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Abstract

Background

In the search for better anticancer drugs, computer-aided drug design (CADD) techniques
play an indispensable role in facilitating the lengthy and costly drug discovery process espe-
cially when natural products are involved. Anthraquinone is one of the most widely-recog-
nized natural products with anticancer properties. This review aimed to systematically
assess and synthesize evidence on the utilization of CADD techniques centered on the
anthraquinone scaffold for cancer treatment.

Methods

The conduct and reporting of this review were done in accordance to the Preferred Report-
ing Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline. The proto-
col was registered in the “International prospective register of systematic reviews” database
(PROSPERO: CRD42023432904) and also published recently. The search strategy was
designed based on the combination of concept 1 “CADD or virtual screening”, concept 2
“anthraquinone” and concept 3 “cancer’. The search was executed in PubMed, Scopus,
Web of Science and MedRxiv on 30 June 2023.

Results

Databases searching retrieved a total of 317 records. After deduplication and applying the
eligibility criteria, the final review ended up with 32 articles in which 3 articles were found by
citation searching. The CADD methods used in the studies were either structure-based
alone (69%) or combined with ligand-based methods via parallel (9%) or sequential (22%)
approaches. Molecular docking was performed in all studies, with Glide and AutoDock
being the most popular commercial and public software used respectively. Protein data
bank was used in most studies to retrieve the crystal structure of the targets of interest while
the main ligand databases were PubChem and Zinc. The utilization of in-silico techniques
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has enabled a deeper dive into the structural, biological and pharmacological properties of
anthraquinone derivatives, revealing their remarkable anticancer properties in an all-
rounded fashion.

Conclusion

By harnessing the power of computational tools and leveraging the natural diversity of
anthraquinone compounds, researchers can expedite the development of better drugs to
address the unmet medical needs in cancer treatment by improving the treatment outcome
for cancer patients.

Introduction

The public health burden of cancer is rising rapidly. The American Cancer Society estimates
that in year 2023 alone, nearly 2 million new cancer cases and half a million of cancer deaths
will occur in the United States [1]. At the global level, 28.4 million of cancer cases is projected
in year 2040 by the International Agency for Research on Cancer (IARC), translated to a 47%
increment in 20 years of time [2]. Despite the remarkable achievements in oncology research
for the past few decades that are extending the lives of many patients, there are still unmet
medical needs due to resistance and relapse after a certain time of treatment [3]. On the other
hand, almost all types of cancer treatment modalities cause different degrees of side effects,
jeopardizing the patients” quality of life. For instance, conventional cancer therapies frequently
result in organ toxicity leading to long term complications, and even the more advanced reme-
dies such as immunotherapy may cause serious or deadly allergic reactions [4]. Therefore, the
search for better anticancer drug with a good balance in between efficacy and safety continues
to attract the attention of researchers.

It is an established fact that the journey to discover a novel drug is long, costly and fraught
with challenges. A recent systematic review revealed that the research and development (R&D)
cost of a new molecular entity could reach USD4.54 billion in estimation, with anticancer drug
being the most expensive therapeutic to make [5]. Worst still, huge investment cost does not
guarantee success in bringing one new medication from bench to bed due to the high attrition
rate especially at the late stage (non-clinical and clinical trials) of the drug development process
[6, 7]. It is crucial to improve the productivity of R&D and computer-aided drug design
(CADD) comes right into the scene to facilitate this endeavour. CADD makes use of different
software, mathematical models and algorithms to rationalize the drug design and speed up the
drug discovery process especially at the early phases which include target identification, hit
identification, hit-to-lead and lead optimization [8]. With the aid of in-silico tools, the number
of chemical candidates to be tested in-vitro or in-vivo are greatly reduced, the success rate of
clinical trials is also increased, leading to the optimization of resources and enhanced cost-
effectiveness throughout the trajectory of drug discovery and development [9]. The advantages
of CADD are also evident in discovering novel drug to tackle allosteric cancer targets or man-
agement of tumours that formed through complicated pathways [10].

In general, CADD can be divided into either structure-based or ligand-based approaches.
As the name implies, structure-based methods rely on the availability of three-dimensional
(3D) structure of the macromolecular target. Whereas ligand-based methods require the infor-
mation of at least one chemical compound of interest or a set of known actives to begin with
[9]. When the drug design and discovery process involved screening a set of compounds or
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chemical databases to pinpoint promising hits by utilizing computer software and algorithm,
the term is coined as ‘virtual screening”. Likewise, structure-based virtual screening (SBVS)
and ligand-based virtual screening (LBVS) are the common categories to differentiate between
the involvement of either target molecules or known active compounds as the starting point in
the screening process. Both strategies can be used independently or in a hybrid manner for vir-
tual screening [11].

The most established structure-based CADD tool is molecular docking which predicts the
interactions and degree of complementary between the ligands and the target’s binding site
[12]. Through docking-based virtual screening, potential hits can be shortlisted from the vast
chemical space based on the scoring ranked by the docking software [7]. The more negative
the scoring value, the tighter the binding of the ligand-target is deduced [13]. Structure-based
pharmacophore modelling is another technique that utilizes the information gathered from
the binding sites of target structures to generate a molecular framework that outlines the essen-
tial features required for binding, followed by virtual screening to map for potential binders
from the chemical database [14].

Pharmacophore is defined as the ‘ensemble of steric and electronic features that is required
to ensure optimal interactions with a target of interest or to exert its biological response (either
by activating or inhibiting it). Pharmacophoric descriptors are used to define a pharmaco-
phore, including hydrogen-bonding (acceptors or donors), hydrophobic groups, electrostatic
interaction sites (positively or negatively ionizable groups), ring centres (aromatic groups) and
virtual points (metal coordinating areas) [15]. When the structural information of the macro-
molecule target is unavailable, the physicochemical properties of a set of known actives are
used to perform pharmacophore modelling and mapping instead [14]. This is one example of
the ligand-based approach, in which molecular descriptors known to be essential for biological
activities are gathered to retrieve other potential drug candidates based on the similarity prin-
ciple that indicates similar molecules normally carry similar activities [16]. Other examples of
ligand-based CADD methods include similarity search, scaffold hopping and quantitative-
structure-activity relationship (QSAR).

After docking-based virtual screening, molecular dynamic simulation can be used to visual-
ise the movement and interaction of ligand-target complex over time by simulating dynamical
changes in the system. By analysing the snapshots taken throughout the simulation time, flexi-
bility and stability of the ligand-target complex can be predicted, location of water molecules
or change in entropy of special structures can also be observed. These hidden states of the sys-
tem can by no means be tested by any wet-lab technique [7, 17]. The molecular mechanics
energies combined with the Poisson-Boltzman (MM-PBSA) or generalized Born and surface
area continuum solvation (MM-GBSA) are other commonly used tool for post-docking analy-
sis to estimate the free binding energy of the ligand-target complex [18]. Both molecular
dynamic simulation and MM-GBSA/PBSA have been shown to successfully improve the
results of virtual screening and are particularly useful in the lead optimization stage [18, 19].

CADD tools are also useful to predict the pharmacokinetics properties and toxicology pro-
file of potential drug candidates, in which various types of in-silico ADMET (adsorption-dis-
tribution-metabolism-excretion and toxicity) filters are available to remove compounds that
carry undesired properties either before or after virtual screening. These web-based filters are
being used extensively to finetune the virtual chemical database or combinatorial libraries, as
well as during the lead optimization stage to enhance the pharmacological properties of the
lead compounds and subsequently increase the success rate at the downstream stages of the
drug discovery process [20].

Apart from that, making use of computational tools to build a combinatorial library for vir-
tual screening is also getting popular in drug discovery. The combinatorial library refers to a
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set of new compounds prepared by a single stepwise enumeration of existing ligands using dif-
ferent types of substitution [21]. With today’s advancement in computational power, only a
few seconds are needed to construct a virtual combinatorial library with millions of com-
pounds [22]. Combinatorial library has been used in natural product research to create data-
bases of natural product analogues with drug-like properties [23]. This strategy can uncover
the potential of natural products with privileged scaffold for new drug design and discovery,
for instance, the anthraquinone- and chalcone- derivatives that showed a wide spectrum of
biological effects on many different macromolecular targets responsible for human diseases
including cancer were used to construct virtual library as the starting point of new drug
research [24].

Natural products and their derivatives have a long history in the pharmaceutical world
owing to their rich bioactive constituents with remarkable therapeutic potential and contrib-
uted to the discovery of many new chemical entities especially in the early days [25]. Medicinal
plants that worked in both minor ailments and severe illnesses including cancer are cheaper
and cause lesser side effects as compared to pure chemical drugs [26]. Combining natural
products with chemotherapeutics has been shown to provide a synergistic effect and overcome
many of the chemo-resistance hurdles in cancer treatment [27].

Anthraquinone is one of the most widely-recognized natural products with great medicinal
value especially in the oncology setting as evidenced in many of the published reviews [28-33].
There have been many pieces of research characterized and studied anti-cancer properties of
naturally occurring anthraquinone derivatives in different cancer types, for example, emodin
in leukaemia [34], colorectal cancer [35] and breast cancer [36]; aloe-emodin in oral cancer
[37], lung cancer [38] and neuroectodermal cancer [39]; chrysophanol in liver cancer [40] and
many others. Well-established cytotoxic drugs like doxorubicin and mitoxantrone also contain
anthraquinone moiety [41]. This basic scaffold of anthraquinone is made up of two aromatic
rings that are connected by two carbonyl groups (mostly at positions 9 and 10) to form a pla-
nar structure (S1 Fig). This unique scaffold has attracted intense interest in the research
endeavours towards designing anthraquinone-derived medicines for many different medical
conditions including malignancy. Typical molecular targets of anthraquinone derivatives in
cancer therapeutics include enzymes that are involved in cellular signalling pathways such as
topoisomerase and kinases, DNA intercalation, inflammatory processes and redox reactions
[32]. Having a planar aromatic structure enables anthraquinone derivatives to intercalate with
DNA or interact with DNA topoisomerases, leading to an interruption of the transcription
and replication process. Likewise, interaction with kinases can also disrupt cellular differentia-
tion and repair function, resulting in apoptosis of cancer cells [42]. On the other hand, the qui-
none moiety in anthraquinone exhibits antioxidant properties by acting as reactive oxygen
species (ROS) regulators [43]. Although there have been a considerable amount of reviews
done on the topic of the anticancer potential of anthraquinone, and there was also a recent
publication discussed the past, present and future role of computer-aided drug discovery in
cancer research [44], however none of these reviews linked together the role of virtual screen-
ing in facilitating the drug design and discovery in cancer treatment based on anthraquinone
scaffold. More importantly, none of them are systematic reviews. To the best of our knowl-
edge, this is the first systematic review synthesizing the evidence of computer-aided drug
design and discovery based on an anthraquinone scaffold for the treatment of cancer.

