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Abstract

Perimetry, or visual field test, estimates differential light sensitivity thresholds across many

locations in the visual field (e.g., 54 locations in the 24–2 grid). Recent developments have

shown that an entire visual field may be relatively accurately reconstructed from measure-

ments of a subset of these locations using a linear regression model. Here, we show that

incorporating a dimensionality reduction layer can improve the robustness of this recon-

struction. Specifically, we propose to use principal component analysis to transform the

training dataset to a lower dimensional representation and then use this representation to

reconstruct the visual field. We named our new reconstruction method the transformed-tar-

get principal component regression (TTPCR). When trained on a large dataset, our new

method yielded results comparable with the original linear regression method, demonstrat-

ing that there is no underfitting associated with parameter reduction. However, when trained

on a small dataset, our new method used on average 22% fewer trials to reach the same

error. Our results suggest that dimensionality reduction techniques can improve the robust-

ness of visual field testing reconstruction algorithms.

Introduction

Standard automated perimetry, or visual field test, is an important psychophysical test that

assess the functional integrity of the retina and visual pathway. It reports the differential light

sensitivity thresholds across the retina in units of decibels (dB) at standard grid locations. Peri-

metry is most commonly used for the diagnosis and monitoring of glaucoma, as well as for

other neuro-ophthalmological conditions that may cause visual field defects.

The 24–2 pattern is a commonly used visual field test pattern that consists of a grid of 54

locations. Typically, 3 to 7 stimulus presentations are required at each individual location to

determine its threshold. Thus, a full 24–2 visual field test takes approximately 200 to 350 trials

(3 to 6 minutes) per eye. In today’s automated perimeters, these trials are decided by a com-

puter algorithm, or “strategy.” For example, one strategy is the staircase method in which

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0301419 April 4, 2024 1 / 15

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Shi RB, Eizenman M, Li Y, Wong W

(2024) Improving the robustness of the

Sequentially Optimized Reconstruction Strategy

(SORS) for visual field testing. PLoS ONE 19(4):

e0301419. https://doi.org/10.1371/journal.

pone.0301419

Editor: Nouman Ali, Mirpur University of Science

and Technology, PAKISTAN

Received: May 15, 2023

Accepted: March 15, 2024

Published: April 4, 2024

Peer Review History: PLOS recognizes the

benefits of transparency in the peer review

process; therefore, we enable the publication of

all of the content of peer review and author

responses alongside final, published articles. The

editorial history of this article is available here:

https://doi.org/10.1371/journal.pone.0301419

Copyright: © 2024 Shi et al. This is an open access

article distributed under the terms of the Creative

Commons Attribution License, which permits

unrestricted use, distribution, and reproduction in

any medium, provided the original author and

source are credited.

Data Availability Statement: The dataset used in

this study are from the third party Rotterdam

Ophthalmic Data Repository. Such visual field data

is accessible online via the following link: http://

https://orcid.org/0000-0001-5690-2394
https://orcid.org/0000-0001-5059-0932
https://orcid.org/0000-0002-3900-3140
https://doi.org/10.1371/journal.pone.0301419
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0301419&domain=pdf&date_stamp=2024-04-04
https://doi.org/10.1371/journal.pone.0301419
https://doi.org/10.1371/journal.pone.0301419
https://doi.org/10.1371/journal.pone.0301419
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://www.rodrep.com/longitudinal-glaucomatous-vf-data---description.html


subsequent stimuli are made brighter/dimmer in constant step sizes depending on the sub-

ject’s responses. The intensity at which a reversal in response occurs is reported as the esti-

mated threshold.

Estimating thresholds at 54 locations takes a significant amount of time using traditional

methods. Because a shorter test duration is desirable, the central design goal of perimetry algo-

rithms has been to provide accurate and precise estimates using as few trials as possible. One

approach to save time is quadrant-based “seeding” [1,2]. Quadrant seeding exploits the fact

that thresholds within the same quadrant often have similar thresholds (after adjusting for the

normal hill of vision). In the initial phase of the test, the thresholds at the four center locations

of each quadrant are determined first. Their results are then used to initialize the staircase pro-

cedures at other locations in the same quadrant. Compared to no seeding, quadrant seeding

reduces the overall test duration by 15% to 25% for a mixed glaucomatous/healthy dataset.

