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Abstract

Background

In the search for better anticancer drugs, computer-aided drug design (CADD) techniques

play an indispensable role in facilitating the lengthy and costly drug discovery process espe-

cially when natural products are involved. Anthraquinone is one of the most widely-recog-

nized natural products with anticancer properties. This review aimed to systematically

assess and synthesize evidence on the utilization of CADD techniques centered on the

anthraquinone scaffold for cancer treatment.

Methods

The conduct and reporting of this review were done in accordance to the Preferred Report-

ing Items for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline. The proto-

col was registered in the “International prospective register of systematic reviews” database

(PROSPERO: CRD42023432904) and also published recently. The search strategy was

designed based on the combination of concept 1 “CADD or virtual screening”, concept 2

“anthraquinone” and concept 3 “cancer”. The search was executed in PubMed, Scopus,

Web of Science and MedRxiv on 30 June 2023.

Results

Databases searching retrieved a total of 317 records. After deduplication and applying the

eligibility criteria, the final review ended up with 32 articles in which 3 articles were found by

citation searching. The CADD methods used in the studies were either structure-based

alone (69%) or combined with ligand-based methods via parallel (9%) or sequential (22%)

approaches. Molecular docking was performed in all studies, with Glide and AutoDock

being the most popular commercial and public software used respectively. Protein data

bank was used in most studies to retrieve the crystal structure of the targets of interest while

the main ligand databases were PubChem and Zinc. The utilization of in-silico techniques
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has enabled a deeper dive into the structural, biological and pharmacological properties of

anthraquinone derivatives, revealing their remarkable anticancer properties in an all-

rounded fashion.

Conclusion

By harnessing the power of computational tools and leveraging the natural diversity of

anthraquinone compounds, researchers can expedite the development of better drugs to

address the unmet medical needs in cancer treatment by improving the treatment outcome

for cancer patients.

Introduction

The public health burden of cancer is rising rapidly. The American Cancer Society estimates

that in year 2023 alone, nearly 2 million new cancer cases and half a million of cancer deaths

will occur in the United States [1]. At the global level, 28.4 million of cancer cases is projected

in year 2040 by the International Agency for Research on Cancer (IARC), translated to a 47%

increment in 20 years of time [2]. Despite the remarkable achievements in oncology research

for the past few decades that are extending the lives of many patients, there are still unmet

medical needs due to resistance and relapse after a certain time of treatment [3]. On the other

hand, almost all types of cancer treatment modalities cause different degrees of side effects,

jeopardizing the patients’ quality of life. For instance, conventional cancer therapies frequently

result in organ toxicity leading to long term complications, and even the more advanced reme-

dies such as immunotherapy may cause serious or deadly allergic reactions [4]. Therefore, the

search for better anticancer drug with a good balance in between efficacy and safety continues

to attract the attention of researchers.

It is an established fact that the journey to discover a novel drug is long, costly and fraught

with challenges. A recent systematic review revealed that the research and development (R&D)

cost of a new molecular entity could reach USD4.54 billion in estimation, with anticancer drug

being the most expensive therapeutic to make [5]. Worst still, huge investment cost does not

guarantee success in bringing one new medication from bench to bed due to the high attrition

rate especially at the late stage (non-clinical and clinical trials) of the drug development process

[6, 7]. It is crucial to improve the productivity of R&D and computer-aided drug design

(CADD) comes right into the scene to facilitate this endeavour. CADD makes use of different

software, mathematical models and algorithms to rationalize the drug design and speed up the

drug discovery process especially at the early phases which include target identification, hit

identification, hit-to-lead and lead optimization [8]. With the aid of in-silico tools, the number

of chemical candidates to be tested in-vitro or in-vivo are greatly reduced, the success rate of

clinical trials is also increased, leading to the optimization of resources and enhanced cost-

effectiveness throughout the trajectory of drug discovery and development [9]. The advantages

of CADD are also evident in discovering novel drug to tackle allosteric cancer targets or man-

agement of tumours that formed through complicated pathways [10].

In general, CADD can be divided into either structure-based or ligand-based approaches.

As the name implies, structure-based methods rely on the availability of three-dimensional

(3D) structure of the macromolecular target. Whereas ligand-based methods require the infor-

mation of at least one chemical compound of interest or a set of known actives to begin with

[9]. When the drug design and discovery process involved screening a set of compounds or
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chemical databases to pinpoint promising hits by utilizing computer software and algorithm,

the term is coined as ‘virtual screening”. Likewise, structure-based virtual screening (SBVS)

and ligand-based virtual screening (LBVS) are the common categories to differentiate between

the involvement of either target molecules or known active compounds as the starting point in

the screening process. Both strategies can be used independently or in a hybrid manner for vir-

tual screening [11].

The most established structure-based CADD tool is molecular docking which predicts the

interactions and degree of complementary between the ligands and the target’s binding site

[12]. Through docking-based virtual screening, potential hits can be shortlisted from the vast

chemical space based on the scoring ranked by the docking software [7]. The more negative

the scoring value, the tighter the binding of the ligand-target is deduced [13]. Structure-based

pharmacophore modelling is another technique that utilizes the information gathered from

the binding sites of target structures to generate a molecular framework that outlines the essen-

tial features required for binding, followed by virtual screening to map for potential binders

from the chemical database [14].

Pharmacophore is defined as the ‘ensemble of steric and electronic features that is required

to ensure optimal interactions with a target of interest or to exert its biological response (either

by activating or inhibiting it). Pharmacophoric descriptors are used to define a pharmaco-

phore, including hydrogen-bonding (acceptors or donors), hydrophobic groups, electrostatic

interaction sites (positively or negatively ionizable groups), ring centres (aromatic groups) and

virtual points (metal coordinating areas) [15]. When the structural information of the macro-

molecule target is unavailable, the physicochemical properties of a set of known actives are

used to perform pharmacophore modelling and mapping instead [14]. This is one example of

the ligand-based approach, in which molecular descriptors known to be essential for biological

activities are gathered to retrieve other potential drug candidates based on the similarity prin-

ciple that indicates similar molecules normally carry similar activities [16]. Other examples of

ligand-based CADD methods include similarity search, scaffold hopping and quantitative-

structure-activity relationship (QSAR).

After docking-based virtual screening, molecular dynamic simulation can be used to visual-

ise the movement and interaction of ligand-target complex over time by simulating dynamical

changes in the system. By analysing the snapshots taken throughout the simulation time, flexi-

bility and stability of the ligand-target complex can be predicted, location of water molecules

or change in entropy of special structures can also be observed. These hidden states of the sys-

tem can by no means be tested by any wet-lab technique [7, 17]. The molecular mechanics

energies combined with the Poisson-Boltzman (MM-PBSA) or generalized Born and surface

area continuum solvation (MM-GBSA) are other commonly used tool for post-docking analy-

sis to estimate the free binding energy of the ligand-target complex [18]. Both molecular

dynamic simulation and MM-GBSA/PBSA have been shown to successfully improve the

results of virtual screening and are particularly useful in the lead optimization stage [18, 19].

CADD tools are also useful to predict the pharmacokinetics properties and toxicology pro-

file of potential drug candidates, in which various types of in-silico ADMET (adsorption-dis-

tribution-metabolism-excretion and toxicity) filters are available to remove compounds that

carry undesired properties either before or after virtual screening. These web-based filters are

being used extensively to finetune the virtual chemical database or combinatorial libraries, as

well as during the lead optimization stage to enhance the pharmacological properties of the

lead compounds and subsequently increase the success rate at the downstream stages of the

drug discovery process [20].

Apart from that, making use of computational tools to build a combinatorial library for vir-

tual screening is also getting popular in drug discovery. The combinatorial library refers to a
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set of new compounds prepared by a single stepwise enumeration of existing ligands using dif-

ferent types of substitution [21]. With today’s advancement in computational power, only a

few seconds are needed to construct a virtual combinatorial library with millions of com-

pounds [22]. Combinatorial library has been used in natural product research to create data-

bases of natural product analogues with drug-like properties [23]. This strategy can uncover

the potential of natural products with privileged scaffold for new drug design and discovery,

for instance, the anthraquinone- and chalcone- derivatives that showed a wide spectrum of

biological effects on many different macromolecular targets responsible for human diseases

including cancer were used to construct virtual library as the starting point of new drug

research [24].