The primary objective of this review was to systematically assess and synthesize evidence on
the utilization of computer-aided drug design (CADD) techniques centered on the anthraqui-
none scaffold for cancer treatment. We highlight recent trends, popular computational meth-
odologies, preferred software tools, and databases in discovering anticancer drugs that
involved anthraquinone scaffolds. Additionally, the therapeutic potential of these
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anthraquinone derivatives across various cancer types is summarized together with the identi-
fied target proteins that tackled multiple malignancy pathways. Our findings intend to provide
a robust foundation for future research, offering evidence-based insights for successful drug
design leveraging the CADD techniques and anthraquinone scaffold.

Materials and methods
Study protocol

This systematic review was conducted and reported based on the Preferred Reporting Items
for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline [45, 46]. The protocol
was published [47] and registered in the “International prospective register of systematic
reviews” database (PROSPERO: CRD42023432904).

Review question

The review was conducted to answer the main research questions as follows:

“What are the trends and types of computer-aided drug design and discovery tools used in
virtual screening based on anthraquinone scaffold for cancer treatment”?

“What are the therapeutic potential and target protein of anthraquinone and derivatives
elucidated by CADD to treat cancer?

Eligibility criteria

The review question and eligibility criteria were established according to the PECo strategy (P,
problem; E, exposure; Co, context) for systematic review. Only original research studies that
were published in English and utilized CADD tools as the primary method to discover or
design anticancer drugs involving compounds with anthraquinone scaffold were included in
the review. The details of the inclusion and exclusion criteria based on the PECo strategy are
outlined in Table 1.

Table 1. Eligibility criteria based on the PECo strategy.

Element |Inclusion Criteria Exclusion Criteria

Problem | Studies with clear descriptions of the CADD tools | Studies without details or clear descriptions of the

(P) used in virtual screening involving compounds CADD or virtual screening tools and studies not
with anthraquinone scaffold were included. involving compounds with anthraquinone scaffold

were excluded.

Exposure | Studies investigating therapeutic potential and Studies investigating diseases other than cancer

(E) target protein of compounds involving and not involving anthraquinone derivatives were
anthraquinone scaffold for cancer treatment were | excluded.
included.

Context Only original research studies published in Studies exclusively in-vitro, in-vivo or other types

(Co) English and utilized CADD techniques or virtual | of in-silico tools that did not serve the purpose of
screening tools for either target protein target protein prediction/validation, hit
prediction/ validation, hit identification, hit-to- identification, hit-to-lead or lead optimization
lead and lead optimization were included. were excluded. Network pharmacology was

excluded as it did not align with the scope of this
review. Review article, book chapter, letters, grey
literatures (conference paper abstracts, theses/
dissertation, report) and articles published in
languages other than English were excluded.

https://doi.org/10.1371/journal.pone.0301396.t001
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Information sources and search strategy

On 30 June 2023, the literature search was executed on four electronic databases which include
PubMed, Scopus, Web of Science and MedRxiv. There was no restriction on the publication
period, but only articles published in the English language were saved. The search strategy was
designed based on the combination of three main concepts, namely CADD or virtual screen-
ing (Concept 1), anthraquinone (Concept 2) and cancer (Concept 3). The aim was to retrieve
studies that used CADD tools such as molecular docking, molecular dynamic simulation or
any other virtual screening method as the primary approach in the quest for anticancer drugs
involving anthraquinone scaffold. The main search string was as follows: (“virtual screening”
OR “computer aided drug design” OR “molecular docking” OR “molecular dynamics”) AND
(“anthraquinone” OR “anthracenedione” OR “anthranoid” OR “anthradione” OR “dioxoan-
thracene” OR “anthracene-9,10-dione” OR “anthracene-9,10-quinone” OR “9,10-anthrachi-
non” OR “9,10-dihydro-9,10-dioxoanthracene”) AND (cancer OR tumour OR malignant OR
neoplasm). The search was focused on the title, abstract and keywords of the articles and
adjustments were made in each database based on their different characteristics. The S1 Table
tabulates the search strategy executed in the PubMed database.

Study selection

Results of the literature search from the databases were exported into the reference manager,
Endnote X9.0 where duplicate publications were removed by following the steps as described
by Bramer et al. [48]. After deduplication, two reviewers (HMC & MS) independently screened
the title and abstract of the records to ascertain their relevance to the review questions. After-
ward, the selected full-text articles were retrieved and read in detail by the same two reviewers
according to the inclusion and exclusion criteria. The reasons for exclusion were recorded.
Disagreements between the two reviewers were resolved through discussion with a third
author (LM). The study selection process was recorded in the PRISMA flow diagram (refer to
Fig 1 under Result and Discussion).

Risk of bias assessment

Due to the lack of a standardised tool for this type of study, the risk of bias of the selected
papers was assessed using a checklist previously developed and applied by Taldaev and col-
leagues [49], with some modifications. The assessment was carried out separately by two inde-
pendent reviewers (HMC & MS). Disagreement was resolved by discussion with another
reviewer (LM). This tool was mainly focused on the reporting quality of the molecular docking
study. The original checklist consists of 7 main bias domains and 12 sub-domains.

For this review, the bias domain of “Docking Software” was removed. The authors who
developed this tool ranked Glide or GOLD docking software as “low risk of bias” [49] since the
Monte-Carlo algorithm and empirical scoring functions used by these two software have been
shown to perform better as confirmed by in-vitro validation [50]. However, this was not always
the case. Cheng et al. concluded that ‘none of the scoring functions works best at all time” after
assessing the “docking power”, “ranking power” and “scoring power” of 16 scoring functions
implemented in popular commercial and academic software [51]. Another study compared
five commercial and five academic docking programs in which GOLD and LeDock (both are
commercial software) had the best sampling power whereas the academic software, AutoDock
Vina was superior in terms of scoring power, implying commercial programs did not outper-
form academic software as expected [52]. More recently, Reddy et al. demonstrated that Glide
gave consistent results in terms of docking conformation, ranking and scoring accuracy, but
AutoDock ranked as the best scoring accuracy among all other tested software [53]. Therefore
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Fig 1. PRISMA flow diagram.
https://doi.org/10.1371/journal.pone.0301396.9001

there is no single docking method that gives the best outcome for all docking jobs and the
quality of docking result is greatly influenced by the ligands and target of interest [54].

On the other hand, the sub-domains of “Ligand optimization” were merged under “Ligand
Preparation”. Likewise, “Target Optimization” was modified to “Target Preparation” and all
relevant sub-domains were merged. As long as the ligands and target structures were prepared
by using a special tool before undergoing docking calculation, the studies were ranked as “Low
risk of bias”. This made up a total of 5 main bias domains and 9 sub-domains (Table 2).

Data extraction

Two independent reviewers extracted data from the eligible studies using a predefined data
collection form (HMS & SM). The data extracted included the title of journal, authors, publica-
tion year, study context, CADD methods and the software/tools used, name and structure of
the starting compounds or identified hits that contained anthraquinone scaffold, types of
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Table 2. Risk of bias assessment.

Bias Domain | Sub-domain Low Risk of Bias High Risk of Bias Unclear
Ligand Ligand filtering Performed Not performed No data
selection
Ligand Geometry-optimized and generation of energetically Performed by special tool Not performed or performed without special No data
Preparation possible conformation tool
Target Resolution of target structure Not more than 2.5 A More than 2.5A No data
Selection Method of obtaining target structure NMR spectroscopy X-ray crystallography or cryogenic electron No data
microscopy
Target Protonation, addition of missing residue and side chain Performed with special tool | Not performed or performed without special No data
Preparation after X-ray crystallography or cryogenic microscopy tool
Control of histidine and addition of metals Performed Target structure did not reference to biological | No data
condition
Results Visual control Performed Not performed or structure defects observed No data
assessment Redocking/ Docking Validation Performed Not performed or the RMSD value is higher No data
than 2A as compared to the initial structure
Verification of docking result by in-vitro study Binding constant (eg: Ki, No laboratory validation or no quantitative No data

1Csp) was determined

calculations

https://doi.org/10.1371/journal.pone.0301396.t002

cancer involved, databases used to retrieve the structures of both target and ligand. (Refer S2
Table. Data collection form).

Data synthesis and analysis

All included papers in the final studies were used for data synthesis and analysis. The data
were summarized via a narrative approach to address our review questions. Tables and figures
were used to present the characteristics of the studies. The trends and types of different CADD
approaches and tools used in virtual screening as the primary tools for designing or discover-
ing anthraquinone analogues for cancer treatment were analysed and discussed. The respective
macromolecular targets involved and their role in managing different types of cancer, together
with the chemical structures of the identified hit compounds that contained anthraquinone
scaffold were presented and reviewed.

Results and discussion
Study selection

The literature search identified a total of 317 records. After importing the records into the ref-
erence manager (Endnote X9.0) where 102 records were deduplicated, 215 records were sub-
jected to title and abstract screening by HMC and SM. The exclusion of 171 records that did
not fulfil the inclusion criteria resulted in 44 records sought for full article retrieval. These arti-
cles were read in full and critically examined by the same two reviewers separately based on
the eligibility criteria. The reasons for exclusion after full-text screening were recorded. Any
disagreement was resolved by a third author (LM) through discussion and consensus. In addi-
tion, 3 more studies that fulfilled the inclusion criteria were found by citation searching, along-
side the full screening process as they were somehow related to the included studies. The
results of the study identification and selection process were recorded in the PRISMA flow dia-
gram (Fig 1). A total of 32 articles were included in the final review.