Kucur and Sznitman recently introduced a new data-driven seeding algorithm (referred to

as a “meta-strategy”), called Sequentially Optimized Reconstruction Strategy (SORS) [3–5].

SORS reconstructs the visual field using a linear regression model by training on a large data-

set. In other words, this method provides a model for reconstructing an entire visual field from

just a subset of the field. Compared to quadrant-based seeding, SORS has much greater flexi-

bility and is optimized by fitting to a real visual field training dataset. For example, when using

SORS, the initial first four seeding locations are not constrained to be at the center of each

quadrant. Instead, SORS is data-driven and the testing sequence (which location is tested first,

second, third, etc.) is learned automatically. It optimizes the reconstruction model to provide

the best reconstruction error without manual specification or explicit domain knowledge.

Moreover, seeding/reconstruction extends beyond the first four locations. Estimates of the

whole field are incrementally improved whenever new locations are tested. Given the accurate

reconstruction provided by SORS, the authors proposed to terminate the test after testing 36

locations, with comparable accuracy to traditional algorithms, and the test duration is cut by

about 30% as a result [3].

The original SORS uses a sequence of ordinary linear regression models for reconstruction.

This process requires specifying a large number of parameters due to the high dimensional

representation of visual field data (i.e., 54-dimensional for a 24–2 visual field). A common

issue with large machine-learning models with lots of parameters is overfitting. Overfitting

occurs when a trained model is too closely aligned to a limited set of training data points.

When provided with a large training dataset, SORS has been shown to perform well. However,

with smaller training datasets overfitting may become a problem if the model is not robust.

Clinical practice suggests that visual field data may be much lower dimensional in nature.

Clinicians recognize common patterns of glaucomatous visual field defects, such as nasal step,

arcuate defect, tunnel vision, etc. Furthermore, glaucomatous field loss often predominantly

involves either the superior or the inferior hemi-field [6]. Visual field test locations have been

divided previously into a few sectors based on their anatomical relationships with regions of

the optic nerve head. Such sector-based approaches have provided more robust analyses of

visual field thresholds [7,8]. Therefore, a visual field may be seen as a superposition of these

common patterns, rather than 54 independent variables.

If visual field data is indeed lower dimensional, a compressed, lower-dimensional descrip-

tion of visual fields may be automatically derived through mathematical techniques such as

principal component analysis (PCA). Dimensionality reduction techniques have been used

previously as feature extraction techniques in visual field post-processing or classification tasks

[9–14]. We argue that they may also be used to address overfitting in high-dimensional recon-

struction models because a lower-dimensional embedding reduces the overall number of
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model parameters. To the best of our knowledge, dimensionality reduction has not been

applied directly to the process of visual field testing.

In this paper, we investigate two different dimensionality reduction algorithms as an addi-

tional step in the reconstruction model: principal component analysis (PCA) and partial least

squares (PLS). We incorporate these methods and compare the performance against existing

methods (e.g., the original SORS linear regression method) by carrying out simulations across

both large and small training sets and with subjects of varying reliability levels. Our simulation

results demonstrate that dimensionality reduction methods can significantly improve the

robustness of the reconstruction model in a small dataset.

Methods

PCA and PLS for visual field reconstruction is compared against the existing ordinary linear

regression. The methodologies as well as the details concerning the simulations are described

in this section.

Sequentially Optimized Reconstruction Strategy (SORS)

Without loss of generality, we assume that there are 54 test locations (24–2 grid) in a visual

field, denoted as x 2 R54. To train SORS, we assume a series of pre-determined thresholds and

select the next location to test by minimizing the training reconstruction error of the whole

field. This error is calculated using the tested locations and the additionally selected location to

reconstruct the visual field and computing the point-wise mean squared error. The process is

repeated until all locations have been exhausted. For full details, please refer to the original

paper by Kucur and Sznitman [3].

Note that this training method is a greedy algorithm that does not guarantee the exact

global optimal solution (which would require an infeasible, exhaustive search of all possible

combinations and permutations). Nonetheless, Kucur and Sznitman showed that this algo-

rithm outperforms other viable alternatives [3].

At test time, visual field simulations can be performed by testing one location at a time.

