✓ ✓

Occupation Self employed ✓

Occupation Finance and insurance, and real estate and rental and leasing ✓

Occupation Transportation and warehousing, and utilities ✓

Occupation Private wage and salary workers ✓ ✓

Employment People employed ✓

Income Per capita income ✓ ✓ ✓ ✓ ✓

Income Income between 25k and 50k ✓ ✓

Political inclination Democrat ✓ ✓ ✓

Political inclination Green

Political inclination Libertarian ✓ ✓ ✓

Political inclination Other political party ✓ ✓ ✓

COVID-19 cases COVID-19 cases ✓

COVID-19

vaccination

Completed primary COVID-19 vaccination series ✓ ✓

COVID-19

vaccination

Completed vaccine series against COVID-19 ✓ ✓

COVID-19

vaccination

Age 65 years and over that have been administered the first vaccine dose ✓

Social vulnerability Social Vulnerability Index ✓

Social vulnerability Level of concern ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0301488.t006
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million infections, 1.6 million hospitalizations, and 235,000 deaths [137], with more than

300,000 deaths being prevented the following year [138]. Further, [139] estimates that for

every one percent decrease in vaccine hesitancy, as much as 45 deaths per million people could

have been prevented during the pandemic, making understanding vaccine hesitancy of key

importance for human survival.

One key issue with understanding vaccine hesitancy is with the speed at which data can be

gathered and analyzed to provide key insights as events unfold. Traditionally, surveys have

been used for this purpose. However, as as discussed earlier on in this paper, this data comes

with it’s own set of caveats. In this study we assessed the use of social media data as a potential

source of insights on vaccine hesitancy, helping to improve the performance of models used

for understanding the determinants surrounding the reluctance to vaccinate when compared

to the use of survey data. However, it is important to note that there are also various limitations

with the use of social media data on it’s own to understand this issue. For example, certain

demographics or socioeconomic groups may be overrepresented or underrepresented [140].

Related is the issue of access bias; not all segments of the population have equal access to social

media platforms or may not actively engage in online discussions. This can result in underrep-

resentation of certain demographics, such as older adults or individuals from low-income

communities, in social media data [141]. Social media algorithms may also prioritize content

that aligns with some users existing beliefs and preferences, reinforcing pre-existing biases and

limiting exposure to diverse perspectives [35]. Moreover, social media data analysis is often

conducted in specific languages, which may introduce language bias. Insights drawn from

social media data may not be applicable to populations that primarily communicate in differ-

ent languages, limiting the generalizability of findings [142]. Nevertheless, although various

data sources and methodologies may present slightly different viewpoints, together they con-

tribute to a thorough comprehension of the extent and reasons behind vaccine hesitancy at a

population level. These varied perspectives function as integral components of a broader puz-

zle, facilitating the synthesis of insights necessary for developing effective strategies to tackle

vaccine hesitancy.

Our results demonstrate that the addition of survey data consistently provides improved

model performance compared to social media data across various forms of hesitancy (i.e., hesi-

tant, unsure, probably not, strongly hesitant) and approaches (i.e., linear regression, random

forest, XGBoost). However, it’s noteworthy that in some cases, this improvement was mar-

ginal, particularly when the XGBoost and random forest techniques were used. This is evi-

denced by our significance analysis, which demonstrate the robustness of these models in

capturing the complexities of hesitancy dynamics.

Additionally, while the generalizability of models to metropolitan statistical areas (MSAs)

was generally satisfactory, there were instances of poor MSA performance, with variations

observed across different methods. XGBoost still continued to be a robust performer relative

to other methods, especially when used in conjunction with survey data. This reinforces the

importance of survey data in improving model accuracy beyond the limitations of baseline or

social media-derived models. Further, within the same locales and for the top performing

models, similar to before, there was marginal difference in model performance between mod-

els that use survey data and those that use social media data, highlighting the promise of social

media data as a valid source data for understanding vaccine hesitancy. Moreover, the observed

performance variations across different MSA locales indicate the influence of additional fac-

tors and unique attributes associated with each locale on model outcomes.