General view on the trend of publications

The number of publications in cancer research that involved CADD tools and anthraquinone
was observed to be on the rising trend. From the total number of 215 articles retrieved from
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Fig 2. Trend of publications.

https://doi.org/10.1371/journal.pone.0301396.9g002

the search strategy after deduplication, only 2 articles were published before the twenty-first
century. This number increased steadily after entering year 2006 (Fig 2). In fact, more than
90% of the identified articles were published in the last decade. From year 2021 up to June
2023 alone (less than 3 years), the highest number of publications (more than 40%) tagged
with the searched keywords were recorded. This showed that the utilization of CADD methods
has gained more popularity and anthraquinone is a compound of interest which attracted
immense interest for biomedical research, especially in the oncology setting. One of the possi-
ble reasons may be also due to the worldwide lockdown caused by the Covid-19 pandemic in
the past 3 years has switched many of the research focus from wet-lab to dry-lab (in-silico),
hence more studies were performed virtually leading to more research publications on com-
puter modelling. As virtual screening has been proven to offer an advantage in terms of
resources, time and cost reduction in venturing novel drugs, it is expected that the number of
research and publications in this field will continue to rise for the year 2023 and beyond.

Types of CADD approaches used and the study context

Structure-based methods and ligand-based methods were used either independently or in combi-
nation. Table 3 illustrates the trends and different types of structure-based and ligand-based
CADD methods used in the 32 included studies, together with their study context. Nearly one-
third of the studies combined both structure-based and ligand-based methods in their drug design
and discovery project (10 studies) while the rest used mainly the structure-based methods.

None of the studies used ligand-based method alone since the crystal structure of all identi-
fied targets in the studies were either available in the protein databases [55, 56, 58-60, 62-67,
69-75, 77-86] or successfully created by homology modelling [57, 61, 68, 76].
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Table 3. Types of CADD methods used and the study context.

Authors Structure-based methods Ligand-based Study Context Reference
(Year) methods
Abhire et al. (2016) Docking - SBVS for hit identification [55]
Arba et al. (2017) Docking - SBVS for hit identification [56]
Asnawi et al. (2022) Docking - SBVS for hit identification [57]
Bai et al. (2012) Docking Similarity search SBVS + LBVS for hit identification [58]
Ciaco et al. (2023) Docking Similarity search LBVS + SBVS for hit identification [59]
Choowong-komon etal. | Docking - SBVS for hit identification [60]
(2010)
Cozza et al. (2008) Docking - SBVS for hit identification [61]
Cozza et al. (2009) Docking - SBVS for hit identification [62]
Cozza et al. (2015) Docking - SBVS for hit identification (re-evaluation) [63]
Das et al. (2023) Docking - SBVS for hit identification [64]
DemiRezer et al. (2018) Docking - SBVS for hit identification [65]
Dong et al. (2019) Docking - SBVS for drug repurposing [66]
Gao et al. (2022) Docking - SBVS for target verification and hit identification [67]
Guan et al. (2020) Docking - SBVS for drug repurposing [68]
Golubovskaya et al. Docking - SBVS for hit identification [69]
(2013)
Jordheim et al. (2013) Docking - SBVS for hit identification [70]
Khan et al. (2021) Docking Pharmacophore SBVS + LBVS for hit identification [71]
mapping
Lankapalli et al. (2013) Docking - SBVS for target fishing & hit identification [72]
Leggett et al. (2022) Docking - SBVS for hit identification [73]
Liu et al. (2019) Docking - SBVS for hit identification [74]
Mhatre et al. (2017) Docking - SBVS for hit identification [75]
Nag et al. (2022) Docking Pharmacophore SBVS + LBVS for hit identification and poly-pharmacology study | [76]
mapping
Obounchoey et al. (2019) | Docking Similarity search LBVS + SBVS for hit identification [77]
Rinne et al. (2020) Docking, structure-based Similarity search SBVS + LBVS for hit identification [78]
pharmacophore
Roy et al. (2021) Docking - SBVS for hit identification [79]
Singh et al. (2021) Docking Scaffold hopping LB-scaffold hopping SB-guided combinatorial library building & | [80]
SBVS for hit identification
Song et al. (2019) Docking - SBVS for hit identification & and hit-to-lead optimization [81]
Taherkhani et al. (2021) | Docking - SBVS for hit identification [82]
Wang et al. (2021) Docking 3D-QSAR LB + SB methods for novel drug design [83]
Wu et al. (2018) Docking - SBVS for Drug-repurposing [84]
Wau et al. (2022) Docking Similarity search LBVS+ SBVS for hit identification [85]
Zyaater et al. (2019) Docking Similarity search LBVS + SBVS for hit identification [86]

https://doi.org/10.1371/journal.pone.0301396.t003

The use of both structure-based and ligand-based methods were combined in either a paral-
lel manner [58, 78, 80] or performed one after another in sequence, termed as sequential
screening [59, 71, 76, 77, 83, 85, 86]. The sequential approach was more popular as it enabled
efficient computation in which the more straightforward and quicker ligand-based virtual
screening served as the pre-docking filter to reduce the size of the screening library before the
more computational-demanding docking job took place. This is evident in those studies that
successfully reduced the size of the screening database from 100 million of compounds in Pub-
Chem to merely 200 compounds [77] or from the Key Organic database of 49415 compounds
to less than 10 compounds (85) after similarity search. Another study utilized ligand-based
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pharmacophore mapping from ZINC database with 20 million entries and identified only 12
phytochemicals analogues for docking [76]. Other studies that employed ligand-based phar-
macophore or similarity screening prior to docking-based screening resulted in the shrinkage
of library size that ranged from 30% to 85% [59, 86, 87].

On the other hand, running both approaches in parallel could enrich the hit discovery rate
of virtual screening, and overcome the fundamental limitations of each approach [58] and this
was particularly helpful when the sample size of experimental-validated known actives for use
as references in virtual screen was limited [78]. For instance, Bai et al. designed a virtual
screening protocol that started with a parallel screening of a selected database by molecular
docking and shape-similarity search, followed by second stage docking in higher precision
docking mode, then visually filtered out desired compounds for further bioassay, leading to a
hit rate of 24.7% [58]. Rinne and colleagues ran five separate screening simultaneously (one by
similarity search, two by pharmacophore mapping and two by molecular docking), each vir-
tual screen shortlisted a hit list of 200 compounds for laboratory validation out of the database
of 140000 compounds to tackle the limitation of virtual screen [78].

Majority of the studies aimed to discover novel hit or lead from the screened compounds or
database, but three studies [66, 68, 84] looked into drug repurposing or repositioning from
licensed medicines to explore additional indications in the oncology setting. The strategy of
investigating new role of old drug offers benefits such as cheaper investment cost, shorter
development time and reduced risk of failure since lesser efforts are required especially at the
lead optimization stage [88].

There were three studies extended the exploration on the hit compounds identified from
previous virtual screening studies. The starting compound, UM63 that contained anthraqui-
none scaffold used in one of the studies [59] to pre-filter the database based on similarity in
SMARTS pattern was identified previously by the research group from the same university
[86]. Similarly, the screening database of 200 compounds involved in another study [77] were
defined based on Tanitomo coefficient of 0.95 from the eight hit compounds discovered by
their colleagues previously. There was one study re-evaluated the selectivity of quinalizarin
against CK2 by molecular docking and molecular dynamic simulation, and further measured
the inhibitory effect of this compound on 14 kinases panels [63] compared to 7 kinases panels
back in year 2009 when this hit was first shortlisted by the virtual screening study [62].

Molecular docking

Molecular docking was the most popular structure-based method used in CADD. Notably, all
of the 32 studies (100%) included in this review employed docking in their research (Table 3).
This popular method is favoured due to its computational efficiency, in which the docking of
one ligand on a single core typically requires only a few minutes of computing time [16]. Thus,
docking-based virtual screening serves the purpose of filtering out good ideas from bad ones
and subsequently eases the prioritization of more promising ligands out of the large size of the
virtual library to be taken forward for subsequent studies.

Docking was also used in molecular modelling to investigate the interaction in between the
shortlisted hits and the target protein in term of hydrogen bond, hydrophobicity, electron dis-
tribution and binding energy [55, 56, 63, 65, 75, 79, 82]. This was crucial to identify the struc-
tural determinants responsible for efficient binding with the amino acids or protein residues
of the target. With this essential information in hands, promising drugs with more desired
properties were designed [80, 81, 83].

One of the studies utilized molecular docking to verify the potential drug targets identified
from the competitive endogenous RNA (ceRNA) network study by virtually screening out
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small molecule binders against these targets from the selected database [67]. On the other
hand, molecular docking was also used in target fishing and profiling, in which the ligands
were docked into a variety of macromolecules to predict appropriate targets for further analy-
sis [72]. When one particular compound regulates multiple targets at the same time in the
same illness, it is referred as “Polypharmacology” and again, molecular docking was useful to
provide insights in this case [76].

Docking software. Docking methods consist of both posing and scoring process. Small
molecules are docked into the macromolecular target to generate different ligand-target con-
formation and the degree of complementarity for each binding was ranked by scoring func-
tion. There were thirteen different docking tools used in the included studies in this review
(Table 4). These were either commercial software with subscription fees or freely available
(mainly for academic researchers). Each docking software has a different searching algorithm
to align the binding geometrics of ligand-target complex to the preferred and stable pose. Dif-
ferent types of scoring functions are employed in these docking programs to evaluate the best
binding pose of each bounded complex with minimum energy and rank the ligands accord-
ingly from the most negative value to less negative value of the docking score.