However, in real-world applications, testing must be done in small batches (e.g., every four

locations [4]) to avoid querying the same location consecutively. Our simulations here simu-

lated this latter approach, but the results are not significantly different from testing one loca-

tion at a time.

Reconstruction Models for SORS

Three reconstruction models are now described. These methods include the ordinary linear

regression method (used in the original SORS), as well as two dimensionality reduction tech-

niques to be compared with ordinary linear regression.

Linear Regression (LR). The original SORS paper used an ordinary linear regression

model for the reconstruction of visual fields [3]. The reconstructed visual field estimate is

denoted as x̂ 2 R54
such that:

x̂ ¼ Dsþ β Eq 1

Here s represents a vector of thresholds that have already been determined thus far into the

test (a subset of the whole visual field). D 2 R54×S and β 2 R54 represent the weights and bias

trained by linear regression mapping s to a prediction of reconstructed visual field x̂.

Transformed-Target Principal Component Regression (TTCPR). The linear regression

model above does not use any feature extraction or processing. In the transformed-target
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principal component regression (TTPCR) algorithm, we add principal component analysis to

the process to reduce the number of weights and dimensionality of the model. Suppose there is

a training dataset matrix X 2 R54×N of N visual fields each with 54 thresholds. The training is

broken into two distinct steps.

The first step in the training process is to reduce the training matrix X from 54 × N to n ×
N, where n� 54, using principal component analysis (PCA). We denote this reduced low-

dimensional matrix as T 2 R54×n and refer to it as the “embedding” of the visual field data and

n is the “embedding dimension.” The exact PCA algorithm to convert X to T is described in

the next few paragraphs.

The training matrix X consists of column vectors of visual field examples, i.e., X = [x1,x2,. . .,

xN]. Let B 2 R54×N be the original matrix with mean, μ, subtracted from each column (i.e.,

each visual field) in X.

B ¼ x1 � μ; x2 � μ; . . . ; xN � μ½ � Eq 2

Note that B has the same dimensions as X. Let the covariance matrix S 2 R54×54 be defined as:

S ¼
1

N � 1
BBT Eq 3

S is always a symmetric matrix. There exists an eigendecomposition such that

S ¼
1

N � 1
VLVT Eq 4

where Λ 2 R54×54 is a diagonal matrix of non-increasing eigenvalues of S and corresponding

columns of V 2R54×54 are eigenvectors of S of non-increasing significance. The top four eigen-

vectors (i.e., first four columns of V) in the Rotterdam glaucomatous visual field dataset are

visualized later in results and may be interpreted as representing archetypical visual field pat-

terns in the dataset (“eigen-visual fields”). The significance of these fields will be discussed

later.

Let W be the matrix constructed by taking the top n eigenvectors (first n column vectors) of V,

i.e., W = [v1,v2,. . .,vn] 2 R54×n. Finally, T can be calculated from the original training dataset as:

T ¼WTB 2 Rn�N Eq 5

The second step in the training process is to train a linear regression model between the

input s and output t̂ , where t̂ is an estimate of embedding (column vector in T) reconstructed

from a vector of thresholds that have already been determined thus far into the test s.

t̂ ¼ Dsþ β Eq 6

This is similar to Eq 1 above. The difference is that in Eq 1, the linear regression model esti-

mates the visual fields x̂ directly, while in the TTPCR the linear regression model only esti-

mates the embeddings t̂ . These embeddings are then mapped to a full visual field estimate x̂
using the PCA relationships that were learnt during training. That is, at test time, the visual

field is reconstructed as:

x̂ ¼W t̂ þ μ ¼WðDsþ βÞ þ μ Eq 7

We specifically named this model “transformed-target” principal component regression to

avoid confusion with standard principal component regression where the input is transformed

by PCA. In our case, the target output is transformed by PCA and the linear regression models

are fitted to reconstruct the embeddings.
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The TTPCR structure includes embeddings extraction and linear regression. The TTPCR

structure is fast to train because it has a closed-form solution, but the embeddings extracted

are not guaranteed to be optimal for the reconstruction task.

Partial Least Squares (PLS) regression. Partial least squares (PLS) is a different

dimensionality reduction technique which computes the embeddings by directly minimizing

the reconstruction error. Therefore, it can provide theoretically better performance than

TTPCR. PLS uses the following model:

x̂ ¼WDsþ β Eq 8

Where D 2 Rn×S and W 2 R54×n are two matrices with constrained rank n� 54 to be

trained. Here n is the embedding dimension and is equivalent to the n used in PCA above.