Further, congruent with other work, we found age, ethnicity, education, cohabilitation,

occupation, employment, income, political leaning, number of disease cases, and the distribu-

tion and level of concern for vaccine distribution to be key factors in understanding vaccine
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hesitancy. It’s important to note, however, that these factors were operationalized differently

across the various hesitancy models in this study. This underscores the necessity to consider

these nuances when interpreting and applying the results to address vaccine hesitancy effec-

tively. Age, in particular, was only applicable to the hesitant or unsure model, and specifically,

people less than 18 year of age. Previous work have explored the relationship between age and

ethnicity. For instance, a study by [143] in Ireland and the UK found heightened reluctance to

vaccine in age groups 35-45 and 18-24 for Ireland and UK respectfully. [144] investigated

schoolchildren aged 9-18 and found considerable indecision (37%) about vaccination, while

12.9% answered that they would opt-out to getting a COVID-19 vaccine. The main reasons

given for their reluctance to become vaccinated included distrust of vaccines, government

agencies promoting their uptake, apprehensions about side effects, and perceptions of low per-

sonal risk. Notably, those opting against vaccination demonstrated higher degrees of marginal-

ization and skepticism towards vaccine information, highlighting the necessity for greater

government intervention in addressing these concerns.

The role of ethnicity, specifically the representation of black and Asian populations (pri-

marily originating from East and Southeast Asia, as well as the Indian subcontinent), emerged

as a significant determinant within the unsure and hesitant or unsure models. Previous

research has extensively explored ethnicity, particularly within the context of BAME (black,

Asian, and minority ethnic) communities [145–147]. As pointed out by [148], hesitancy within

this group is in part attributed to factors stemming from their exclusion in clinical vaccine tri-

als [148]. Within this context, however, few studies have examined Asians as an independent

subgroup within the broader framework of BAME research. [149], who focused on the Asian

population as a distinct group in the US, found lower hesitancy compared to Black and His-

panic groups. Similarly, a national survey on COVID-19 vaccine intent among US racial and

ethnic groups by [150] revealed that Asian Americans exhibited the lowest refusal rate (11%),

in contrast to Black African Americans (32%) and American Indian/Alaska Native respon-

dents (29%). Further research by [151], concentrating on ethnic minorities in a longitudinal

study of UK households, found notably varying levels of vaccine hesitancy within Black and

Pakistani/Bangladeshi ethnic groups. Exploring the context of the Black population, [152]

indicated that higher rates of vaccine hesitancy among Black African Americans. According to

[146], this is in part attributed to a lack of trust in medical institutions and concerns about

racial injustice.

Turning now towards education, our findings show a general agreement between educa-

tional attainment and hesitancy across models. Specifically, they show how even a high school

education can influence vaccine indecision, while some college education emerges as the most

notable factor in most models. These findings support other related work in this area. For

instance, [153] demonstrated heightened hesitancy within less-educated communities in high-

income countries. Similarly, [112] observed that individuals with a high school level of educa-

tion or lower were more inclined to exhibit vaccine hesitancy. Other work by [154], in a survey

involving parents in Utah, US, noted that a significant portion of hesitant parents were from

the middle-class and possessed either some college education or a college degree. Furthermore,

several studies have corroborated that individuals with higher education levels or greater afflu-

ence tend to exhibit higher levels of vaccine hesitancy or even a refusal to be vaccinated alto-

gether (e.g., [155–157]).

As it relates to individual household determinants, those with cohabitating couples also

emerged as a significant factor to the hesitant or unsure, and strongly hesitant models respec-

tively. Despite the limited amount of research in this area, most of the existing work show a

decrease in hesitance rates with cohabilitation (e.g., [158–161]. One exception to this is the

work of [162], which in addition to demonstrating increased vaccine hesitancy with
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cohabilitation, also found being a member of the black population and having less than a col-

lege education to be important factors. Additionally, research conducted by [163], focusing on

pregnant women in California, indicated that women with partners classified as essential

workers exhibit a higher likelihood of hesitancy. The authors of this study propose that essen-

tial workers may have been previously exposed to the disease, leading respondents to believe

they may have already developed immunity against COVID-19.