The most popular commercial docking software used in this review was Glide provided by
Schrodinger, followed by GOLD provided by the Cambridge Crystallographic Data Centre
(CCDC). For the academic software, AutoDock was among the most sought-after freeware
that used by seven of the included studies. This freeware was developed by the Scripps
Research Institute and they also have another newer generation of docking software namely
AutoDock Vina. It was used by a total of five studies, where two of them performed the dock-
ing study using AutoDock Vina via the commercial virtual screening platform, PyRx (Table 4).

The popular docking programs normally have user-friendly interfaces with readily available
integrated tools required for smooth handling of the in-silico workflow. For example, struc-
ture-rendering, visualization, target preparation (via either interactive or automated protein
preparation workflow), ligand preparation (via LigPrep) could be all managed by the Maestro
graphical interface developed by Schrodinger before submitting the Glide docking calculation
job [58, 61, 62, 64, 68, 78, 80, 83].

Consensus scoring

Some of the studies used two or more scoring functions to evaluate the best hit. This technique
is known as ‘consensus scoring’ whereby different types of scoring functions are combined
with the hope to compensate deficiencies of each scoring function and to improve capability of
the screening process in discriminating actives from decoys [60-62, 66, 75]. The docking pro-
tocols of two studies were made up of four different algorithms (MOE-Dock, Glide, FlexX and
Gold) and five different scoring functions (MOE-Score, Glide-Score, Gold-Score, Chem-Score
and X-score), each was performed independently. The top-ranked compounds taken forward
for further analysis were prioritized from the ‘consensus scored list’ generated from combining
these docking programs [61, 62]. Another study used an empirical score genetic algorithm
from the GOLD program and force-field genetic algorithm from AutoDock program (com-
bined with FRED calculation) to rank the binding of ligands against the target protein, in
which the highest scored compounds were also consensus between these two programs [60].
Two other studies utilized different precision modes of the selected docking software prior
to re-docking by second docking software with varied scoring functions, aimed to improve the
efficiency and accuracy of the virtual screening. One of them performed the initial virtual
screening by Surflex-Dock in screen mode, followed by redocking of shortlisted hits with Sur-
flex-Dock GeomX mode which featured higher spin density and accuracy. Meanwhile, the
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Table 4. Summary of different docking tools used in the studies.

Docking Tool Features Website Studies

Glide (Grid-Based Ligand Docking | Commercial software. Complete systematic search of the orientation, https://www.schrodinger.com/ [58, 61, 62, 64,

with Energetics) conformational and positional space of the ligand in the target with the products/glide 68, 78, 80, 83]
OPLS-AA force field (Optimized Potentials for Liquid Simulations).

Available in HTVS mode, SP mode, XP mode and induced fit docking.

GOLD (Genetic Optimisation for | Commercial software. Uses empirical score genetic algorithm for http://www.ccdc.cam.ac.uk/ [60-63, 70, 77,

Ligand Docking) exploration of ligand flexibility. Examples of scoring function are 85]
GoldScore, ChemScore, Kinase Scoring Function (KCS).

AutoDock Freeware. Uses Lamarckian genetic algorithm (LGA) posing where the https://autodock.scripps.edu/ [56, 57, 60, 66,
conformations changes of ligands after optimization are used as 79, 81, 82]
subsequent poses for the offspring. The force-field-based scoring function
considers the intermolecular interaction energy, the sum of torsional free
energy, total internal energy, and unbound system energy.

AutoDock Vina Freeware. A newer generation of AutoDock4. Uses knowledge-based https://vina.scripps.edu/ [67,71,75]
scoring function and rapid gradient-optimization conformational search
with Monte Carlo sampling technique.

Surflex-Dock Commercial software. A docking module in SYBYL software. Uses https://www.computabio.com/ [65, 66, 68, 73]
empirical scoring function by taking hydrophobic, polar, repulsive, applications-of-surflex-dock-
entropic and solvated effects into consideration. The search engine is software.html
based on molecular similarity to dock ligands to target. Available in
Normal, Screen, Geom and GenomX mode.

FlexX Commercial software. An incremental fragment-based docking algorithm | https://www.biosolveit.de/ [55, 61, 62]
where the conformational space sampling is done using a tree search products/#FlexX
method. Provided by BioSolvelT in the LeadIT package.

FRED Free academic licensing program available. Uses exhaustive search https://www.eyesopen.com [59, 86]
algorithm that systematically searches conformers of each ligand within
the active site at a specified resolution. Examples of scoring function are
Chemgauss and Chemscore. Integrated in OpenEye Scientific Software.

MOE-DOCK (Molecular Commercial software. A docking software under MOE Suite, an http://www.chemcomp.com [61,62]

Operating Environment) Integrated Computer-Aided Molecular Design Platform.

UCSF DOCK Free for non-commercial researchers only. Force-field based scoring. https://dock.compbio.ucsf.edu/ [69]

PatchDock Free for non-commercial researchers only. Surface path matching and http://bioinfo3d.cs.tau.ac.il/ [72]
molecular shape complementary algorithms followed by filtering and PatchDock/patchdock.html
scoring.

iGEMDOCK (Generic Free for non-commercial researchers only. An integrated graphical http://gemdock life.nctu.edu.tw/ [75]

Evolutionary Method for environment which utilizing post-screening analysis with dock/igemdock.php

molecular DOCKing) pharmacological interactions for virtual screening.

DockThor Freeware. Uses MMFFLigand and PdbThorBox in-house tool for the https://www.dockthor.Incc.br/ [76]
docking algorithm along with MMFF94S53 force field.

Internal Coordinate Mechanics Commercial software. The molecular system was described by using https://www.molsoft.com/ [84]

(ICM)-Pro internal coordinates as variables. Energy calculations were based on the technology.html
ECEPP/3 force field with a distance-dependent dielectric constant. The
biased probability Monte Carlo (BPMC) minimization procedure was
used for global energy optimization.

PyRx virtual screen software Commercial software. A virtual screening software that is using a variety | https://pyrx.sourceforge.io/ [74, 89]

of established open-source software including AutoDock4, AutoDock
Vine, AutoDock Tools, Python, Visualization Toolkit, Open Babel etc.

https://doi.org/10.1371/journal.pone.0301396.t004

redocking was also conducted by AutoDock program that used a different scoring algorithm
in parallel [66]. The other study combined Glide [Standard Precision (SP)], Extra Precision
(XP), induced-fit docking and Surflex-Dock (Screen Mode, SurflexDock Geom and Surflex-
Dock GeomX), in which each program was run by three different precision modes hierar-
chically [68]. Mhatre et al. also combined two different docking programs, namely
iGEMDOCK and AutoDock Vina in their study but the operations were divided into two
phases, iIGEMDOCK was used in the first phase docking followed by redocking using Auto-
Dock Vina in the second phase. The docking scores for each program were presented in a
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separate table and comparison was performed to analyse the preferred binding modes of
selected ligands against the target. The results revealed that the pharmacophoric and molecular
space acquired by the selected ligands were similar to the known active, implying the therapeu-
tic potential of the phytochemicals of interest [75].

Apart from combining different scoring functions of various docking programs, the con-
cept of consensus scoring was also applied in virtual screening that combined structure-based
and ligand-based methods. One of the recent studies integrated docking-based virtual screen-
ing with three other ligand-based screening tools (pharmacophore, shape similarity and
QSAR) in which each method produced separate hit lists and consensus Z-score for each high-
est-ranked ligand was then calculated [90]. This paper was published after the article searching
period of this review ended therefore it is not included in the final review. However, the pro-
posed strategy is worth further exploration.

Pharmacophore modelling and mapping

In ligand-based pharmacophore screening, the 3D structures of a set of known actives were
retrieved to guide the development of the pharmacophore model. This model served as the
tool for subsequent virtual screening to map a predefined database for best-fit compounds that
presented shared common features responsible for binding and biological functions [71, 76].
LigandScout was one of the commercial computer software used to generate the pharmaco-
phore model and to score the compounds from the large database based on the computed
pharmacophore features so that potential hits could be identified from the top-ranked list of
the pharmacophore-fit score [71]. There was also a free web server, ZINCPharmar (http://
zincpharmer.csb.pitt.edu/pharmer.html) equipped with ‘add feature’ function to predict phar-
macophore features from the uploaded ligands candidates. ZINC database was then screened
virtually by ZINCPharmer to pinpoint compounds that demonstrated the highest complemen-
tary to the model in terms of chemical descriptors such as hydrogen bonds, ring groups, ionic
groups, hydrophobic and lipophilic groups [76].

There was also structure-based pharmacophore screening performed by Rinne and col-
leagues. Discovery Studio was used to develop the pharmacophore model. Maestro and Pymol
from Schrodinger were used to aid the manual selection of pharmacophore features based on
key residues at two binding cavities of the 3D target structure obtained from X-ray crystallog-
raphy. This resulted in two separate hits lists from the pharmacophore-based screening [78].

Similarity searching

Ligand-based similarity searching utilized the two-dimensional (2D) or three-dimensional
(3D) descriptors of the known actives to discover most-alike molecules from the screening
library based on the concept of ‘compounds with similar chemical structures tend to exhibit
similar biological activities’ [58, 59, 77, 78, 85, 86]. Examples of 2D descriptors included molec-
ular fingerprints [77, 78], substructure-based descriptors [85] or SMART patterns of the mole-
cules [59, 86]. SMART refers to ‘SMILES arbitrary target specification” whereby the full name
of SMILES is ‘Simplified Molecular Input Line Entry System’. These are special languages
developed by David Weininger and colleagues to describe structure or substructure patterns in
molecules for cheminformatic purposes. FILTER application implemented in OMEGA from
OpenEye Software was used to reduce the size of the screening database by performing
SMART-based query prior to docking-based virtual screening [59, 86]. ChemBioFinder was
another tool used to calculate the substructure search based on known active and to screen out
potential candidates from the database with similar privileged motif as the query compound
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for further analysis [85]. Tanimoto similarity coefficient was a common metric used to rank
the magnitude of similarity especially for molecular fingerprint mapping [77, 78].