Unlike TTPCR, PLS does not have closed-form optimal solution for W or D, so it requires

iterative training and is slower. The PLS structure resembles a two-layer artificial neural net-

work without non-linear activation.

The network architectures of LR, TTPCR, and PLS are illustrated in Fig 1.

Comparison baseline models. We implemented two additional methods as baseline

models for comparison.

First, we simulated a situation where no seeding/reconstruction procedure was used, and

each location was considered independently. To be consistent with the SORS framework, the

values at untested locations were simply set by the expected values of the hill of vision. These

Fig 1. Illustration of the linear regression (LR), transformed-target principal component regression (TTPCR),

and partial least squares (PLS) methods. Note that while only one general diagram is shown for each model, for

SORS in fact many models are trained until the optimal model is found for reconstruction from S = 1, 2, . . ., 53 to 54

locations. In TTPCR, the second PCA layer is trained once and frozen for all cases of S. This contrasts with PLS, where

both layers are optimized for each model.

https://doi.org/10.1371/journal.pone.0301419.g001
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values were derived as the mean of the sensitivity thresholds at these locations in the training

dataset. We denoted this as the “mean” (hill of vision) reconstruction method.

Second, we simulated the commonly used “quadrant” seeding method. In this method, the

centers of the four quadrants (±9˚, ±9˚) were tested first. Then, the tested locations’ neighbors

started with the same deviation from the expected normal hill of vision as the already tested

quadrants’ locations. This was described in more detail by Turpin et al. [2] (See Turpin’s Fig 1).

Simulation

We trained and examined the reconstruction error using SORS together with LR, TTPCR,

PLS, mean, and quadrant reconstruction models using the 278 eyes with 24–2 visual fields in

the Rotterdam longitudinal glaucomatous visual field dataset, which is the same dataset as in

previous work [3,15]. The Rotterdam dataset encompasses a wide variety of glaucomatous pat-

terns and has repeated measurements, ensuring the representativeness of the dataset to real-

life conditions.

The point-wise root-mean-square error (RMSE) of a visual field estimate is defined as:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

54

X54

i¼1

xi � x̂ið Þ
2

s

Eq 9

Where xi and x̂i are the true and estimated/reconstructed thresholds at location i, respec-

tively. Point-wise RMSE is used to evaluate the accuracy of the result, while number of trials is

used for test duration.

Two cross-validation approaches were trained and evaluated:

1. Small training set with 5-fold cross-validation (using 20% for training and 80% for testing);

2. Large training set with 10-fold cross-validation (using 90% for training and 10% for

testing).

These two conditions were used to investigate any signs of overfitting or underfitting by the

testing methods. Overfitting can occur due to the large number of parameters used in the

SORS linear regression model, making the model fit too closely to the training data but in case

of overfitting it will fail to generalize to unseen testing data. Overfitting may be observed in the

small training dataset when the algorithm sees only a limited number of visual fields. Underfit-

ting is the reverse problem where there are too few parameters to fit the actual data and can be

observed when there are large errors in both the training and testing datasets. Finally, there is a

difference in the number of folds between the two training sets. While the number of folds

affects the variance of the results, it will be clear from our results that this does not pose a

problem.

Threshold estimation at a single location was implemented using a Bayesian method (Zippy

Estimation by Sequential Testing, ZEST) [2,16,17]. (Additional results using 4–2 Staircase are

shown in the S1 and S2 Figs) The implementations are consistent with previous studies [2].

The prior probability mass function was empirically derived from histograms of the input

training data [2,16,17]. The ZEST strategy was set to terminate after the standard deviation

reaches<2.0 dB and the mean of the probability mass function was returned as the estimate.

We present Monte Carlo visual field testing simulation results from a reliable responder

with 3% false positive rate and 3% false negative rate. (Additionally, results from less reliable

responders with 15% false positive rate and 3% false negative rate, as well as 15% false positive

rate and 15% false negative rate, are included in the S3 and S4 Figs) The psychometric function

was a piece-wise linear function approximation as previously described by Turpin et al. [2].
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Linear regression, PCA, Transformed Target Regressor, PLS, and the “mean” reconstruc-

tion method (“Dummy Regressor”) were implemented using Scikit-learn version 1.0.2 [18].