Another noteworthy factor gathered from our findings was occupation. The majority of

variables within this category are associated with roles that support the day-to-day operations

of various businesses, based on occupational classification data provided by the US Bureau of

Labor Statistics [91]. Across most models, these trends manifest within three overarching

occupational groups: Manufacturing, Professional, scientific, and management, and adminis-

trative and waste management services, and Wholesale trade. Work on occupation by [164]

have reported more hesitant populations among older workers (aged 40 to 59) in sectors such

as service and manufacturing, along with those who are unemployed. Similarly, [165], in a

national survey encompassing Japanese adults aged 20 and older, observed reduced likelihood

of vaccination among scientists and researchers. Temporal changes in hesitancy across differ-

ent professions have also been explored in research. For instance, [166] examined shifts in hes-

itancy rates among various professions between January to May, and April to May 2021. The

study highlighted substantial increases in categories such as computer/mathematical (7.3%),

educators (9.0%), healthcare practitioners/technicians, and construction/extraction (45.2%)

professionals. Furthermore, investigations have underscored variations in hesitancy levels

within different healthcare groups [167]. It’s important to note, however, that much of the

existing work on vaccine hesitancy and occupation primarily focuses on roles within the medi-

cal sector, often classified as essential workers. Nevertheless, there remains limited research in

this field [164]. On a related note, being employed was exclusively applicable to the probably

not model. These results are corroborated by the findings of other work such as [48, 152].

However, there has been mixed findings in this respect (e.g., [168]) with further research

needed to explore this issue.

Furthermore, income was shown to be an important factor, and in particular, per capita

income, which displayed significance across all models. Previous investigations into per capita

income have reported higher vaccine hesitancy among lower-income groups in comparison to

their higher-income counterparts [169, 170]. Additionally, [171], in a survey focusing on

parents with children aged 2 to 18, discovered that households with incomes under $100,000

exhibited lower vaccination likelihood than those with incomes of at least $150,000. In a

related work, [172] identified families with both low education and income as reporting

reduced willingness to vaccinate their children. Moreover, [173] established that the odds of

vaccine hesitancy were twice as likely among individuals with middle income compared to

those with lower income. Further, [174] analyzing households pre- and post-pandemic found

that those who had an income of $100,000 or more prior to the pandemic and experienced

income loss during the pandemic displayed heightened levels of hesitancy compared to those

who didn’t face income loss. As for the income range of $25,000 to $50,000 annually, these

were only applicable to the hesitant and hesitant or unsure models, respectively.

Political leaning was a factor applicable to only three models: hesitant, unsure, and hesitant

or unsure, affecting the the same groups. These inclinations encompassed affiliations with the

Democratic, Green, Libertarian, and other political parties, which tended to be of lesser preva-

lence. Research into vaccine hesitancy has delved into these political associations. The majority

of studies indicate that Democrats exhibit lower levels of vaccine hesitancy compared to their

Republican counterparts. For instance, a study by [175] conducted on Americans revealed that

90% of surveyed Democrats had been vaccinated, while 68% of Independents and 58% of
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Republicans displayed more hesitancy. Correspondingly, [135] found that Republican mem-

bers were more inclined to oppose COVID-19 vaccination compared to Democrats. Addi-

tional research by [176] suggests that individuals with conservative views are less likely to trust

scientific and medical experts, demonstrating a greater inclination to perceive vaccines as

unsafe [177] and as a significant health threat [178]. These findings align with the conclusions

drawn by [179], which identified that Conservatives and Republicans exhibited higher hesi-

tancy levels compared to their Libertarian and Democrat counterparts.

The final set of variables concerns health, the level of preparedness, and the degree of con-

cern regarding vaccine distribution at various locations. Most of these variables specifically

apply to the uncertain model, while all models acknowledge the significance of the level of con-

cern. Previous research has reported an association between vaccine uptake in hesitant com-

munities and their level of apprehension regarding the accessibility and distribution of

vaccines [111, 112]. To this end, regions facing greater hurdles in distributing vaccines, as

gauged by the multidimensional CVAC index of concern, tend to exhibit lower vaccination

rates compared to regions with fewer obstacles [180]. In terms of variables related to the num-

ber of COVID-19 cases and primary vaccinations, these findings are relevant to the hesitant

and unsure models. Furthermore, the unsure model identifies the completion of a vaccination

series as a notable factor. Conversely, social vulnerability is only pertinent to the uncertain

model.