Apart from structural information, 3D descriptors also take structural alignment into
account for predicting the similarity between two compounds. Pharmacophore modelling and
shape similarity are among the popular 3D methods for ligand-based virtual screening [91].
Bai and colleagues analysed the 3D conformers of co-crystalized ligands for similarity search
using SHAFTS program and aided by the in-house conformational generation tool Cyndi
[58]. SHAFTS (SHApeFeaTure Similarity) was developed to merge the pharmacophore over-
lay and shape complementary approach in discovering drug candidates with desired proper-
ties. Hybrid similarities score was calculated to prioritize the best-matched compounds with
query compounds in terms of molecular pose alignment and volumetric superposition [92].
Obviously, 2D similarity approach was more popular as it was simpler, quicker and more
straightforward. Nevertheless, both 2D and 3D similarity approaches were proven to increase
the efficiency of virtual screening especially by downsizing the large library to become more
‘target-focused library’ for subsequent in-silico research.

QSAR

QSAR involves mathematics calculation and statistics to model the correlation in between the
molecular descriptors and biological activities [93]. A group of active compounds with the cor-
responding binding constant or inhibitory concentration determined by in-vitro studies was
gathered as the starting point of the process flow. The active compounds were randomly
divided into training sets and test sets in a predefined ratio. SYBYL software was used for
molecular alignment based on the most potent compound to fix a common substructure. The
popular CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecu-
lar Similarity Indices Analysis) methods were then used to construct the 3D-QSAR model
[83]. COMFA is a force field based method that involves linear function but CoMSIA uses an
exponential function to compute ligand properties such as steric and electrostatic energies
[94]. The 3D-QSAR model was useful to guide lead optimization and new drug design by
modifying the structure of existing ligands [83]. Both QSAR model and pharmacophore
model are considered essential features of the known actives but the focus of QSAR model was
more on features that correlated closely to the biological effect.

Scaffold hopping

Scaffold hopping can be categorized as one of the ligand-based virtual screening methods as it
typically requires the core structures of known actives to be used as the template [95, 96], at
the same time it is also one of the main aims of many drug discovery projects to identify novel
chemotype [91, 92]. Singh et al. modified the base scaffold of anthrafuran that was predeter-
mined to demonstrate desired biological properties, guided by the binding cavity of the target
of interest to build a combinatorial library of over 2 million new compounds based on in-silico
enumeration. This target-focused virtual library was then subjected to structure-based virtual
screening in which novel compounds with better biological activities than the parent analogue
were discovered [80].

Drug-likeness, lead-likeness and ADMET filter

ADMET properties are important for the ultimate fate of a possible drug candidate. Unwanted
effects in animal models or even human trials can be reduced by filtering drug candidates by
their drug-likeness, lead-likeness and ADMET properties in early stages [55]. These filters can
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be applied on the selected database prior to virtual screening [61, 69, 70, 76, 80] or afterward
on the shortlisted hits [59, 64, 71, 75, 78, 81, 82], or even before and after [71].

The popular Lipinski’s Rule of Five [97] was applied to filter out compounds that disobeyed
the drug-likeness properties as predicted (more than 5 hydrogen donors, more than 10 hydro-
gen acceptors, molecular weight larger than 500 and CLogP, a measurement of lipophilicity
greater than 5) [55, 69-71, 75, 76, 80-82]. The freely accessible SwissADME server (http://
www.swissadme.ch/) was another useful tool to predict properties like bioavailability, lipophi-
licity, pKa, blood-brain barrier permeabilities etc [64, 76]. The toxicity prediction technique
included TOPKAT (Toxicity Prediction by Komputer-Assisted Technology) that applied
QSTR (Quantitative Structure-Toxicity Relationship) models to deduce toxicity profiles such
as carcinogenicity, mutagenicity, skin irritation was executed via Discovery Studio software
package by Accelyrs [55]. PAINS (Pan-assay Interference Compounds) filter was also impor-
tant to remove compounds with unwanted functional groups that might cause unexpected
interactions with multiple targets leading to false positive results [59, 78].

Obviously, the studies involved drug repurposing could just skip the filtration step since the
licensed small molecules are believed to possess desired physicochemical properties with
acceptable bioavailability and safety aspects for oral consumption, as approved by the regula-
tory authority [66, 68, 84].

Molecular dynamic simulation

The top-ranked protein-ligand complex shortlisted from docking studies were subjected to
molecular dynamic simulations to observe how every atom in protein moved over time to
assess the binding mode in depth, to confirm the stability of the docked pose and to gain
insight on the protein flexibility of the ligand-protein complex [55-57, 63, 66, 76, 79, 80, 82,
83].

The most widely used software package to perform the simulation was AMBER [56, 66, 79,
83]. Throughout the years, different versions of the software package have been introduced,
for instance AMBER12 [56], AMBER14 [66] and AMBERI16 [79, 83]. Other molecular
dynamic tools used were Discovery Studio Molecular Dynamic Protocol [55, 82], GROMAC
[57], NAMD [63], DESMOND [80] and CABS-flex 2.0 server [76]. Among these tools, only
DESMOND from Schrodinger required a license subscription fee whereas the rest were readily
downloadable from the public domain for academic research purposes (Table 5).

All of the studies probed the dynamic of the protein-ligand complex in the time-scale of
nanoseconds [55-57, 63, 66, 76, 79, 80, 82, 83]. Ideally, performing simulation in the order of
microseconds or even milliseconds is better to reveal the biologically essential conformational
evolution but unfortunately, this time-scale of simulation takes too long time to run and there-
fore rarely in use [54]. The stability of the ligand-protein complex was monitored by RMSD
(Root Mean Square Deviation), a common metric used in evaluating the dynamic of

Table 5. Molecular dynamic simulation software used.

Molecular dynamic simulation software
AMBER

Discovery Studio Molecular Dynamic Protocol
GROMAC

NAMD

CABS-flex 2.0 server

DESMOND

https://doi.org/10.1371/journal.pone.0301396.t005

Brief description Website Used by
Freeware https://ambermd.org/ [56, 66, 79, 83]
Freeware https://discover.3ds.com [55, 82]
Freeware https://www.gromacs.org [57]

Freeware https://www.ks.uiuc.edu/Research/namd/ [63]

Freeware http://biocomp.chem.uw.edu.pl/ CABSflex2 [76]
Commercial software https://www.schrodinger.com [80]
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macromolecules [55-57, 63, 66, 76, 79, 80, 82, 83]. The docked pose was considered stable if

the docked ligand deviated from the macromolecules with an RMSD of less than 2 Angstrom
over the simulated time range [57]. Some of the studies presented RMSF (Root Mean Square
Fluctuation) to assess the protein flexibility of the ligand-protein complex [56, 76, 79].

MM-GBSA/ MM-PBSA

There were seven studies predicted the binding free energy of the ligand-target complex using
the molecular mechanics-Poisson-Boltzman solvent accessible surface area (MM-PBSA) [56,
57] or molecular mechanics-generalized Born surface area (MM-GBSA) methods [64, 66, 79,
80, 83]. These methods describe the binding free energy of a complex as the subtraction of the
unbound macromolecule’s and unbound ligand’s free energy from the bounded macromole-
cule’s free energy [56]. Binding free energies of a complex also known as molecular mechanics
potential energy, which is composed of the energy of both bonded (bond energy, angle energy,
torsion energy) and non-bonded interactions (electrostatic energy, van der Waals energy) [56,
57].

A variety of different software packages are used for this calculation including the Python
modules and NMODE module in AMBER [56, 66, 79, 83], PRIME [64, 80] and GROMAC
[57]. All of the studies calculated the free energy of each system based on the snapshots taken
from the molecular dynamic simulation trajectories except one study that did not perform the
simulation beforehand [64].

Source of crystal structure for macromolecular target

The availability of 3D structures of macromolecular targets is the prerequisite for performing
structure-based virtual screening. More than 80% of the macromolecular structures used in
the studies were retrieved from RCSB PDB (Research Collaboratory for Structural Bioinfor-
matics Protein Data Bank). The crystal structures of the protein were either determined by
either X-ray crystallography, NMR spectroscopy or cryogenic microscopy method, and depos-
ited in the Protein Data Bank for free download in 3D format (https://www.rcsb.org/) [55, 56,
58-60, 62-66, 69-75, 77-86]. There was only one study obtained the 3D structure of the pro-
tein from AlphaFold, an artificial-intelligence based database that also provides free downloads
of protein structures (https://alphafold.com) [67].

There were four studies that used homology modelling to construct the protein structures
since those 3D structures were not readily available in the existing database [57, 61, 68, 76]. To
start with, template searching was performed by SWISSMODEL, the well-known protein
modelling online server (https://swissmodel.expasy.org/). Next, the amino sequence of the
templates was downloaded from NCBI protein resources (https://www.ncbi.nlm.nih.gov/
protein) followed by alignment of the target sequence and template structure, and finally the
models were built by SWISSMODEL [57, 76]. Another modelling tool available for construct-
ing homology modelling was the Molecular Operating Environment (MOE) [61, 68].

Validation of the model was also performed to ensure the quality of the modeled protein.
Various online tools were available to assess and validate the model, namely WHATCHECK,
PROCHECK, ERRAT, Verify3D, PROVE, OMEAN and Ramachandran plot [57, 61, 68, 76].

Ligand databases

The databases used in virtual screening were either a public database, corporate collection,
vendor database, a set of potentially synthesizable compounds or a combinatorial library built
by in-silico enumeration of pre-defined core structures. Table 6 briefly describes various
online ligand databases used in the included studies.
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Table 6. Online ligand databases used.