Implementations of these visual field strategies can be found in our open-source PyVF library

available at https://vf.shirunjie.com. The dataset to reproduce the results is publicly available in

the Rotterdam Ophthalmic Data Repository at http://www.rodrep.com/data-sets.html.

Results

This section details Monte Carlo simulation results with cross-validation using the Rotterdam

dataset. First, we explore how the results vary with embedding dimension. After establishing

an optimal embedding dimension, we examine the error of reconstruction as a function of the

number of tested locations. Finally, we compare the sequence of testing locations generated

from different reconstruction methods.

Effect of embedding dimension on SORS-TTPCR and SORS-PLS testing

error

Fig 2 shows the performance after testing 36 locations using the SORS strategy with TTPCR

and PLS versus the embedding dimension (the embedding dimension refers to either the num-

ber of principal components in PCA or the dimension of the intermediate representation in

PLS) [19].

The left panel shows the case when a small training dataset is used (20% of the full dataset

or about 56 eyes). The optimal testing error is achieved with an embedding dimension of

around 8–12. With larger embedding, even though the training error remains the same, the

testing error actually increases with additional parameters, indicating overfitting [19]. In the

limit when the embedding dimension is equal to 54 (i.e., same as the dimensionality of the 24–

2 field), both TTPCR and PLS become mathematically equivalent to LR, clearly demonstrating

that overfitting occurs for SORS with LR when trained with a small training dataset.

The right panel shows when a large training dataset is used (90% of the full dataset or about

250 eyes). In this case, there is no systematic overfitting even when 54 dimensions are used.

The original SORS paper only evaluated this case of a large training dataset.

Fig 2. Point-wise RMSE as a function of the embedding dimension (number of principal components) with TTPCR and PLS after testing 36 locations in a reliable

responder (3% false positive and 3% false negative). (Left) Cross-validation results with a small (20%) training dataset. Testing error is much larger than training error

when the embedding dimension is large. (Right) Cross-validation results with a large (90%) training dataset. Testing error is similar to training error. TTPCR performs

similarly to PLS in all cases.

https://doi.org/10.1371/journal.pone.0301419.g002
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From this, we can draw the following conclusions: (1) Both TTPCR and PLS yield approxi-

mately the same performance, despite the theoretical advantage of PLS. Since TTPCR is much

faster to train (TTPCR has a closed-form solution while PLS must be trained iteratively), it is

the better choice. (2) An embedding dimension of 8 with TTPCR is practically sufficient to

achieve the best performance in both the small and large training dataset cases. (3) LR, which

is equivalent to using the full 54 dimensions for TTPCR, performs well only with large training

datasets but not with small training datasets. Since dimensionality reduction does not impede

performance with large training datasets, it is suitable for general use and will work even when

only small datasets are available.

Comparison of SORS models

Next, we compare the performance of the different reconstruction models as a function of the

number of determined thresholds. A model that achieves a lower reconstruction error with

fewer determined locations is more efficient. Given the findings from the previous section, we

will only present TTPCR with 8 dimensions in the following evaluations.

Fig 3 compares the testing performance of TTPCR and LR against the two baseline models

(“Quadrant” and “Mean”). The simulation results show that the performance of TTPCR is

robust against changes in the size of the training dataset. When using the large training dataset,

after testing 36 locations, TTPCR achieves 2.00 dB point-wise RMSE in 139 trials, and this per-

formance is essentially identical to that of LR (1.96 dB in 139 trials). (see gray dotted lines in

Fig 3C and 3D) With the small training dataset, after testing 36 locations, TTPCR achieves

2.36 dB point-wise RMSE in 148 trials (see Fig 3A and 3B), which is not much worse than the

performance when trained with the large dataset. As such, the dimensionality reduction tech-

nique used in TTPCR is robust to training dataset sizes and these results demonstrate that it

can be used with a small training dataset with as few as 50–60 eyes.