Natural products and their derivatives have a long history in the pharmaceutical world

owing to their rich bioactive constituents with remarkable therapeutic potential and contrib-

uted to the discovery of many new chemical entities especially in the early days [25]. Medicinal

plants that worked in both minor ailments and severe illnesses including cancer are cheaper

and cause lesser side effects as compared to pure chemical drugs [26]. Combining natural

products with chemotherapeutics has been shown to provide a synergistic effect and overcome

many of the chemo-resistance hurdles in cancer treatment [27].

Anthraquinone is one of the most widely-recognized natural products with great medicinal

value especially in the oncology setting as evidenced in many of the published reviews [28–33].

There have been many pieces of research characterized and studied anti-cancer properties of

naturally occurring anthraquinone derivatives in different cancer types, for example, emodin

in leukaemia [34], colorectal cancer [35] and breast cancer [36]; aloe-emodin in oral cancer

[37], lung cancer [38] and neuroectodermal cancer [39]; chrysophanol in liver cancer [40] and

many others. Well-established cytotoxic drugs like doxorubicin and mitoxantrone also contain

anthraquinone moiety [41]. This basic scaffold of anthraquinone is made up of two aromatic

rings that are connected by two carbonyl groups (mostly at positions 9 and 10) to form a pla-

nar structure (S1 Fig). This unique scaffold has attracted intense interest in the research

endeavours towards designing anthraquinone-derived medicines for many different medical

conditions including malignancy. Typical molecular targets of anthraquinone derivatives in

cancer therapeutics include enzymes that are involved in cellular signalling pathways such as

topoisomerase and kinases, DNA intercalation, inflammatory processes and redox reactions

[32]. Having a planar aromatic structure enables anthraquinone derivatives to intercalate with

DNA or interact with DNA topoisomerases, leading to an interruption of the transcription

and replication process. Likewise, interaction with kinases can also disrupt cellular differentia-

tion and repair function, resulting in apoptosis of cancer cells [42]. On the other hand, the qui-

none moiety in anthraquinone exhibits antioxidant properties by acting as reactive oxygen

species (ROS) regulators [43]. Although there have been a considerable amount of reviews

done on the topic of the anticancer potential of anthraquinone, and there was also a recent

publication discussed the past, present and future role of computer-aided drug discovery in

cancer research [44], however none of these reviews linked together the role of virtual screen-

ing in facilitating the drug design and discovery in cancer treatment based on anthraquinone

scaffold. More importantly, none of them are systematic reviews. To the best of our knowl-

edge, this is the first systematic review synthesizing the evidence of computer-aided drug

design and discovery based on an anthraquinone scaffold for the treatment of cancer.

The primary objective of this review was to systematically assess and synthesize evidence on

the utilization of computer-aided drug design (CADD) techniques centered on the anthraqui-

none scaffold for cancer treatment. We highlight recent trends, popular computational meth-

odologies, preferred software tools, and databases in discovering anticancer drugs that

involved anthraquinone scaffolds. Additionally, the therapeutic potential of these
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anthraquinone derivatives across various cancer types is summarized together with the identi-

fied target proteins that tackled multiple malignancy pathways. Our findings intend to provide

a robust foundation for future research, offering evidence-based insights for successful drug

design leveraging the CADD techniques and anthraquinone scaffold.

Materials and methods

Study protocol

This systematic review was conducted and reported based on the Preferred Reporting Items

for Systematic Reviews and Meta-analysis (PRISMA) 2020 guideline [45, 46]. The protocol

was published [47] and registered in the “International prospective register of systematic

reviews” database (PROSPERO: CRD42023432904).

Review question

The review was conducted to answer the main research questions as follows:

“What are the trends and types of computer-aided drug design and discovery tools used in

virtual screening based on anthraquinone scaffold for cancer treatment”?

“What are the therapeutic potential and target protein of anthraquinone and derivatives

elucidated by CADD to treat cancer?

Eligibility criteria

The review question and eligibility criteria were established according to the PECo strategy (P,

problem; E, exposure; Co, context) for systematic review. Only original research studies that

were published in English and utilized CADD tools as the primary method to discover or

design anticancer drugs involving compounds with anthraquinone scaffold were included in

the review. The details of the inclusion and exclusion criteria based on the PECo strategy are

outlined in Table 1.

Table 1. Eligibility criteria based on the PECo strategy.

Element Inclusion Criteria Exclusion Criteria

Problem

(P)

Studies with clear descriptions of the CADD tools

used in virtual screening involving compounds

with anthraquinone scaffold were included.

Studies without details or clear descriptions of the

CADD or virtual screening tools and studies not

involving compounds with anthraquinone scaffold

were excluded.

Exposure

(E)

Studies investigating therapeutic potential and

target protein of compounds involving

anthraquinone scaffold for cancer treatment were

included.

Studies investigating diseases other than cancer

and not involving anthraquinone derivatives were

excluded.

Context

(Co)

Only original research studies published in

English and utilized CADD techniques or virtual

screening tools for either target protein

prediction/ validation, hit identification, hit-to-

lead and lead optimization were included.

Studies exclusively in-vitro, in-vivo or other types

of in-silico tools that did not serve the purpose of

target protein prediction/validation, hit

identification, hit-to-lead or lead optimization

were excluded. Network pharmacology was

excluded as it did not align with the scope of this

review. Review article, book chapter, letters, grey

literatures (conference paper abstracts, theses/

dissertation, report) and articles published in

languages other than English were excluded.

https://doi.org/10.1371/journal.pone.0301396.t001
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Information sources and search strategy

On 30 June 2023, the literature search was executed on four electronic databases which include

PubMed, Scopus, Web of Science and MedRxiv. There was no restriction on the publication

period, but only articles published in the English language were saved. The search strategy was

designed based on the combination of three main concepts, namely CADD or virtual screen-

ing (Concept 1), anthraquinone (Concept 2) and cancer (Concept 3). The aim was to retrieve

studies that used CADD tools such as molecular docking, molecular dynamic simulation or

any other virtual screening method as the primary approach in the quest for anticancer drugs

involving anthraquinone scaffold. The main search string was as follows: (“virtual screening”

OR “computer aided drug design” OR “molecular docking” OR “molecular dynamics”) AND

(“anthraquinone” OR “anthracenedione” OR “anthranoid” OR “anthradione” OR “dioxoan-

thracene” OR “anthracene-9,10-dione” OR “anthracene-9,10-quinone” OR “9,10-anthrachi-

non” OR “9,10-dihydro-9,10-dioxoanthracene”) AND (cancer OR tumour OR malignant OR

neoplasm). The search was focused on the title, abstract and keywords of the articles and

adjustments were made in each database based on their different characteristics. The S1 Table

tabulates the search strategy executed in the PubMed database.

Study selection

Results of the literature search from the databases were exported into the reference manager,

Endnote X9.0 where duplicate publications were removed by following the steps as described

by Bramer et al. [48]. After deduplication, two reviewers (HMC & MS) independently screened

the title and abstract of the records to ascertain their relevance to the review questions. After-

ward, the selected full-text articles were retrieved and read in detail by the same two reviewers

according to the inclusion and exclusion criteria. The reasons for exclusion were recorded.

Disagreements between the two reviewers were resolved through discussion with a third

author (LM). The study selection process was recorded in the PRISMA flow diagram (refer to

Fig 1 under Result and Discussion).

Risk of bias assessment

Due to the lack of a standardised tool for this type of study, the risk of bias of the selected

papers was assessed using a checklist previously developed and applied by Taldaev and col-

leagues [49], with some modifications. The assessment was carried out separately by two inde-

pendent reviewers (HMC & MS). Disagreement was resolved by discussion with another

reviewer (LM). This tool was mainly focused on the reporting quality of the molecular docking

study. The original checklist consists of 7 main bias domains and 12 sub-domains.