Database Brief description Website Used by
PubChem Freely accessible database contains data on chemical https://pubchem.ncbi.nlm.nih.gov/ [55,57,71,
structures, identifiers, chemical and physical properties, 72,75=77,
biological activities, toxicity data and many others. 82]
Launched in year 2004 by National Institute of Health.
ZINC Freely accessible database contains purchasable compounds | https://zinc.docking.org/ [70,71,73,
in ready-to-dock format. Provided by the Irwin and 76, 81, 84]
Shoichet Laboratories in the Department of Pharmaceutical
Chemistry at the University of California, San Francisco
(UCSF).
DrugBank Freely accessible database contains FDA approved small https://go.drugbank.com [64, 66]
molecule drugs, FDA approved biotech drugs, withdrawn
drugs, and experimental drugs. Started in 2006 by Dr David
Wishart’s laboratory at the University of Alberta, Canada.
NCI/DTP database Freely accessible database developed by National Cancer https://dtp.cancer.gov/ [60, 69]
Institute (NCI), Developmental Therapeutic Program
(DTP).
MMSINC Freely accessible database contains around 4 million of http://mms.dsfarm.unipd.it/MMsINC/search [61]
synthetic and natural compounds. Maintained by
University of Padova, Italy
Chemical library by A library of about 240,000 compounds maintained by https://www.helsinki.fi/en/infrastructures/drug-discovery- [78]
University of Helsinki University of Helsinki, Finland. Includes a subset of chemical-biology-and-screening/infrastructures/high-
approved drugs, natural products and diversified sets of throughput-biomedicine/chemical-compound-libraries
drug-like compounds.
FDA-approved library by | A unique collection of FDA-approved drugs and https://www.selleckchem.com/screening/fda-approved-drug- | [68]
Selleck pharmacopoeia-included APIL. library.html
Maybridge Commercial database contains ready-to-screen library, http://www.maybridge.com (old) [58]
fragment library, drug-like compounds library and few https://www.thermofisher.com/bn/en/home/global/forms/lab-
others. solutions/maybridge-library.html (new)
SPECS database Commercial database contains drug-like small molecules https://www.specs.net/ [58]
collected from academic sources worldwide.
Key Organic Database Commercial database contains fragments and screening https://www.keyorganics.net/ [85]
libraries, building block libraries etc.
Aldrich Market Select Commercial database by Sigma Aldrich, USA. https://www.aldrichmarketselect.com/ [59]
MolPort Commercial database. Launched in Riga, Latvia. https://www.molport.com/ [59, 86]
Herb database Traditional Chinese Medicine database guided by references | http://herb.ac.cn/ [67]
and high-throughput experiments. Created by researchers
in Beijing University of Chinese Medicine.
TCM Database@Taiwan Freely accessible small molecules database on Traditional http://tcm.cmu.edu.tw [74]
Chinese Medicine. Constructed by Computational Systems
Biology Laboratory at the China Medical University
(Taiwan).http://researcher.nsc.gov.tw/ycc0929/
Plant Database Contains phytochemicals of medicinal plants from East Not found [64]
Africa, North Africa, North East
Molecular Modelling In-house database by Molecular Modelling Section (MMS), | Not found [62, 63]

Section (MMS) Database

Department of Pharmaceutical Sciences, University of
Padova, Italy

https://doi.org/10.1371/journal.pone.0301396.t006

PubChem and ZINC were among the most popular databases used. Both were public data-

bases with more than millions of chemical structures readily downloadable in several common
file formats. As of today, PubChem contains 110 million compounds whereas ZINC20 (the
current version) contains 750 million molecules with 230 million purchasable compounds in
ready-to-dock format (both websites accessed on 23 October 2023).
The size of these popular databases has grown in an exponential manner throughout the
years. When Leggett et al. performed their virtual screening, 2007 ZINC drug-like library’ was
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Table 7. Target proteins and anticancer properties of anthraquinone derivatives elucidated by CADD methods.

Database/ Compounds Target(s) Involved: PDB | Cancer Type |Name & Structure of Observed Interactions/ In-vitro Study
Screened ID Identified Best Hit Derived |Predicted Binding Mode by the | Validation
from Anthraquinone Molecular Modelling (Potency)
Structural derivatives of P53 Y220C mutant: General Alizarin (Among the best six | Not reported Not performed | [55]
1-hydroxy-2-methyl- 1TUP and 2XOW ligands)
anthraquinone retrieved
from PubChem
Six cationic porphyrin- Cyclin-Dependent General Porphyrin-anthraquinone Anthraquinone tail projected to | Not performed | [56]
anthraquinone hybrids Kinases (CDKs): 1DI8 hybrid with one substituent | the hydrophobic region while
built with the help of (mono-H2PyP-AQ) the porphyrin core interacted
GaussView with the hinge residues Phe80,
Glu81, and Leu83
Sixty phytochemicals of BRAF kinase: 6XFP Melanoma 2-methyl anthraquinone Hydrophobic interactions were | Not performed | [57]
Acalypha indica retrieved | (homology modelling (Among the top four observed with Ile463, Val471,
from PubChem template) phytochemicals) Ala481, Trp531 and Phe583.
Vendor Database Epidermal growth factor | Lung Cancer 1,4-dihydroxy-5- methoxy- Hydrogen bonds observed with | IC5o EGFR-WT: | [58]
(Maybridge and SPECS) receptor (EGFR) wild anthraquinone (Compound | Met793, GIn791 and a 4.3uM;
type (WT) and EGFR 4) conserved water molecule via ICso
T790M mutant: 2JIV, two hydroxyl groups and a EGFR-T790M/
2JIU and 3IKA methoxyl group. L858R: 17.6uM
UMG63 as starting Ubiquitin-like containing | General Anthrarobin (AMSA2) The isolated hydroxyl group H- | IC5, UHRF1: [59]
compound for similarity PHD and RING fingers -structurally related to UM63 | bonded with the backbone of 5.40puM
search in MolPort domains 1 (UHRF1): with anthraquinone core Val44 while the catechol moiety
(7,591,844 entries) and 3CLZ H-bonded with the backbone of
Aldrich Market Select Ala463 and Thr479, and the
(8,512,248 entries) side chain of Asp469.
National Cancer Institute | Epidermal growth factor | Lung cancer NSC125910 (Compound G) | Compound G formed hydrogen | Not performed | [60]
(NCI) diversity database receptor (EGFR): 1IM17 bond with Lys721 via O-atom of
(1990 compounds) the dioxoanthracene group,
while the O-atom and H-atom
of the sulfophenyl group H-
bonded to the Cys773 and
Asp776.
NSC299137 (Compound J) Compound J formed a weak
hydrogen bond between the
backbone-N of Met769 and the
carbonyl oxygen of the
dioxoanthracene-ring.
MMSINC (in-house Protein Kinase CK1 delta | General 1,4-diamino-anthraquinone | Stabilizing interaction was ICso CK1d: [61]
database contained around | (CK1d): 2CSN and 1EH4 (Compound 1) made between one of the amino | 0.33uM
4 million of syntheticand | (homology modelling groups and Glu83 while another
natural compounds) template) amino group H-bonded with
Asp149. Another hydrogen
bond was observed with Leu85.
Hydrophobic bonds were also
observed with Ilel5, Ile23,
Ala36, Leul35, Ile147.
Molecular Modelling Protein kinase CK2: General Quinalizarin Not reported IC5¢ CK2: [62]
Section (MMS) database 1JWH (1,2,5,8-tetrahydroxy- 0.15uM
(more than 3000 of both anthraquinone)
synthetic and natural
compounds)
Quinalizarin (Identified Protein kinase CK2: General Quinalizarin Hydrogen bond formed IC5¢ CK20,B,: [63]
from previous SBVS study) | 4MD& (CK2 apo form) (1,2,5,8-tetrahydroxy- between one of the hydroxyl 0.15uM;
and 3QA0 (CK2a apo anthraquinone) groups with Vall16 in the hinge | IC5o CK2a:
form) region via a water molecule; 1.35uM
another hydroxyl group H-
bonded with His160 on one
side, and with carbonyl of
Arg47 on the other side.
(Continued)
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Table 7. (Continued)

Database/ Compounds Target(s) Involved: PDB | Cancer Type |Name & Structure of Observed Interactions/ In-vitro Study
Screened ID Identified Best Hit Derived |Predicted Binding Mode by the | Validation
from Anthraquinone Molecular Modelling (Potency)
14000 phytochemicals from | Maternal Embryonic Breast cancer | Emodin Hydrogen bond was formed IC5o TNBC cell | [64]
Plant Database and 14500 | Leucine Zipper Kinase (especially with Cys89 line: 30.30pM
synthetic drugs from (MELK): 5IH9 Triple-
DrugBank Negative Breast
Cancer)
Five anthranoid skeletons | Estrogen receptor alpha | Hormone- Glucofrangulin B Hydrogen bond interactions Not performed | [65]
and derivatives as hydroxy- | (ERa): 1A52 associated were observed with residues
anthraquinones diseases Glu423, Lys520, His516,
constructed by the SYBYL including His516, Arg515, Arg515,
sketcher module cancer Arg515 and Cys381.
Estrogen receptor beta Emodin Hydrogen bond interaction was
(ERB): 1QKM observed with Glu305.
DrugBank (contained 7097 | human O-GlcNAcase General Mitoxantrone The anthraquinone moiety pi-pi | IC5o hOGA: [66]
compounds) (hOGA): 5M7T stacked with Phe223, Tyr286, 7.3uM
and Trp645, and the hydroxyl
groups on the anthraquinone
ring H-bonded to Lys98 and
Aspl75. One of the
hydroxyethyl side chains H-
bonded with Lys98 and Asn313.
The other side chain interacted
with Lys648 outside the pocket.
HERB database for small Reticulo-calbin2 (RCN2): | Cholangio- Emodin Hydrogen bonds were observed | Not performed | [67]
molecules From AlphaFold database | carcinoma with residues GIn261, Asn259,
(CCA) Tyr239 and Arg234.
FDA-approved Drug eEF-2K (Eukaryo-tic Breast cancer | Mitoxantrone Hydrogen bonds were observed | Kd to eEF-2K: [68]
Library (by Selleck, elongation factor-2 with residues Argl40, Lys170, | 9.11 uM
contained 1375 drugs) kinase): 3LKM 1e232, Glu 233, and Gly234.
(homology modelling
template)
NCI/DTP Small Molecules | Focal Adhesion Kinase General Mitoxantrone and derivative | A18 compounds docked into Not calculated [69]
Database (contained more | (FAK): 2J0J and 2JOL (A18 compound): 1,4-bis the K454 site of the FAK kinase
than 140,000 compounds) (diethylamino)-5- domain
8-dihydroxy anthraquinone
Acros Organics subset of Human cytoplasmic General Anthraquinone- Not reported ICso RL [70]
the Zinc database nucleotidase (cN-II): (especially 2,6-disulfonic acid, disodium (lymphoma) cell
(contained 13,754 2JC9 acute myeloid | salt (AdiS) line: 750 uM
compounds after filtering) leukemia)
-166 known inhibitors ATP-binding cassette General Rhein (ZINC4098704) Twenty-seven hydrophobic Not performed | [71]
retrieved from PubChem Super-family G member bonds were observed with
(filtered for 2 protein (ABCG2): 5NJ3 residues Tyr613(2), Ile423(4),
pharmacophore Gln424(5), Ser420(4), Lys616
modelling)-Zbc library (3), Tyr605(2), Ala606(2) and
(26432 natural compounds) Thr607(5). Four hydrogen
bonds were observed with
GIn424, Thr607 and Lys616.
9 compounds extracted human epidermal growth | General Marmycin A (marine- Interactions were observed with | Not performed | [72]
from marine Streptomyces, | factor receptor 2 (HER2): sourced anthraquinone- residues Cys312, Pro315,
retrieved from PubChem IN8Z derivatives) Cys316, Arg318, Val319,
Cys320, Asn297, GIn298,
Glu299, Cys312, Pro315,
Cys316, Arg318, Glu326,
Met324, Tyr321, and Phe349.
(Continued)
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Table 7. (Continued)