Fig 3. Point-wise RMSE (A and C) and number of trials (B and D) as a function of number of tested locations with TTPCR, LR,

Quadrant, and Mean. Cross-validation results of using 20% for training (A and B, small dataset) and 90% for training (C and D,

large dataset).

https://doi.org/10.1371/journal.pone.0301419.g003
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By contrast, the performance of LR is worse when using the small training dataset com-

pared to using the large training dataset. After testing 36 locations, LR has a higher RMSE of

2.88 dB in more trials (152 trials). (See Fig 3A and 3B) In order to achieve the same 2.36 dB

reconstruction error as TTPCR, LR would require testing 46 locations with 190 trials, making

the test 29% longer. Similar observations can be drawn across all disease severity levels. Fig 4

shows the error and number of trials using a small training dataset for TTPCR(36), LR(36),

and LR(46) (Note: the numbers 36 and 46 indicate the number of locations tested and used for

reconstruction) in three severity groups: mild: MD>−6 dB; moderate: −12<MD�−6 dB;

severe: MD�−12 dB. The same trend is observed across all three severity levels. This is

explained by the fact that the additional parameters in LR reconstruction compared to TTPCR

reconstruction require more training data.

Additionally, we have carried out the same simulation and analyses using the staircase

thresholding strategy and arrive at the same conclusions. Please see the S1 and S2 Figs.

Optimized test sequences

Unlike traditional testing methods where the test sequence is randomly shuffled at test time,

the SORS method pre-determines the optimal sequence of locations for testing based on the

training data. From this, we analyzed the optimal sequence for each method which is shown in

Fig 5. Examining these different sequence, we make the following observations.

First, the quadrant-seeding growth map is significantly different from LR’s test sequence.

Quadrant-seeding tests the center of the quadrants (±9˚, ±9˚) first and then tests locations that

neighbor these centers. This whole procedure is manually designed. With LR, the first four

locations are sampled from four distinct quadrants, and the next four locations (5–8) are also

from four distinct quadrants. However, these are not necessarily the centers of the quadrants

Fig 4. Distribution of point-wise RMSE (A, C, E) and test duration (B, D, F) after training on the small dataset using TTPCR and LR in

different disease severities. When both are terminated after 36 locations, TTPCR(36) (blue) achieves lower RMSE than LR(36) (orange)

(p<0.0001 for all severities). LR(46) (green) is able to achieve similar accuracy as TTPCR(36) (blue) but is 29% longer on average

(p<0.0001 for all severities).

https://doi.org/10.1371/journal.pone.0301419.g004
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but are instead optimized empirically using the training data. As such, this suggests that there

is some validity to the idea of quadrant seeding, but it is not likely optimal in terms of recon-

struction error.

Second, despite differences in reconstruction models (LR, TTPCR, and PLS), the optimal

test sequences across all methods are mostly identical. The first 20 locations (red and blue loca-

tions in Fig 5‘s LR, TTPCR and PLS) are almost the same. This similarity of test sequences

demonstrates that, despite dimensionality reduction from 54 to 8 dimensions, TTPCR and

PLS are able to reproduce the results from LR using much fewer parameters.

Compressibility of visual fields and interpretation of principal components

Apart from improving the robustness of reconstruction models, another benefit of using

dimensionality reduction technique is that it allow easy visualization and interpretation of the

embedding layer. In PCA, the dataset is projected into a lower dimensional subspace defined

by the principal components. These principal components represent the most important pat-

terns that explain the most variance in the dataset. The right panel of Fig 6 visualizes the top 4

principal components. The first component seems to represent the contrast between the over-

all height of the field and the most common blind spot location in the 24–2 grid, (+15˚, −3˚).

The second component seems to represent a general scotoma/depression pattern in the supe-

rior or the inferior hemifield. Note that the coefficient for each principal component can be

positive or negative, so the second component is able to mathematically represent decreased

sensitivity in either hemifield. The third and fourth components appear to bear some

Fig 5. Order of locations tested in the SORS algorithm using four different reconstruction models. The first four locations

are marked in red, the next 16 locations in blue, and the following 16 locations in green. Top row, left: Using the mean (hill-

of-vision) estimator for untested locations in SORS essentially results in testing locations with the largest variances to locations

with the smallest variances. Right: The traditional quadrant growth map first tests the four quadrant centers (marked in red),

and then “grows” their deviations from normal values to neighboring locations. Bottom row, left to right: LR, TTPCR, and

PLS models learn a sequentially optimized order of testing based on the training data. In the presented sequences, both

TTPCR and PLS used an 8-dimensional embedding, while LR is 54-dimensional.

https://doi.org/10.1371/journal.pone.0301419.g005
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resemblance to the Garway-Health visual field sectors [8]. These sectors were constructed

based on their anatomical relationships with regions of the optic nerve head and have been

used extensively in visual field post-analysis, but not utilized in visual field testing strategies.