For this review, the bias domain of “Docking Software” was removed. The authors who

developed this tool ranked Glide or GOLD docking software as “low risk of bias” [49] since the

Monte-Carlo algorithm and empirical scoring functions used by these two software have been

shown to perform better as confirmed by in-vitro validation [50]. However, this was not always

the case. Cheng et al. concluded that ‘none of the scoring functions works best at all time’ after

assessing the “docking power”, “ranking power” and “scoring power” of 16 scoring functions

implemented in popular commercial and academic software [51]. Another study compared

five commercial and five academic docking programs in which GOLD and LeDock (both are

commercial software) had the best sampling power whereas the academic software, AutoDock

Vina was superior in terms of scoring power, implying commercial programs did not outper-

form academic software as expected [52]. More recently, Reddy et al. demonstrated that Glide

gave consistent results in terms of docking conformation, ranking and scoring accuracy, but

AutoDock ranked as the best scoring accuracy among all other tested software [53]. Therefore
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there is no single docking method that gives the best outcome for all docking jobs and the

quality of docking result is greatly influenced by the ligands and target of interest [54].

On the other hand, the sub-domains of “Ligand optimization” were merged under “Ligand

Preparation”. Likewise, “Target Optimization” was modified to “Target Preparation” and all

relevant sub-domains were merged. As long as the ligands and target structures were prepared

by using a special tool before undergoing docking calculation, the studies were ranked as “Low

risk of bias”. This made up a total of 5 main bias domains and 9 sub-domains (Table 2).

Data extraction

Two independent reviewers extracted data from the eligible studies using a predefined data

collection form (HMS & SM). The data extracted included the title of journal, authors, publica-

tion year, study context, CADD methods and the software/tools used, name and structure of

the starting compounds or identified hits that contained anthraquinone scaffold, types of

Fig 1. PRISMA flow diagram.

https://doi.org/10.1371/journal.pone.0301396.g001
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cancer involved, databases used to retrieve the structures of both target and ligand. (Refer S2

Table. Data collection form).

Data synthesis and analysis

All included papers in the final studies were used for data synthesis and analysis. The data

were summarized via a narrative approach to address our review questions. Tables and figures

were used to present the characteristics of the studies. The trends and types of different CADD

approaches and tools used in virtual screening as the primary tools for designing or discover-

ing anthraquinone analogues for cancer treatment were analysed and discussed. The respective

macromolecular targets involved and their role in managing different types of cancer, together

with the chemical structures of the identified hit compounds that contained anthraquinone

scaffold were presented and reviewed.

Results and discussion

Study selection

The literature search identified a total of 317 records. After importing the records into the ref-

erence manager (Endnote X9.0) where 102 records were deduplicated, 215 records were sub-

jected to title and abstract screening by HMC and SM. The exclusion of 171 records that did

not fulfil the inclusion criteria resulted in 44 records sought for full article retrieval. These arti-

cles were read in full and critically examined by the same two reviewers separately based on

the eligibility criteria. The reasons for exclusion after full-text screening were recorded. Any

disagreement was resolved by a third author (LM) through discussion and consensus. In addi-

tion, 3 more studies that fulfilled the inclusion criteria were found by citation searching, along-

side the full screening process as they were somehow related to the included studies. The

results of the study identification and selection process were recorded in the PRISMA flow dia-

gram (Fig 1). A total of 32 articles were included in the final review.

General view on the trend of publications

The number of publications in cancer research that involved CADD tools and anthraquinone

was observed to be on the rising trend. From the total number of 215 articles retrieved from

Table 2. Risk of bias assessment.

Bias Domain Sub-domain Low Risk of Bias High Risk of Bias Unclear

Ligand

selection

Ligand filtering Performed Not performed No data

Ligand

Preparation

Geometry-optimized and generation of energetically

possible conformation

Performed by special tool Not performed or performed without special

tool

No data

Target

Selection

Resolution of target structure Not more than 2.5 Å More than 2.5Å No data

Method of obtaining target structure NMR spectroscopy X-ray crystallography or cryogenic electron

microscopy

No data

Target

Preparation

Protonation, addition of missing residue and side chain

after X-ray crystallography or cryogenic microscopy

Performed with special tool Not performed or performed without special

tool

No data

Control of histidine and addition of metals Performed Target structure did not reference to biological

condition

No data

Results

assessment

Visual control Performed Not performed or structure defects observed No data

Redocking/ Docking Validation Performed Not performed or the RMSD value is higher

than 2Å as compared to the initial structure

No data

Verification of docking result by in-vitro study Binding constant (eg: Ki,

IC50) was determined

No laboratory validation or no quantitative

calculations

No data

https://doi.org/10.1371/journal.pone.0301396.t002
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the search strategy after deduplication, only 2 articles were published before the twenty-first

century. This number increased steadily after entering year 2006 (Fig 2). In fact, more than

90% of the identified articles were published in the last decade. From year 2021 up to June

2023 alone (less than 3 years), the highest number of publications (more than 40%) tagged

with the searched keywords were recorded. This showed that the utilization of CADD methods

has gained more popularity and anthraquinone is a compound of interest which attracted

immense interest for biomedical research, especially in the oncology setting. One of the possi-

ble reasons may be also due to the worldwide lockdown caused by the Covid-19 pandemic in

the past 3 years has switched many of the research focus from wet-lab to dry-lab (in-silico),

hence more studies were performed virtually leading to more research publications on com-

puter modelling. As virtual screening has been proven to offer an advantage in terms of

resources, time and cost reduction in venturing novel drugs, it is expected that the number of

research and publications in this field will continue to rise for the year 2023 and beyond.

Types of CADD approaches used and the study context

Structure-based methods and ligand-based methods were used either independently or in combi-

nation. Table 3 illustrates the trends and different types of structure-based and ligand-based

CADD methods used in the 32 included studies, together with their study context. Nearly one-

third of the studies combined both structure-based and ligand-based methods in their drug design

and discovery project (10 studies) while the rest used mainly the structure-based methods.

None of the studies used ligand-based method alone since the crystal structure of all identi-

fied targets in the studies were either available in the protein databases [55, 56, 58–60, 62–67,

69–75, 77–86] or successfully created by homology modelling [57, 61, 68, 76].

Fig 2. Trend of publications.

https://doi.org/10.1371/journal.pone.0301396.g002
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The use of both structure-based and ligand-based methods were combined in either a paral-

lel manner [58, 78, 80] or performed one after another in sequence, termed as sequential

screening [59, 71, 76, 77, 83, 85, 86]. The sequential approach was more popular as it enabled

efficient computation in which the more straightforward and quicker ligand-based virtual

screening served as the pre-docking filter to reduce the size of the screening library before the

more computational-demanding docking job took place. This is evident in those studies that

successfully reduced the size of the screening database from 100 million of compounds in Pub-

Chem to merely 200 compounds [77] or from the Key Organic database of 49415 compounds

to less than 10 compounds (85) after similarity search. Another study utilized ligand-based

Table 3. Types of CADD methods used and the study context.

Authors

(Year)

Structure-based methods Ligand-based

methods

Study Context Reference

Ahire et al. (2016) Docking - SBVS for hit identification [55]

Arba et al. (2017) Docking - SBVS for hit identification [56]

Asnawi et al. (2022) Docking - SBVS for hit identification [57]

Bai et al. (2012) Docking Similarity search SBVS + LBVS for hit identification [58]

Ciaco et al. (2023) Docking Similarity search LBVS + SBVS for hit identification [59]

Choowong-komon et al.

(2010)

Docking - SBVS for hit identification [60]

Cozza et al. (2008) Docking - SBVS for hit identification [61]

Cozza et al. (2009) Docking - SBVS for hit identification [62]

Cozza et al. (2015) Docking - SBVS for hit identification (re-evaluation) [63]

Das et al. (2023) Docking - SBVS for hit identification [64]

DemiRezer et al. (2018) Docking - SBVS for hit identification [65]

Dong et al. (2019) Docking - SBVS for drug repurposing [66]

Gao et al. (2022) Docking - SBVS for target verification and hit identification [67]

Guan et al. (2020) Docking - SBVS for drug repurposing [68]

Golubovskaya et al.