Database/ Compounds Target(s) Involved: PDB | Cancer Type |Name & Structure of Observed Interactions/ In-vitro Study
Screened ID Identified Best Hit Derived |Predicted Binding Mode by the | Validation
from Anthraquinone Molecular Modelling (Potency)
2007 Zinc drug like library | Arylamine N-acetyl- General 9,10-dihydro-9,10-dioxo- Not reported ICso [73]
(contained 2 million transferase 1 (NAT1): 1,2-anthracenediyl diethyl NAT1:0.75 uM
compounds) 2PQT and 2PFR ester (Compound 10)
Alizarin ICs0 NATI1
0.89 uM
TCM database@ Taiwan G-quadruplex (G4s): General Emodin Emodin docked at the binding | Not calculated [74]
1KF1 (parallel) 143D site of 143D in a larger groove
(anti-parallel) 2JPZ than in 2JPZ, and the hydroxyl
(hybridized) of emodin H-bonded to the

phosphoric acid oxygen atom of
DT9. No ligands were observed
for parallel G4 due to the lack of
a pocket site on the surface.

Anthraquinones derivatives | Dihydro-folate reductase | General Damnacanthal Hydrogen bonds were observed | Not performed | [75]
from Morinda citrifolia (DHFR): 1DLS with Asp21, Ser59, and Asné4.
attained from PubChem Van der waal interactions were
observed with Tyr22, Phe31,
1le60.
Four phytochemicals from | HPVE6:4GIZ; Cervical cancer | Rhein (among the 4 Not reported Not performed | [76]
Amomum subulatum, BCL2:2XA0; XIAP:1F9X; phytochemicals identified)
retrieved from PubChem HPVE7 & LIVIN:
for pharmacophore homology modelling
screening via
ZINCPharmer
200 compounds resulted Epidermal growth factor | Lung cancer Nogalamycin N-oxide Binding interaction was ICso EGFR: [77]
from similarity search on receptor (EGFR): 1IM17 (NSC116555), observed with Thr854 in the 31.56 nM
PubChem based on eight DFG-in conformation.
starting compounds Additional conserved hydrogen
identified by previous study bonds were observed with

Cys797, Ala743, Lys745,
Asp855, Cys797, Leu844, and

Phe856.
Chemical Library of about | Toll-like receptor 4 General Mitoxantrone (Structure as | Not reported Not calculated [78]
140 000 compounds (TLR4): 3FXI above)
maintained by University
of Helsinki
25 Derivatives of G-quadruplex (G4) RNA: | General AOPH with the hydroxyethyl | The anthraquinone moiety Not performed | [79]
Monomeric anthraquinone | 2KBP piperazine side chain (The partially stacked on the G-tetrad
based, bis-benzimidazole best among nine surface interacted with G17 and
and hybrid carbazole- anthraquinone-based G2, and the hanging piperazine
benzimidazole type ligands ligands) part interacted with the groove
containing U18 and A20 of
strand B.
Combinatorial library of human aurora kinase B General Naphthoisatine (Compound | Hydrophobic interactions and | ICsy AurB [80]
over 2 million compounds | (AurB): 4AF3 2) hydrogen bonds were observed | 7.4 uM
created from in-silico with residues Leu83, Gly84,
modification of Lys85, Phe88, Tyr156, Alal57,
anthrafuran Argl59, Gly160, Glulé61,
Lys164, Glu 165, Glu204 and
Leu207.

(Continued)
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Table 7. (Continued)

Database/ Compounds Target(s) Involved: PDB | Cancer Type |Name & Structure of Observed Interactions/ In-vitro Study
Screened ID Identified Best Hit Derived |Predicted Binding Mode by the | Validation

from Anthraquinone Molecular Modelling (Potency)
235 compounds that have | Histone deacetyl-lases General Compound 3 Hydrogen bonds were observed | ICso HDAC6: 56 | [81]
ring subsets from ZINC15 | isoform 6 (HDACS6): with the side chain of Y745, nM

database after filtered off 5EF7 and 5EDU
macrocyclic molecules

21 natural anthraquinone | Matrix metallo-
derivatives retrieved from | proteinase-13 (MMP
PubChem 5B50

backbone amide oxygen of
G582, and imidazole side chain
of H573. The middle quinone
and phenyl rings were
sandwiched between lipophilic
side chains of F583 and F643,
forming pi-pi interactions. Two
carbonyl oxygens of the
quinone ring formed hydrogen
bond with H614 and S531.

General Pulmatin Four hydrogens and four Not performed | [82]
-13): hydrophobic interactions
formed with Gly183, Leul84,
Alal86, Glu223, Ile243 and

Tyr244.
78 anthraquinone-based Phospho-glycerate General Compound Number 81 Not reported Not performed | [83]
inhibitors retrieved from mutase 1 (PGAM1): 5Y35 (among the seven new
literatures used for 3D inhibitors designed based on
QSAR modelling the QSAR modelling)
3000 FDA-approved drugs | NEDD8-activating General Mitoxantrone Three hydrogen bonds were ECso Caco-2 cell: | [84]
from ZINC database enzyme (NAE): 3GZN observed with Thr103, GIn112, | 1.3 uM

and Lys307 at the binding site.

One of the alkyl chains

extended out into the solvent

region, while the other probed

deeper into the binding pocket.
Emodin analogues queried | Aurora Kinase A Ovarian cancer | 8L-902 (among the 9 One hydrogen bond Not calculated [85]
by substructure search (AURKA): 50RL analogues identified) interaction, two pi-pi
from Key Organic database interactions, one pi-sigma
(49,415 compounds) interaction, and four pi-alkyl

interactions were observed.
MolPort (6,504,839 Ubiquitin-like containing | General UM63 Interaction was stabilized by pi- | ICs, to SRA- [86]
molecules) PHD & RING fingers pi stacking with the side chain | induced base

domains 1 (UHRF1):
3CLZ

https://doi.org/10.1371/journal.pone.0301396.t007

of Tyr478 and several hydrogen | flipping:
bonds to key residues Asp469, | 4.4 uM
Thr479, Gly448, Gly465,

Ala463.

used whereby the number of molecules contained was reported at about 700 hundred thou-
sand [73]. The reported number was increased to 120 million when another study screened
the database (ZINC15) about a decade later (81). ZINC database also contains different subsets
to tailor for different aims of screening. For example, the Acros Organic database used by Jord-
heim et al. was one of the subsets after filtering with the Lipinski rules [70]. On the other hand,
Khan and colleagues used the subset of synthesizable natural compounds (Zbc) loaded with
biogenic lead-like compounds, primary and secondary metabolites of natural products [71].
Last but not least, the database of ‘FDA-approved drugs (via DSSTOX)’ used in another study
was also obtained from ZINC (http://zinc.docking.org/catalogs/fda) [84].

It is inevitable that some of the compounds are overlapping in various libraries, but each
library still carries unique features. In this review, some of the studies used more than one
database to cater to their different objectives, these included a combination of two public data-
bases [71, 76], two commercial databases [58, 59], or a plant database together with a synthetic
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Fig 3. Chemical structure depiction of the hit compounds.

https://doi.org/10.1371/journal.pone.0301396.9003
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database [64]. In order to optimize the screening outcome, another useful strategy was the con-
struction of a virtual combinatorial library by enumerating the main scaffold of existing active
compounds with a pre-selected drug block in which a target-focus library could be formed
[80].

It is also worth highlighting the efforts of the research community in building natural prod-
uct databases owing to the increasing momentum seen in herbal research. The HERB database
used by Gao et al. [67] was built by linking targets and diseases to herbs, aiming to aid the
modernization of Traditional Chinese Medicine especially in rational drug design [98].
Besides, another TCM database@Taiwan used in one of the studies [74] was designed in both
English and Chinese languages, deemed as the largest collection of 3D structures for Tradi-
tional Chinese Medicine to date in a freely accessible ready-to-dock format to support the in-
silico research [99].

Ligand constructors were used to draw the 3D structures of the ligands when the data
required was not readily available. Among the tools used included Chemicalize [55], Gauss-
View [56], SYBYL sketcher module [65], ACD/Chemsketch [75], Marvin Sketch [80], and
ChemDraw [83].

Identified targets and anticancer properties of anthraquinone derivatives

The main target proteins investigated in the included studies for developing potential thera-
peutics against different types of cancer are presented. The best hit was either derived from a
set of starting compounds that contained anthraquinone scaffold or discovered by screening
varied sizes of databases. The identified hit compounds that contained anthraquinone scaffold,
the observed interactions with the target proteins simulated by the molecular modelling and
their corresponding potency (if tested experimentally) are also displayed (Table 7). (Refer to
Fig 3 for the chemical structure depiction of the respective hit compounds).