The PCA approach here is equivalent to the classical example of “eigen-faces” for facial recog-

nition [20]. The principal components in Fig 6 may be thought of as “eigen-visual fields.”

While using the first four components may capture most of the variance inside the visual

field dataset, using more components will always capture more of the variance and achieve

lower reconstruction error. However, the marginal benefit of adding more components dimin-

ishes. The left panel of Fig 6 shows this trend, i.e., the reconstruction error using 1, 2, 3, . . ., 54

principal components to reconstruct the original dataset. A lower error suggests that the data

can be represented using the principal component embedding with higher fidelity. Zero error

can only be achieved by keeping all 54 components, but for a lossy compression, the marginal

benefit of keeping the principal components past around 8–12 components is much lower

than the first few components. This explains why an 8-dimensional embedding was found to

be highly effective and efficient.

We also break down the reconstruction error by the severity of visual fields (different curves

in the left panel of Fig 6). Unsurprisingly, healthier visual fields (orange) are easier to precisely

reconstruct than visual fields with more significant defects (green and red). This is because

mathematically a normal visual field that resembles the normal hill of vision only requires one

parameter to describe, i.e., offset from a standard hill of vision. When using 8 principal compo-

nents, the point-wise reconstruction RMSE when tested on all, mild, moderate, and severe

visual fields are 2.9, 1.9, 3.3, and 3.6 dB, respectively.

Discussion

In this paper, we introduced dimensionality reduction in the SORS meta-strategy’s visual field

reconstruction models. The original SORS approach used a 54-dimensional linear regression

Fig 6. (Left) Point-wise RMSE of PCA reconstruction as a function of embedding dimension. Principal components were trained on the full dataset and then the PCA

reconstruction error is evaluated on all, mild (MD>−6 dB), moderate (−12<MD<−6 dB), and severe (MD<−12 dB) data. (Right) Visualization of the top four

principal components superimposed on the Garway-Heath visual field sectors.

https://doi.org/10.1371/journal.pone.0301419.g006
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model to reconstruct the 24–2 visual fields. We showed that this method can suffer from over-

fitting when the training dataset is small. In our proposed TTPCR method, an 8-dimensional

embedding was used to build a more robust reconstruction model that performs better and

does not overfit for small training datasets, while performing similarly for large training data-

sets. This low-dimensional embedding is obtained from the original visual field dataset using

transformed-target PCA.

Visual field data, in its usual format, is high dimensional. In the case of a 24–2 testing grid,

each visual field is a 54-dimensional vector. However, from clinical and anatomical observa-

tions, we know that there are significant correlations between visual field locations. For exam-

ple, in the Rotterdam longitudinal glaucomatous visual field dataset, thresholds of neighboring

24–2 locations in the same hemifield often have Pearson correlation coefficients that are

greater than 0.9. Such high degree of linear correlations imply redundancy in glaucomatous

visual field patterns, and thus a high degree of data compressibility. More rigorously, this

redundancy was demonstrated in the left panel of Fig 6 where only a small number of principal

components are necessary to achieve a good reconstruction of a visual field. The reconstruc-

tion errors in mild, moderate, and severe eyes using 8 principal components are 1.9, 3.3, and

3.6 dB which are better than the expected visual field long-term variability (2.8, 4.3, and 4.0

dB) in the Rotterdam dataset.

Using this idea, we improved upon the ordinary LR model by investigating two dimension-

ality-reducing methods that produce low dimensional embeddings in the reconstruction pro-

cess, TTPCR and PLS. Both TTPCR and PLS, when selected with an appropriate number of

dimensions (e.g., 8 dimensions) demonstrate robustness against overfitting regardless of

patient reliability and disease severity and perform with the same efficacy as ordinary LR when

there is a large dataset.