(2013)

Docking - SBVS for hit identification [69]

Jordheim et al. (2013) Docking - SBVS for hit identification [70]

Khan et al. (2021) Docking Pharmacophore

mapping

SBVS + LBVS for hit identification [71]

Lankapalli et al. (2013) Docking - SBVS for target fishing & hit identification [72]

Leggett et al. (2022) Docking - SBVS for hit identification [73]

Liu et al. (2019) Docking - SBVS for hit identification [74]

Mhatre et al. (2017) Docking - SBVS for hit identification [75]

Nag et al. (2022) Docking Pharmacophore

mapping

SBVS + LBVS for hit identification and poly-pharmacology study [76]

Obounchoey et al. (2019) Docking Similarity search LBVS + SBVS for hit identification [77]

Rinne et al. (2020) Docking, structure-based

pharmacophore

Similarity search SBVS + LBVS for hit identification [78]

Roy et al. (2021) Docking - SBVS for hit identification [79]

Singh et al. (2021) Docking Scaffold hopping LB-scaffold hopping SB-guided combinatorial library building &

SBVS for hit identification

[80]

Song et al. (2019) Docking - SBVS for hit identification & and hit-to-lead optimization [81]

Taherkhani et al. (2021) Docking - SBVS for hit identification [82]

Wang et al. (2021) Docking 3D-QSAR LB + SB methods for novel drug design [83]

Wu et al. (2018) Docking - SBVS for Drug-repurposing [84]

Wu et al. (2022) Docking Similarity search LBVS+ SBVS for hit identification [85]

Zyaater et al. (2019) Docking Similarity search LBVS + SBVS for hit identification [86]

https://doi.org/10.1371/journal.pone.0301396.t003
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pharmacophore mapping from ZINC database with 20 million entries and identified only 12

phytochemicals analogues for docking [76]. Other studies that employed ligand-based phar-

macophore or similarity screening prior to docking-based screening resulted in the shrinkage

of library size that ranged from 30% to 85% [59, 86, 87].

On the other hand, running both approaches in parallel could enrich the hit discovery rate

of virtual screening, and overcome the fundamental limitations of each approach [58] and this

was particularly helpful when the sample size of experimental-validated known actives for use

as references in virtual screen was limited [78]. For instance, Bai et al. designed a virtual

screening protocol that started with a parallel screening of a selected database by molecular

docking and shape-similarity search, followed by second stage docking in higher precision

docking mode, then visually filtered out desired compounds for further bioassay, leading to a

hit rate of 24.7% [58]. Rinne and colleagues ran five separate screening simultaneously (one by

similarity search, two by pharmacophore mapping and two by molecular docking), each vir-

tual screen shortlisted a hit list of 200 compounds for laboratory validation out of the database

of 140000 compounds to tackle the limitation of virtual screen [78].

Majority of the studies aimed to discover novel hit or lead from the screened compounds or

database, but three studies [66, 68, 84] looked into drug repurposing or repositioning from

licensed medicines to explore additional indications in the oncology setting. The strategy of

investigating new role of old drug offers benefits such as cheaper investment cost, shorter

development time and reduced risk of failure since lesser efforts are required especially at the

lead optimization stage [88].

There were three studies extended the exploration on the hit compounds identified from

previous virtual screening studies. The starting compound, UM63 that contained anthraqui-

none scaffold used in one of the studies [59] to pre-filter the database based on similarity in

SMARTS pattern was identified previously by the research group from the same university

[86]. Similarly, the screening database of 200 compounds involved in another study [77] were

defined based on Tanitomo coefficient of 0.95 from the eight hit compounds discovered by

their colleagues previously. There was one study re-evaluated the selectivity of quinalizarin

against CK2 by molecular docking and molecular dynamic simulation, and further measured

the inhibitory effect of this compound on 14 kinases panels [63] compared to 7 kinases panels

back in year 2009 when this hit was first shortlisted by the virtual screening study [62].

Molecular docking

Molecular docking was the most popular structure-based method used in CADD. Notably, all

of the 32 studies (100%) included in this review employed docking in their research (Table 3).

This popular method is favoured due to its computational efficiency, in which the docking of

one ligand on a single core typically requires only a few minutes of computing time [16]. Thus,

docking-based virtual screening serves the purpose of filtering out good ideas from bad ones

and subsequently eases the prioritization of more promising ligands out of the large size of the

virtual library to be taken forward for subsequent studies.

Docking was also used in molecular modelling to investigate the interaction in between the

shortlisted hits and the target protein in term of hydrogen bond, hydrophobicity, electron dis-

tribution and binding energy [55, 56, 63, 65, 75, 79, 82]. This was crucial to identify the struc-

tural determinants responsible for efficient binding with the amino acids or protein residues

of the target. With this essential information in hands, promising drugs with more desired

properties were designed [80, 81, 83].

One of the studies utilized molecular docking to verify the potential drug targets identified

from the competitive endogenous RNA (ceRNA) network study by virtually screening out
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small molecule binders against these targets from the selected database [67]. On the other

hand, molecular docking was also used in target fishing and profiling, in which the ligands

were docked into a variety of macromolecules to predict appropriate targets for further analy-

sis [72]. When one particular compound regulates multiple targets at the same time in the

same illness, it is referred as “Polypharmacology” and again, molecular docking was useful to

provide insights in this case [76].

Docking software. Docking methods consist of both posing and scoring process. Small

molecules are docked into the macromolecular target to generate different ligand-target con-

formation and the degree of complementarity for each binding was ranked by scoring func-

tion. There were thirteen different docking tools used in the included studies in this review

(Table 4). These were either commercial software with subscription fees or freely available

(mainly for academic researchers). Each docking software has a different searching algorithm

to align the binding geometrics of ligand-target complex to the preferred and stable pose. Dif-

ferent types of scoring functions are employed in these docking programs to evaluate the best

binding pose of each bounded complex with minimum energy and rank the ligands accord-

ingly from the most negative value to less negative value of the docking score.

The most popular commercial docking software used in this review was Glide provided by

Schrodinger, followed by GOLD provided by the Cambridge Crystallographic Data Centre

(CCDC). For the academic software, AutoDock was among the most sought-after freeware

that used by seven of the included studies. This freeware was developed by the Scripps

Research Institute and they also have another newer generation of docking software namely

AutoDock Vina. It was used by a total of five studies, where two of them performed the dock-

ing study using AutoDock Vina via the commercial virtual screening platform, PyRx (Table 4).

The popular docking programs normally have user-friendly interfaces with readily available

integrated tools required for smooth handling of the in-silico workflow. For example, struc-

ture-rendering, visualization, target preparation (via either interactive or automated protein

preparation workflow), ligand preparation (via LigPrep) could be all managed by the Maestro

graphical interface developed by Schrodinger before submitting the Glide docking calculation

job [58, 61, 62, 64, 68, 78, 80, 83].

Consensus scoring

Some of the studies used two or more scoring functions to evaluate the best hit. This technique

is known as ‘consensus scoring’ whereby different types of scoring functions are combined

with the hope to compensate deficiencies of each scoring function and to improve capability of

the screening process in discriminating actives from decoys [60–62, 66, 75]. The docking pro-

tocols of two studies were made up of four different algorithms (MOE-Dock, Glide, FlexX and

Gold) and five different scoring functions (MOE-Score, Glide-Score, Gold-Score, Chem-Score

and X-score), each was performed independently. The top-ranked compounds taken forward

for further analysis were prioritized from the ‘consensus scored list’ generated from combining

these docking programs [61, 62]. Another study used an empirical score genetic algorithm

from the GOLD program and force-field genetic algorithm from AutoDock program (com-

bined with FRED calculation) to rank the binding of ligands against the target protein, in

which the highest scored compounds were also consensus between these two programs [60].

Two other studies utilized different precision modes of the selected docking software prior

to re-docking by second docking software with varied scoring functions, aimed to improve the

efficiency and accuracy of the virtual screening. One of them performed the initial virtual

screening by Surflex-Dock in screen mode, followed by redocking of shortlisted hits with Sur-

flex-Dock GeomX mode which featured higher spin density and accuracy. Meanwhile, the
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redocking was also conducted by AutoDock program that used a different scoring algorithm

in parallel [66]. The other study combined Glide [Standard Precision (SP)], Extra Precision

(XP), induced-fit docking and Surflex-Dock (Screen Mode, SurflexDock Geom and Surflex-

Dock GeomX), in which each program was run by three different precision modes hierar-

chically [68]. Mhatre et al. also combined two different docking programs, namely

iGEMDOCK and AutoDock Vina in their study but the operations were divided into two

phases, iGEMDOCK was used in the first phase docking followed by redocking using Auto-

Dock Vina in the second phase. The docking scores for each program were presented in a

Table 4. Summary of different docking tools used in the studies.