The above findings emphasize the complex interplay of diverse variables in shaping vaccine

hesitancy. Factors such as education, ethnicity, age, and political orientation were crucial

determinants across multiple models. These results underscore the importance of comprehen-

sively understanding these factors to develop effective strategies for addressing vaccine hesi-

tancy and promoting widespread vaccination. However, while this study focused on COVID-

19 vaccines, the findings might not be generalizable to other vaccines for a variety of reasons.

These concerns may stem from various factors such as their novelty, the short timeline for clin-

ical trials, and the utilization of new mRNA technology in some of them.

With this being said, our work provides several valuable contributions. First, while the addi-

tion of the survey data resulted in greater model performance in comparison to the social

media data, the speed and scale at which social media data can be collected and analysed

makes it a supplementary source of data/insights on vaccine hesitancy. Second, and related,

the results highlight limitations in using social-based data alone in understanding vaccine hesi-

tancy. In this case, with the addition of the social media or survey data to the social-base data

only models; this resulted in improved performances, as much as 17%. Third, there is an

important link with respect to what is discussed online in cyber-social communities and the

characteristics of the people in the real world. Finally, our approach lays the groundwork for

other similar studies that seek to understand and compare the use of social media and survey

data for other topics such as climate change and the economy.

There were also several limitations identified in this work that provide areas of future work.

First, only 10 MSAs were examined in this study. Future work should therefore examine addi-

tional areas and at greater levels of spatial granularity. Second, working with text data is chal-

lenging, with the potential for different people to interpret the hesitance within text differently.

In this study we did not assess the quality/agreement of the labelled data, which could be a

source of bias in the results. Third, additional sources of social media [181] and survey data

should be investigated, along with different machine learning algorithms [61, 72]). Fourth, as

has been investigated in other research, other metrics derived from social media, such as senti-

ment (e.g., [61]) and stance (e.g., [51]), could be incorporated in a similar analysis. Fifth, this

study exclusively used English tweets; a similar study encompassing multiple languages would

therefore be interesting. Sixth, extending this study to encompass different countries would
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yield valuable insights, considering the potential variations in hesitancy dynamics across

diverse cultural and societal contexts.

Finally, it’s important to note that individuals’ decision to vaccinate or not is influenced by

various factors, including individual capabilities, external opportunities, motivations, beliefs

about necessity and concerns, and perceptions of health threats. Future work should therefore

explore these results in the context of related frameworks, such as the Capability, Opportunity,

Motivation, and Behavior Framework [182], the Necessity-Concerns Framework [183, 184],

and the Health Belief Model [185], to gain a deeper understanding of the complex factors

influencing vaccine hesitancy and inform targeted interventions to address this critical public

health issue. Even with these areas for further exploration, this paper demonstrates the utility

of utilizing both surveys and social media data in understanding vaccine hesitancy across dif-

ferent locations.
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174. Jantzen R, Maltais M, Broët P. Socio-demographic factors associated with COVID-19 vaccine hesi-

tancy among middle-aged adults during the Quebec’s vaccination campaign. Frontiers in Public

Health. 2022; p. 521. https://doi.org/10.3389/fpubh.2022.756037 PMID: 35372193

175. Hamel L, Lopes L, Sparks G, Stokes M, Brodie M. KFF COVID-19 vaccine monitor: April 2021. Kaiser

Family Foundation. 2021; 6.

176. Motta M. The dynamics and political implications of anti-intellectualism in the United States. American

Politics Research. 2018; 46(3):465–498. https://doi.org/10.1177/1532673X17719507

177. Baumgaertner B, Carlisle JE, Justwan F. The influence of political ideology and trust on willingness to vac-

cinate. PloS one. 2018; 13(1):e0191728. https://doi.org/10.1371/journal.pone.0191728 PMID: 29370265

178. Tyson A. Republicans remain far less likely than Democrats to view COVID-19 as a major threat to

public health; 2020.