TTPCR was chosen over PLS due to the reduced training time while maintaining similar

reconstruction performance. Unlike typical principal component regression where the input is

transformed for the TTPCR we transformed the output (target) into principal component

space. Since the training target remains the same during the entire SORS training, this princi-

pal component transformation only needs to be computed once for the training target, so it

does not impact the overall training time compared to LR. In comparison, PLS needs to be

trained iteratively and is not guaranteed to converge quickly, making the training process

much less efficient.

Both TTPCR and PLS are linear methods. We have also investigated non-linear dimension-

ality-reducing methods, such as an artificial neural network-based autoencoder. Although

such deeper, non-linear artificial neural network models are theoretically more powerful, it

did not provide superior performance for the visual field reconstruction task. S5 Fig shows the

reconstruction performance of a non-linear artificial neural network-based autoencoder. As

can be seen, the performance is generally not better than the reconstruction performance of

PCA (i.e., linear autoencoder) in the left panel of Fig 6. This suggests that even though non-lin-

ear techniques can theoretically express much more complex relationships between the input

and output, linear models are sufficient to capture most of the relationship between thresholds

within a visual field. This also agrees with the aforementioned observation that the Pearson

correlation between visual field thresholds at different locations are very high. A larger artifi-

cial neural network, such as the ones used in more complicated algorithms [21], may provide a

better performance, but defeats the practicality of a simple and robust method. Similarly, we

have also tried ensembled-based methods, such as random forest and gradient boosting, which

also has the capability to reduce overfitting, but they did not offer superior performance than

TTPCR and PLS, and took much longer to train. While convolutional neural network may
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seem like a natural choice for pricing local visual field patterns, the sparness of the SORS sam-

pling process prohibits any convolution operations.

Traditionally, improvements in visual field testing were made through developing more

efficient single-location testing strategies. Bayesian strategies like ZEST are close to optimal so

far as determining a single location’s threshold is concerned. As a result, to obtain further

reductions in testing times, many recent advances have come from exploiting the underlying

spatial pattern of visual field thresholds. Quadrant seeding can be seen as the original idea in

this direction by exploiting similarly in threshold deviation within the same quadrant. More

recent ideas include spatially weighted likelihoods in ZEST (SWeLZ) [22], and spatial entropy

pursuit (SEP) [23]. Both methods require the spatial relationships between locations to be

manually pre-defined in a graph. In SWeLZ, the edge weight between two locations specifies

the strength of relationship between these two locations. In SEP, the spatial graph is used to

model the visual field as a “conditional random field” to compute estimates for untested

locations.

SORS generalizes the idea of seeding to a data-driven paradigm. Unlike the strategies men-

tioned above, the spatial graph does not need to be manually specified, but, is automatically

learned and optimized for reconstruction. Therefore, SORS can be rapidly deployed for recon-

struction of other visual field patterns (i.e., for different diseases) and clinical usages. For

example, for neuro-ophthalmology testing, one simply needs to re-train SORS on a corre-

sponding dataset and does not need to manually re-design the strategy [24,25]. With the

TTPCR reconstruction method proposed here, a small training dataset may be sufficient to

achieve very good performance.

Conclusions

The reconstruction-based visual field testing meta-strategy SORS can be further optimized

through dimensionality reduction techniques like principle component analysis. In our pro-

posed “transformed-target principal component regression” (TTPCR) model, the reconstruc-

tion of the visual field can be achieved robustly using only the top 8 principal components for

a wide range of conditions without loss of accuracy when compared with the original ordinary

linear regression model for SORS. Therefore, TTPCR can be used as a more efficient, robust

replacement for ordinary linear regression in visual field reconstruction. Further work may

wish to test this idea on visual field datasets of diseases other than glaucoma.
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S5 Fig. Precision of autoencoder reconstruction on the Rotterdam dataset as a function of

number of principal components used. The autoencoder was trained on the full dataset and

tested on all, mild (MD>−6 dB), moderate (−12<MD<−6 dB), and severe (MD<−12 dB)

data. The autoencoder has the following architecture: input!54 hidden units!n-dimensional

embedding!54 hidden units!reconstructed input.

(PDF)
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4. Hoehn R, Häckel S, Kucur S, Iliev ME, Abegg M, Sznitman R. Evaluation of Sequentially Optimized

Reconstruction Strategy in visual field testing in normal subjects and glaucoma patients. Invest Ophthal-

mol Vis Sci. 2019; 60: 2477.
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