Docking Tool Features Website Studies

Glide (Grid-Based Ligand Docking

with Energetics)

Commercial software. Complete systematic search of the orientation,

conformational and positional space of the ligand in the target with the

OPLS-AA force field (Optimized Potentials for Liquid Simulations).

Available in HTVS mode, SP mode, XP mode and induced fit docking.

https://www.schrodinger.com/

products/glide

[58, 61, 62, 64,

68, 78, 80, 83]

GOLD (Genetic Optimisation for

Ligand Docking)

Commercial software. Uses empirical score genetic algorithm for

exploration of ligand flexibility. Examples of scoring function are

GoldScore, ChemScore, Kinase Scoring Function (KCS).

http://www.ccdc.cam.ac.uk/ [60–63, 70, 77,

85]

AutoDock Freeware. Uses Lamarckian genetic algorithm (LGA) posing where the

conformations changes of ligands after optimization are used as

subsequent poses for the offspring. The force-field-based scoring function

considers the intermolecular interaction energy, the sum of torsional free

energy, total internal energy, and unbound system energy.

https://autodock.scripps.edu/ [56, 57, 60, 66,

79, 81, 82]

AutoDock Vina Freeware. A newer generation of AutoDock4. Uses knowledge-based

scoring function and rapid gradient-optimization conformational search

with Monte Carlo sampling technique.

https://vina.scripps.edu/ [67, 71, 75]

Surflex-Dock Commercial software. A docking module in SYBYL software. Uses

empirical scoring function by taking hydrophobic, polar, repulsive,

entropic and solvated effects into consideration. The search engine is

based on molecular similarity to dock ligands to target. Available in

Normal, Screen, Geom and GenomX mode.

https://www.computabio.com/

applications-of-surflex-dock-

software.html

[65, 66, 68, 73]

FlexX Commercial software. An incremental fragment-based docking algorithm

where the conformational space sampling is done using a tree search

method. Provided by BioSolveIT in the LeadIT package.

https://www.biosolveit.de/

products/#FlexX

[55, 61, 62]

FRED Free academic licensing program available. Uses exhaustive search

algorithm that systematically searches conformers of each ligand within

the active site at a specified resolution. Examples of scoring function are

Chemgauss and Chemscore. Integrated in OpenEye Scientific Software.

https://www.eyesopen.com [59, 86]

MOE-DOCK (Molecular

Operating Environment)

Commercial software. A docking software under MOE Suite, an

Integrated Computer-Aided Molecular Design Platform.

http://www.chemcomp.com [61, 62]

UCSF DOCK Free for non-commercial researchers only. Force-field based scoring. https://dock.compbio.ucsf.edu/ [69]

PatchDock Free for non-commercial researchers only. Surface path matching and

molecular shape complementary algorithms followed by filtering and

scoring.

http://bioinfo3d.cs.tau.ac.il/

PatchDock/patchdock.html

[72]

iGEMDOCK (Generic

Evolutionary Method for

molecular DOCKing)

Free for non-commercial researchers only. An integrated graphical

environment which utilizing post-screening analysis with

pharmacological interactions for virtual screening.

http://gemdock.life.nctu.edu.tw/

dock/igemdock.php

[75]

DockThor Freeware. Uses MMFFLigand and PdbThorBox in-house tool for the

docking algorithm along with MMFF94S53 force field.

https://www.dockthor.lncc.br/ [76]

Internal Coordinate Mechanics

(ICM)-Pro

Commercial software. The molecular system was described by using

internal coordinates as variables. Energy calculations were based on the

ECEPP/3 force field with a distance-dependent dielectric constant. The

biased probability Monte Carlo (BPMC) minimization procedure was

used for global energy optimization.

https://www.molsoft.com/

technology.html

[84]

PyRx virtual screen software Commercial software. A virtual screening software that is using a variety

of established open-source software including AutoDock4, AutoDock

Vine, AutoDock Tools, Python, Visualization Toolkit, Open Babel etc.

https://pyrx.sourceforge.io/ [74, 89]

https://doi.org/10.1371/journal.pone.0301396.t004
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separate table and comparison was performed to analyse the preferred binding modes of

selected ligands against the target. The results revealed that the pharmacophoric and molecular

space acquired by the selected ligands were similar to the known active, implying the therapeu-

tic potential of the phytochemicals of interest [75].

Apart from combining different scoring functions of various docking programs, the con-

cept of consensus scoring was also applied in virtual screening that combined structure-based

and ligand-based methods. One of the recent studies integrated docking-based virtual screen-

ing with three other ligand-based screening tools (pharmacophore, shape similarity and

QSAR) in which each method produced separate hit lists and consensus Z-score for each high-

est-ranked ligand was then calculated [90]. This paper was published after the article searching

period of this review ended therefore it is not included in the final review. However, the pro-

posed strategy is worth further exploration.

Pharmacophore modelling and mapping

In ligand-based pharmacophore screening, the 3D structures of a set of known actives were

retrieved to guide the development of the pharmacophore model. This model served as the

tool for subsequent virtual screening to map a predefined database for best-fit compounds that

presented shared common features responsible for binding and biological functions [71, 76].

LigandScout was one of the commercial computer software used to generate the pharmaco-

phore model and to score the compounds from the large database based on the computed

pharmacophore features so that potential hits could be identified from the top-ranked list of

the pharmacophore-fit score [71]. There was also a free web server, ZINCPharmar (http://

zincpharmer.csb.pitt.edu/pharmer.html) equipped with ‘add feature’ function to predict phar-

macophore features from the uploaded ligands candidates. ZINC database was then screened

virtually by ZINCPharmer to pinpoint compounds that demonstrated the highest complemen-

tary to the model in terms of chemical descriptors such as hydrogen bonds, ring groups, ionic

groups, hydrophobic and lipophilic groups [76].

There was also structure-based pharmacophore screening performed by Rinne and col-

leagues. Discovery Studio was used to develop the pharmacophore model. Maestro and Pymol

from Schrodinger were used to aid the manual selection of pharmacophore features based on

key residues at two binding cavities of the 3D target structure obtained from X-ray crystallog-

raphy. This resulted in two separate hits lists from the pharmacophore-based screening [78].

Similarity searching

Ligand-based similarity searching utilized the two-dimensional (2D) or three-dimensional

(3D) descriptors of the known actives to discover most-alike molecules from the screening

library based on the concept of ‘compounds with similar chemical structures tend to exhibit

similar biological activities’ [58, 59, 77, 78, 85, 86]. Examples of 2D descriptors included molec-

ular fingerprints [77, 78], substructure-based descriptors [85] or SMART patterns of the mole-

cules [59, 86]. SMART refers to ‘SMILES arbitrary target specification’ whereby the full name

of SMILES is ‘Simplified Molecular Input Line Entry System’. These are special languages

developed by David Weininger and colleagues to describe structure or substructure patterns in

molecules for cheminformatic purposes. FILTER application implemented in OMEGA from

OpenEye Software was used to reduce the size of the screening database by performing

SMART-based query prior to docking-based virtual screening [59, 86]. ChemBioFinder was

another tool used to calculate the substructure search based on known active and to screen out

potential candidates from the database with similar privileged motif as the query compound
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for further analysis [85]. Tanimoto similarity coefficient was a common metric used to rank

the magnitude of similarity especially for molecular fingerprint mapping [77, 78].

Apart from structural information, 3D descriptors also take structural alignment into

account for predicting the similarity between two compounds. Pharmacophore modelling and

shape similarity are among the popular 3D methods for ligand-based virtual screening [91].

Bai and colleagues analysed the 3D conformers of co-crystalized ligands for similarity search

using SHAFTS program and aided by the in-house conformational generation tool Cyndi

[58]. SHAFTS (SHApeFeaTure Similarity) was developed to merge the pharmacophore over-

lay and shape complementary approach in discovering drug candidates with desired proper-

ties. Hybrid similarities score was calculated to prioritize the best-matched compounds with

query compounds in terms of molecular pose alignment and volumetric superposition [92].

Obviously, 2D similarity approach was more popular as it was simpler, quicker and more

straightforward. Nevertheless, both 2D and 3D similarity approaches were proven to increase

the efficiency of virtual screening especially by downsizing the large library to become more

‘target-focused library’ for subsequent in-silico research.