179. Tyson A, Funk C, Kennedy B, Johnson C. Majority in US says public health benefits of COVID-19

restrictions worth the costs, even as large shares also see downsides; 2021.

180. Mishra A, Sutermaster S, Smittenaar P, Stewart N, Sgaier SK. COVID-19 Vaccine Coverage Index:

Identifying barriers to COVID-19 vaccine uptake across US counties. MedRxiv. 2021; p. 2021–06.

181. Maugeri A, Barchitta M, Agodi A Using google trends to predict COVID-19 vaccinations and monitor

search behaviours about vaccines: A retrospective analysis of italian data Vaccines. 2022; 10(1):119.

https://doi.org/10.3390/vaccines10010119 PMID: 35062780

182. Michie S, Van Stralen MM, West R The behaviour change wheel: a new method for characterising and

designing behaviour change interventions Implementation science. 2021; 6(1):1–12.

183. Phillips LA, Diefenbach MA, Kronish IM, Negron RM, Horowitz CR The necessity-concerns framework:

a multidimensional theory benefits from multidimensional analysis Implementation science. 2014; 48

(1):7–16. https://doi.org/10.1007/s12160-013-9579-2 PMID: 24500078

184. Jones CL, Jensen JD, Scherr CL, Brown NR, Christy K, Weaver J The health belief model as an

explanatory framework in communication research: exploring parallel, serial, and moderated media-

tion Health communication. 2015; 30(6):566–576. https://doi.org/10.1080/10410236.2013.873363

PMID: 25010519

185. Horne R, Chapman SCE, Parham R, Freemantle N, Forbes A, Cooper V Understanding patients’

adherence-related beliefs about medicines prescribed for long-term conditions: a meta-analytic review

of the Necessity-Concerns Framework PloS one. 2013; 8(12):e80633. https://doi.org/10.1371/journal.

pone.0080633 PMID: 24312488

PLOS ONE Understanding vaccine hesitancy in the US through social media

PLOS ONE | https://doi.org/10.1371/journal.pone.0301488 June 6, 2024 30 / 30

https://doi.org/10.1016/j.pmedr.2021.101569
http://www.ncbi.nlm.nih.gov/pubmed/34603943
https://doi.org/10.3390/vaccines9101152
http://www.ncbi.nlm.nih.gov/pubmed/34696260
https://doi.org/10.1186/s41182-021-00393-1
https://doi.org/10.1186/s41182-021-00393-1
http://www.ncbi.nlm.nih.gov/pubmed/34983692
https://doi.org/10.3390/ijerph19031755
https://doi.org/10.3390/ijerph19031755
http://www.ncbi.nlm.nih.gov/pubmed/35162778
https://doi.org/10.15585/mmwr.mm7012e1
http://www.ncbi.nlm.nih.gov/pubmed/33764963
https://doi.org/10.1016/j.vaccine.2021.10.077
http://www.ncbi.nlm.nih.gov/pubmed/34763947
https://doi.org/10.1186/s12889-022-13485-2
https://doi.org/10.3389/fpubh.2022.756037
http://www.ncbi.nlm.nih.gov/pubmed/35372193
https://doi.org/10.1177/1532673X17719507
https://doi.org/10.1371/journal.pone.0191728
http://www.ncbi.nlm.nih.gov/pubmed/29370265
https://doi.org/10.3390/vaccines10010119
http://www.ncbi.nlm.nih.gov/pubmed/35062780
https://doi.org/10.1007/s12160-013-9579-2
http://www.ncbi.nlm.nih.gov/pubmed/24500078
https://doi.org/10.1080/10410236.2013.873363
http://www.ncbi.nlm.nih.gov/pubmed/25010519
https://doi.org/10.1371/journal.pone.0080633
https://doi.org/10.1371/journal.pone.0080633
http://www.ncbi.nlm.nih.gov/pubmed/24312488
https://doi.org/10.1371/journal.pone.0301488