Anthraquinone scaffold is a privileged scaffold that carries biological activities against a
wide range of macromolecular targets. Privileged scaffold is defined as the core structure that
can interact with more than one receptor with high affinity [100]. The prioritized anthraqui-
none derivatives from the included studies exhibit different types of interactions with the iden-
tified targets, these included hydrogen bonding, hydrophobic interactions, pi-pi stacking, pi-
sigma and pi-alkyl interactions (Table 7). The calculated ICs, (half maximal inhibitory concen-
tration) of these hit compounds determined from the in-vitro experiment ranged from micro-
molar [58, 59, 61-64, 66, 70, 73, 80, 86] to nanomolar [77, 81] scale, indicating the high affinity
of these anthraquinone derivatives against the various macromolecule targets. There was one
study reported the potency of the identified hit in the form of Kd [dissociation constant] [68]
and another study calculated ECs, (half-maximal effective concentration) [84], both of these
values were also in the micromolar scale, suggesting the potential of these hit compounds as
the promising candidates for further development into new anticancer drugs.

The majority of the studies looked into the role of these targets in general cancer whereas
some of them dived into specific cancer types. Among these were the top killer cancers in men
and women namely lung cancer [58, 60, 77] and breast cancer [64, 68] respectively. Another
two types of cancer that threaten the female population included cervical [76] and ovarian can-
cer [85]. Stubborn diseases with poor prognosis such as melanoma [57], cholangiocarcinoma
[67] and acute myeloid leukaemia [70] were also investigated. The macromolecular targets
involved are responsible for managing these different malignancies via various mechanisms,
mainly to tackle the hallmarks of cancer [101] (Fig 4).

Many of the studies investigated the role of anthraquinone derivatives against the protein
kinases family, the enzymes that carry multiple roles at once. The serine-threonine kinases like
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Fig 4. Targets involved that tackled the hallmarks of cancer.
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CDK2 [56], CK15 [61], CK2 [62, 63], MELK [64], AURA [85], AURB [80], BRAF [57]
involved in many cellular processes including signal transduction and controlling cell cycle
progression in various phases. Another tyrosine kinase family investigated were FAK [69],
EGER [58, 60, 77], and HER2 [72] that mediated cell proliferation and survival. Dysregulation
of these kinases in malignant cells resulted in a sustained supply of blood to the tumours,
uncontrolled growth and immortality of the cells, in which anthraquinone derivatives man-
aged to serve as inhibitors against these targets to activate apoptosis. Inhibition of targets like
RCN2 [67] and cN-II [70] also induced programmed cell death by activation of natural killer
cells.

Another calcium/calmodulin-dependent kinase known as eEF-2K stimulated the cancer
growth by mediating through autophagy and facilitating the switch from oxidative phosphory-
lation to glycolysis in response to metabolic stresses [68]. Other cancer-promoting enzymes
that involved in carcinogen metabolism included hOGA [66], PGAM1 [83], NAT1 [73] and
DHER [75]. Anthraquinone derivatives such as mitoxantrone, alizarin and damnacanthal
managed to turn off this special metabolic pathway and increase the susceptibility of cancer
cells to apoptosis induced by chemotherapy.
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Apart from that, anthraquinone derivatives were also found to trigger telomere dysfunction
by targeting G4 and suppressing tumour growth [74, 79]. Emodin, one of the naturally-occur-
ring anthraquinones was reported to work synergistically with telomerase inhibitor in sustain-
ing the telomere defect and enhancing cancer cell damage [74]. On the other hand,
oncoproteins such as HPVE6, HPVE7 [76], UHRF1 [59, 86] and anti-apoptotic protein BCL-
2, XIAP, LIVIN [76] are involved in protecting the cancer cells from growth suppressor and
hence facilitating their growth. Anthrarobin and rhein were among the potential hits found to
modulate these target proteins leading to cancer cells suppression.

Over-expression of proteins like mutated TP53 [55], mutated EGFR [58] and MMP-13 [82]
enhanced the ability of cancer cells to evade adjacent tissues leading to metastasis. Alizarin,
Pulmatin and 1,4-dihydroxy-5-methoxy-anthraquinone were identified as potential inhibitors
for mutated TP53, MMP-13 and mutated EGFR respectively and help in preventing the spread
of cancer cells. Another investigated target, TLR4 was found to serve as a mediator of innate
immune system activation [78]. In addition, the elevated level of ABCG2 on the plasma mem-
brane reduced the effect of anti-cancer drugs by enhancing the efflux process leading to multi-
drug resistance (MDR) [71]. This phenomenon was also observed with overexpression of CK2
[62, 63]. Virtual screening discovered quinalizarin, rhein and mitoxantrone as modulators of
these targets and exhibit therapeutic roles in managing multidrug resistance. Last but not least,
one of the studies showed that phytochemicals like emodin and glucofrangulin B also carried
phytoestrogenic activities in which their effect on estrogen receptors was investigated [65].
These anthraquinone derivatives may play an important role in hormone-related disorders
including breast cancer that commonly associated with elevated levels of estrogen in blood.

Taken altogether, this review shows that anthraquinone was proven to be a valuable com-
pound containing the most privileged scaffold with great therapeutic potential to be developed
into wide-spectrum anticancer drugs.
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Risk of bias assessment

The risk of bias checklist was designed mainly to assess the reporting quality of docking-based
studies (Table 2). Since molecular docking was involved as the main screening tool in all of the
studies included in this review, the risk assessment managed to cover all papers. The results
are illustrated in Fig 5.

For all 32 papers, none of them described on the control of histidine and addition of metal
as part of their target preparation steps. It may be due to the lacking of clear guidelines to
guide the proper reporting of in-silico research. Nevertheless, nearly 70% of the studies
reported on the ligand optimization steps which include ionization assessment and generation
of possible conformation, as well as the description on general target protein preparation
mainly performed by the built-in tools associated with the docking software, whilst there were
still some studies did not elaborate this domain.

For the method of target protein generation, further search from the RCSB Protein Data
Bank revealed that the majority of the crystal structures used in the studies were obtained via
X-ray diffraction method, where this method was more commonly in use compared to NMR
spectroscopy. However, X-ray crystallography was ranked as “High Risk of Bias” in the check-
list as it was opined that only NMR spectroscopy captures the three-dimensional structure
details in a medium close to the actual biological environment [49]. Perhaps the ranking of
this domain is worth revisiting since both NMR spectroscopy and X-ray crystallography offer
different pros and cons, and both tools are highly complementary [102].

What is worth mentioning is almost all studies except two studies (data not found) per-
formed visual control to inspect the docking pose to ensure there were no structural artifacts
derived from the computer calculation. However, for docking validation by redocking, only a
quarter of the studies elaborated on this crucial process. Since CADD methods are based on
prediction by computational calculation and algorithm, experimental validation is still
required to confirm the outcome of the study. Unfortunately, more than half of the studies did
not pursue or yet report on the in-vitro validation.

In general, this assessment revealed that there is a gap in a proper or standard guide to
enhance the reporting quality of studies involving molecular docking in particular. Neverthe-
less, Monks and colleagues have developed a 20-items checklist to improve the reporting of
discrete-event simulation, system dynamics and agent-based simulation models within the
field of Operational Research and Management Science, termed as “Strengthening The
Reporting of Empirical Simulation Studies (STRESS)” [103]. However, the applicability of this
checklist for this type of review is yet to be discovered.

Limitation

One of the limitations of this review was that only articles written in English were included,
resulting in missing important papers which were written in other languages. Besides, the
included studies utilized different methods and approaches hence resulting in heterogenicity
and difficulties in performing pooled analysis. On the other hand, there is no other systematic
review that evaluated the anticancer drug design and discovery of anthraquinone derivatives
based on CADD methods. Therefore, there is no comparison that could be done for assessing
agreements or disagreements with other studies.

Conclusion

The outcome of bias risk assessment implied the need for proper and more standardized
guidelines in order to improve the reporting quality of in-silico studies. Nevertheless, the
increasing number of publications retrieved throughout the years has proven the role of
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CADD methods as an indispensable tool in the era of modern drug design and discovery.
These methods were particularly useful in the early stages of the drug design and discovery tra-
jectory to screen, identify and optimize the potential hits in a systematic manner for shortlist-
ing only the most promising compounds for further analysis.

Structure-based and ligand-based methods were either used alone or in combination to
obtain consensus prediction. Combining different tools offered the advantage of enrichment
enhancement, enabling the synergizing of the strengths and complementing the weaknesses of
each method. The choices of software used were mainly project specific although user-friendly
interface could have also served as one of the driving factors.

The findings in this review also strengthened the fact that CADD methods enabled deeper
exploration of the anticancer potential of anthraquinone-based compounds up to the molecu-
lar level. The utilization of in-silico techniques for the study of anthraquinone derivatives has
made it possible to obtain further insights into their structural, biological and pharmacological
properties. Notably, anthraquinone derivatives demonstrated remarkable anticancer proper-
ties by targeting a wide spectrum of biological targets that tackled the abnormalities of cancer
cells in an all-rounded fashion. The synergy between computational and experimental
approaches contributes to a more comprehensive understanding of anthraquinones’ potential
as anticancer therapeutics.

As cancer continues to pose a threat to the global healthcare system, the role of anthraqui-
nones, coupled with CADD methods, offers a promising avenue for drug discovery. By har-
nessing the power of computational tools and leveraging the natural diversity of
anthraquinone compounds, researchers can expedite the development of better drug to
address the unmet medical needs in cancer treatment by improving the treatment outcome for
cancer patients.

The insights gained from this review can serve as the scientific evidence-based guidance to
improve the success rate of future cancer research. It is recommended for upcoming research
to follow closely with the rapid advancement of CADD and make full use of integrated tools to
facilitate the design and discovery of novel anticancer therapeutics expanded from the privi-
leged anthraquinone scaffold.
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