QSAR

QSAR involves mathematics calculation and statistics to model the correlation in between the

molecular descriptors and biological activities [93]. A group of active compounds with the cor-

responding binding constant or inhibitory concentration determined by in-vitro studies was

gathered as the starting point of the process flow. The active compounds were randomly

divided into training sets and test sets in a predefined ratio. SYBYL software was used for

molecular alignment based on the most potent compound to fix a common substructure. The

popular CoMFA (Comparative Molecular Field Analysis) and CoMSIA (Comparative Molecu-

lar Similarity Indices Analysis) methods were then used to construct the 3D-QSAR model

[83]. CoMFA is a force field based method that involves linear function but CoMSIA uses an

exponential function to compute ligand properties such as steric and electrostatic energies

[94]. The 3D-QSAR model was useful to guide lead optimization and new drug design by

modifying the structure of existing ligands [83]. Both QSAR model and pharmacophore

model are considered essential features of the known actives but the focus of QSAR model was

more on features that correlated closely to the biological effect.

Scaffold hopping

Scaffold hopping can be categorized as one of the ligand-based virtual screening methods as it

typically requires the core structures of known actives to be used as the template [95, 96], at

the same time it is also one of the main aims of many drug discovery projects to identify novel

chemotype [91, 92]. Singh et al. modified the base scaffold of anthrafuran that was predeter-

mined to demonstrate desired biological properties, guided by the binding cavity of the target

of interest to build a combinatorial library of over 2 million new compounds based on in-silico

enumeration. This target-focused virtual library was then subjected to structure-based virtual

screening in which novel compounds with better biological activities than the parent analogue

were discovered [80].

Drug-likeness, lead-likeness and ADMET filter

ADMET properties are important for the ultimate fate of a possible drug candidate. Unwanted

effects in animal models or even human trials can be reduced by filtering drug candidates by

their drug-likeness, lead-likeness and ADMET properties in early stages [55]. These filters can
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be applied on the selected database prior to virtual screening [61, 69, 70, 76, 80] or afterward

on the shortlisted hits [59, 64, 71, 75, 78, 81, 82], or even before and after [71].

The popular Lipinski’s Rule of Five [97] was applied to filter out compounds that disobeyed

the drug-likeness properties as predicted (more than 5 hydrogen donors, more than 10 hydro-

gen acceptors, molecular weight larger than 500 and CLogP, a measurement of lipophilicity

greater than 5) [55, 69–71, 75, 76, 80–82]. The freely accessible SwissADME server (http://

www.swissadme.ch/) was another useful tool to predict properties like bioavailability, lipophi-

licity, pKa, blood-brain barrier permeabilities etc [64, 76]. The toxicity prediction technique

included TOPKAT (Toxicity Prediction by Komputer-Assisted Technology) that applied

QSTR (Quantitative Structure-Toxicity Relationship) models to deduce toxicity profiles such

as carcinogenicity, mutagenicity, skin irritation was executed via Discovery Studio software

package by Accelyrs [55]. PAINS (Pan-assay Interference Compounds) filter was also impor-

tant to remove compounds with unwanted functional groups that might cause unexpected

interactions with multiple targets leading to false positive results [59, 78].

Obviously, the studies involved drug repurposing could just skip the filtration step since the

licensed small molecules are believed to possess desired physicochemical properties with

acceptable bioavailability and safety aspects for oral consumption, as approved by the regula-

tory authority [66, 68, 84].

Molecular dynamic simulation

The top-ranked protein-ligand complex shortlisted from docking studies were subjected to

molecular dynamic simulations to observe how every atom in protein moved over time to

assess the binding mode in depth, to confirm the stability of the docked pose and to gain

insight on the protein flexibility of the ligand-protein complex [55–57, 63, 66, 76, 79, 80, 82,

83].

The most widely used software package to perform the simulation was AMBER [56, 66, 79,

83]. Throughout the years, different versions of the software package have been introduced,

for instance AMBER12 [56], AMBER14 [66] and AMBER16 [79, 83]. Other molecular

dynamic tools used were Discovery Studio Molecular Dynamic Protocol [55, 82], GROMAC

[57], NAMD [63], DESMOND [80] and CABS-flex 2.0 server [76]. Among these tools, only

DESMOND from Schrodinger required a license subscription fee whereas the rest were readily

downloadable from the public domain for academic research purposes (Table 5).

All of the studies probed the dynamic of the protein-ligand complex in the time-scale of

nanoseconds [55–57, 63, 66, 76, 79, 80, 82, 83]. Ideally, performing simulation in the order of

microseconds or even milliseconds is better to reveal the biologically essential conformational

evolution but unfortunately, this time-scale of simulation takes too long time to run and there-

fore rarely in use [54]. The stability of the ligand-protein complex was monitored by RMSD

(Root Mean Square Deviation), a common metric used in evaluating the dynamic of

Table 5. Molecular dynamic simulation software used.

Molecular dynamic simulation software Brief description Website Used by

AMBER Freeware https://ambermd.org/ [56, 66, 79, 83]

Discovery Studio Molecular Dynamic Protocol Freeware https://discover.3ds.com [55, 82]

GROMAC Freeware https://www.gromacs.org [57]

NAMD Freeware https://www.ks.uiuc.edu/Research/namd/ [63]

CABS-flex 2.0 server Freeware http://biocomp.chem.uw.edu.pl/CABSflex2 [76]

DESMOND Commercial software https://www.schrodinger.com [80]

https://doi.org/10.1371/journal.pone.0301396.t005
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macromolecules [55–57, 63, 66, 76, 79, 80, 82, 83]. The docked pose was considered stable if

the docked ligand deviated from the macromolecules with an RMSD of less than 2 Angstrom

over the simulated time range [57]. Some of the studies presented RMSF (Root Mean Square

Fluctuation) to assess the protein flexibility of the ligand-protein complex [56, 76, 79].

MM-GBSA/ MM-PBSA

There were seven studies predicted the binding free energy of the ligand-target complex using

the molecular mechanics-Poisson-Boltzman solvent accessible surface area (MM-PBSA) [56,

57] or molecular mechanics-generalized Born surface area (MM-GBSA) methods [64, 66, 79,

80, 83]. These methods describe the binding free energy of a complex as the subtraction of the

unbound macromolecule’s and unbound ligand’s free energy from the bounded macromole-

cule’s free energy [56]. Binding free energies of a complex also known as molecular mechanics

potential energy, which is composed of the energy of both bonded (bond energy, angle energy,

torsion energy) and non-bonded interactions (electrostatic energy, van der Waals energy) [56,

57].

A variety of different software packages are used for this calculation including the Python

modules and NMODE module in AMBER [56, 66, 79, 83], PRIME [64, 80] and GROMAC

[57]. All of the studies calculated the free energy of each system based on the snapshots taken

from the molecular dynamic simulation trajectories except one study that did not perform the

simulation beforehand [64].

Source of crystal structure for macromolecular target

The availability of 3D structures of macromolecular targets is the prerequisite for performing

structure-based virtual screening. More than 80% of the macromolecular structures used in

the studies were retrieved from RCSB PDB (Research Collaboratory for Structural Bioinfor-

matics Protein Data Bank). The crystal structures of the protein were either determined by

either X-ray crystallography, NMR spectroscopy or cryogenic microscopy method, and depos-

ited in the Protein Data Bank for free download in 3D format (https://www.rcsb.org/) [55, 56,

58–60, 62–66, 69–75, 77–86]. There was only one study obtained the 3D structure of the pro-

tein from AlphaFold, an artificial-intelligence based database that also provides free downloads

of protein structures (https://alphafold.com) [67].

There were four studies that used homology modelling to construct the protein structures

since those 3D structures were not readily available in the existing database [57, 61, 68, 76]. To

start with, template searching was performed by SWISSMODEL, the well-known protein

modelling online server (https://swissmodel.expasy.org/). Next, the amino sequence of the

templates was downloaded from NCBI protein resources (https://www.ncbi.nlm.nih.gov/

protein) followed by alignment of the target sequence and template structure, and finally the

models were built by SWISSMODEL [57, 76]. Another modelling tool available for construct-

ing homology modelling was the Molecular Operating Environment (MOE) [61, 68].

Validation of the model was also performed to ensure the quality of the modeled protein.

Various online tools were available to assess and validate the model, namely WHATCHECK,

PROCHECK, ERRAT, Verify3D, PROVE, OMEAN and Ramachandran plot [57, 61, 68, 76].

Ligand databases

The databases used in virtual screening were either a public database, corporate collection,

vendor database, a set of potentially synthesizable compounds or a combinatorial library built

by in-silico enumeration of pre-defined core structures. Table 6 briefly describes various

online ligand databases used in the included studies.
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PubChem and ZINC were among the most popular databases used. Both were public data-

bases with more than millions of chemical structures readily downloadable in several common

file formats. As of today, PubChem contains 110 million compounds whereas ZINC20 (the

current version) contains 750 million molecules with 230 million purchasable compounds in

ready-to-dock format (both websites accessed on 23 October 2023).

The size of these popular databases has grown in an exponential manner throughout the

years. When Leggett et al. performed their virtual screening, ‘2007 ZINC drug-like library’ was

Table 6. Online ligand databases used.

Database Brief description Website Used by

PubChem Freely accessible database contains data on chemical

structures, identifiers, chemical and physical properties,

biological activities, toxicity data and many others.

Launched in year 2004 by National Institute of Health.

https://pubchem.ncbi.nlm.nih.gov/ [55, 57, 71,

72, 75–77,

82]

ZINC Freely accessible database contains purchasable compounds

in ready-to-dock format. Provided by the Irwin and

Shoichet Laboratories in the Department of Pharmaceutical

Chemistry at the University of California, San Francisco

(UCSF).

https://zinc.docking.org/ [70, 71, 73,

76, 81, 84]

DrugBank Freely accessible database contains FDA approved small

molecule drugs, FDA approved biotech drugs, withdrawn

drugs, and experimental drugs. Started in 2006 by Dr David

Wishart’s laboratory at the University of Alberta, Canada.

https://go.drugbank.com [64, 66]

NCI/DTP database Freely accessible database developed by National Cancer

Institute (NCI), Developmental Therapeutic Program

(DTP).

https://dtp.cancer.gov/ [60, 69]

MMsINC Freely accessible database contains around 4 million of

synthetic and natural compounds. Maintained by

University of Padova, Italy

http://mms.dsfarm.unipd.it/MMsINC/search [61]

Chemical library by

University of Helsinki

A library of about 240,000 compounds maintained by

University of Helsinki, Finland. Includes a subset of

approved drugs, natural products and diversified sets of

drug-like compounds.

https://www.helsinki.fi/en/infrastructures/drug-discovery-

chemical-biology-and-screening/infrastructures/high-

throughput-biomedicine/chemical-compound-libraries

[78]

FDA-approved library by

Selleck

A unique collection of FDA-approved drugs and

pharmacopoeia-included API.

https://www.selleckchem.com/screening/fda-approved-drug-

library.html

[68]

Maybridge Commercial database contains ready-to-screen library,

fragment library, drug-like compounds library and few

others.

http://www.maybridge.com (old)

https://www.thermofisher.com/bn/en/home/global/forms/lab-

solutions/maybridge-library.html (new)

[58]

SPECS database Commercial database contains drug-like small molecules

collected from academic sources worldwide.

https://www.specs.net/ [58]

Key Organic Database Commercial database contains fragments and screening

libraries, building block libraries etc.

https://www.keyorganics.net/ [85]

Aldrich Market Select Commercial database by Sigma Aldrich, USA. https://www.aldrichmarketselect.com/ [59]

MolPort Commercial database. Launched in Riga, Latvia. https://www.molport.com/ [59, 86]

Herb database Traditional Chinese Medicine database guided by references

and high-throughput experiments. Created by researchers

in Beijing University of Chinese Medicine.

http://herb.ac.cn/ [67]

TCM Database@Taiwan Freely accessible small molecules database on Traditional

Chinese Medicine. Constructed by Computational Systems

Biology Laboratory at the China Medical University

(Taiwan).http://researcher.nsc.gov.tw/ycc0929/

http://tcm.cmu.edu.tw [74]

Plant Database Contains phytochemicals of medicinal plants from East

Africa, North Africa, North East

Not found [64]

Molecular Modelling

Section (MMS) Database

In-house database by Molecular Modelling Section (MMS),

Department of Pharmaceutical Sciences, University of

Padova, Italy

Not found [62, 63]

https://doi.org/10.1371/journal.pone.0301396.t006
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Table 7. Target proteins and anticancer properties of anthraquinone derivatives elucidated by CADD methods.

Database/ Compounds

Screened

Target(s) Involved: PDB

ID

Cancer Type Name & Structure of

Identified Best Hit Derived

from Anthraquinone

Observed Interactions/

Predicted Binding Mode by the

Molecular Modelling

In-vitro

Validation

(Potency)

Study

Structural derivatives of

1-hydroxy-2-methyl-

anthraquinone retrieved

from PubChem

p53 Y220C mutant:

1TUP and 2XOW

General Alizarin (Among the best six

ligands)

Not reported Not performed [55]

Six cationic porphyrin-

anthraquinone hybrids

built with the help of

GaussView

Cyclin-Dependent

Kinases (CDKs): 1DI8

General Porphyrin-anthraquinone

hybrid with one substituent

(mono-H2PyP-AQ)

Anthraquinone tail projected to

the hydrophobic region while

the porphyrin core interacted

with the hinge residues Phe80,

Glu81, and Leu83

Not performed [56]

Sixty phytochemicals of

Acalypha indica retrieved

from PubChem

BRAF kinase: 6XFP

(homology modelling

template)

Melanoma 2-methyl anthraquinone

(Among the top four

phytochemicals)

Hydrophobic interactions were

observed with Ile463, Val471,

Ala481, Trp531 and Phe583.

Not performed [57]

Vendor Database

(Maybridge and SPECS)

Epidermal growth factor

receptor (EGFR) wild

type (WT) and EGFR

T790M mutant: 2JIV,

2JIU and 3IKA

Lung Cancer 1,4-dihydroxy-5- methoxy-

anthraquinone (Compound

4)

Hydrogen bonds observed with

Met793, Gln791 and a

conserved water molecule via

two hydroxyl groups and a

methoxyl group.

IC50 EGFR-WT:

4.3μM;

IC50

EGFR-T790M/

L858R: 17.6μM

[58]

UM63 as starting

compound for similarity

search in MolPort

(7,591,844 entries) and

Aldrich Market Select

(8,512,248 entries)

Ubiquitin-like containing

PHD and RING fingers

domains 1 (UHRF1):

3CLZ

General Anthrarobin (AMSA2)

-structurally related to UM63

with anthraquinone core

The isolated hydroxyl group H-

bonded with the backbone of

Val44 while the catechol moiety

H-bonded with the backbone of

Ala463 and Thr479, and the

side chain of Asp469.

IC50 UHRF1:

5.40μM

[59]

National Cancer Institute

(NCI) diversity database

(1990 compounds)

Epidermal growth factor

receptor (EGFR): 1M17

Lung cancer NSC125910 (Compound G) Compound G formed hydrogen

bond with Lys721 via O-atom of

the dioxoanthracene group,

while the O-atom and H-atom

of the sulfophenyl group H-

bonded to the Cys773 and

Asp776.

Not performed [60]

NSC299137 (Compound J) Compound J formed a weak

hydrogen bond between the

backbone-N of Met769 and the

carbonyl oxygen of the

dioxoanthracene-ring.

MMsINC (in-house

database contained around

4 million of synthetic and

natural compounds)

Protein Kinase CK1 delta

(CK1d): 2CSN and 1EH4

(homology modelling

template)

General 1,4-diamino-anthraquinone

(Compound 1)

Stabilizing interaction was

made between one of the amino

groups and Glu83 while another

amino group H-bonded with

Asp149. Another hydrogen

bond was observed with Leu85.

Hydrophobic bonds were also

observed with Ile15, Ile23,

Ala36, Leu135, Ile147.

IC50 CK1d:

0.33μM

[61]

Molecular Modelling

Section (MMS) database

(more than 3000 of both

synthetic and natural

compounds)

Protein kinase CK2:

1JWH

General Quinalizarin

(1,2,5,8-tetrahydroxy-

anthraquinone)

Not reported IC50 CK2:

0.15μM

[62]

Quinalizarin (Identified

from previous SBVS study)

Protein kinase CK2:

4MD& (CK2 apo form)

and 3QA0 (CK2α apo

form)

General Quinalizarin

(1,2,5,8-tetrahydroxy-

anthraquinone)

Hydrogen bond formed

between one of the hydroxyl

groups with Val116 in the hinge

region via a water molecule;

another hydroxyl group H-

bonded with His160 on one

side, and with carbonyl of

Arg47 on the other side.

IC50 CK2α2β2:

0.15μM;

IC50 CK2α:

1.35μM

[63]
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PLOS ONE CADD and anthraquinone in cancer treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0301396 May 22, 2024 19 / 34

https://doi.org/10.1371/journal.pone.0301396


Table 7. (Continued)

Database/ Compounds

Screened

Target(s) Involved: PDB

ID

Cancer Type Name & Structure of

Identified Best Hit Derived

from Anthraquinone

Observed Interactions/

Predicted Binding Mode by the

Molecular Modelling

In-vitro

Validation

(Potency)

Study

14000 phytochemicals from

Plant Database and 14500

synthetic drugs from

DrugBank

Maternal Embryonic

Leucine Zipper Kinase

(MELK): 5IH9

Breast cancer

(especially

Triple-

Negative Breast

Cancer)

Emodin Hydrogen bond was formed

with Cys89

IC50 TNBC cell

line: 30.30μM

[64]

Five anthranoid skeletons

and derivatives as hydroxy-

anthraquinones

constructed by the SYBYL

sketcher module

Estrogen receptor alpha

(ERα): 1A52

Hormone-

associated

diseases

including

cancer

Glucofrangulin B Hydrogen bond interactions

were observed with residues

Glu423, Lys520, His516,

His516, Arg515, Arg515,

Arg515 and Cys381.

Not performed [65]

Estrogen receptor beta

(ERβ): 1QKM

Emodin Hydrogen bond interaction was

observed with Glu305.

DrugBank (contained 7097

compounds)

human O-GlcNAcase

(hOGA): 5M7T

General Mitoxantrone The anthraquinone moiety pi-pi

stacked with Phe223, Tyr286,

and Trp645, and the hydroxyl

groups on the anthraquinone

ring H-bonded to Lys98 and

Asp175. One of the

hydroxyethyl side chains H-

bonded with Lys98 and Asn313.

The other side chain interacted

with Lys648 outside the pocket.

IC50 hOGA:

7.3μM

[66]

HERB database for small

molecules

Reticulo-calbin2 (RCN2):

From AlphaFold database

Cholangio-

carcinoma

(CCA)

Emodin Hydrogen bonds were observed

with residues Gln261, Asn259,

Tyr239 and Arg234.

Not performed [67]

FDA-approved Drug

Library (by Selleck,

contained 1375 drugs)

eEF-2K (Eukaryo-tic

elongation factor-2

kinase): 3LKM

(homology modelling

template)

Breast cancer Mitoxantrone Hydrogen bonds were observed

with residues Arg140, Lys170,

Ile232, Glu 233, and Gly234.

Kd to eEF-2K:

9.11 μM

[68]

NCI/DTP Small Molecules

Database (contained more

than 140,000 compounds)

Focal Adhesion Kinase

(FAK): 2J0J and 2J0L

General Mitoxantrone and derivative

(A18 compound): 1,4-bis

(diethylamino)-5-

8-dihydroxy anthraquinone

A18 compounds docked into

the K454 site of the FAK kinase

domain

Not calculated [69]

Acros Organics subset of

the Zinc database

(contained 13,754

compounds after filtering)

Human cytoplasmic

nucleotidase (cN-II):

2JC9

General

(especially

acute myeloid

leukemia)

Anthraquinone-

2,6-disulfonic acid, disodium

salt (AdiS)

Not reported IC50 RL

(lymphoma) cell

line: 750 μM

[70]

-166 known inhibitors

retrieved from PubChem

(filtered for

pharmacophore

modelling)-Zbc library

(26432 natural compounds)

ATP-binding cassette

Super-family G member

2 protein (ABCG2): 5NJ3

General Rhein (ZINC4098704) Twenty-seven hydrophobic

bonds were observed with

residues Tyr613(2), Ile423(4),

Gln424(5), Ser420(4), Lys616

(3), Tyr605(2), Ala606(2) and

Thr607(5). Four hydrogen

bonds were observed with

Gln424, Thr607 and Lys616.

Not performed [71]

9 compounds extracted

from marine Streptomyces,
retrieved from PubChem

human epidermal growth

factor receptor 2 (HER2):

1N8Z

General Marmycin A (marine-

sourced anthraquinone-

derivatives)

Interactions were observed with

residues Cys312, Pro315,

Cys316, Arg318, Val319,

Cys320, Asn297, Gln298,

Glu299, Cys312, Pro315,

Cys316, Arg318, Glu326,

Met324, Tyr321, and Phe349.

Not performed [72]
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Table 7. (Continued)

Database/ Compounds

Screened

Target(s) Involved: PDB

ID

Cancer Type Name & Structure of

Identified Best Hit Derived

from Anthraquinone

Observed Interactions/

Predicted Binding Mode by the

Molecular Modelling

In-vitro

Validation

(Potency)

Study

2007 Zinc drug like library

(contained 2 million

compounds)

Arylamine N-acetyl-

transferase 1 (NAT1):

2PQT and 2PFR

General 9,10-dihydro-9,10-dioxo-

1,2-anthracenediyl diethyl

ester (Compound 10)

Not reported IC50

NAT1:0.75 μM

[73]

Alizarin IC50 NAT1

0.89 μM

TCM database@ Taiwan G-quadruplex (G4s):

1KF1 (parallel) 143D

(anti-parallel) 2JPZ

(hybridized)

General Emodin Emodin docked at the binding

site of 143D in a larger groove

than in 2JPZ, and the hydroxyl

of emodin H-bonded to the

phosphoric acid oxygen atom of

DT9. No ligands were observed

for parallel G4 due to the lack of

a pocket site on the surface.

Not calculated [74]

Anthraquinones derivatives

from Morinda citrifolia
attained from PubChem

Dihydro-folate reductase

(DHFR): 1DLS

General Damnacanthal Hydrogen bonds were observed

with Asp21, Ser59, and Asn64.

Van der waal interactions were

observed with Tyr22, Phe31,

Ile60.

Not performed [75]

Four phytochemicals from

Amomum subulatum,

retrieved from PubChem

for pharmacophore

screening via

ZINCPharmer

HPVE6:4GIZ;

BCL2:2XA0; XIAP:1F9X;

HPVE7 & LIVIN:

homology modelling

Cervical cancer Rhein (among the 4

phytochemicals identified)

Not reported Not performed [76]

200 compounds resulted

from similarity search on

PubChem based on eight

starting compounds

identified by previous study

Epidermal growth factor

receptor (EGFR): 1M17

Lung cancer Nogalamycin N-oxide

(NSC116555),

Binding interaction was

observed with Thr854 in the

DFG-in conformation.

Additional conserved hydrogen

bonds were observed with

Cys797, Ala743, Lys745,

Asp855, Cys797, Leu844, and

Phe856.

IC50 EGFR:

31.56 nM

[77]

Chemical Library of about

140 000 compounds

maintained by University

of Helsinki

Toll-like receptor 4

(TLR4): 3FXI

General Mitoxantrone (Structure as

above)

Not reported Not calculated [78]

25 Derivatives of

Monomeric anthraquinone

based, bis-benzimidazole

and hybrid carbazole-

benzimidazole type ligands

G-quadruplex (G4) RNA:

2KBP

General AOPH with the hydroxyethyl

piperazine side chain (The

best among nine

anthraquinone-based

ligands)

The anthraquinone moiety

partially stacked on the G-tetrad

surface interacted with G17 and

G2, and the hanging piperazine

part interacted with the groove

containing U18 and A20 of

strand B.

Not performed [79]

Combinatorial library of

over 2 million compounds

created from in-silico

modification of

anthrafuran

human aurora kinase B

(AurB): 4AF3

General Naphthoisatine (Compound

2)

Hydrophobic interactions and

hydrogen bonds were observed

with residues Leu83, Gly84,

Lys85, Phe88, Tyr156, Ala157,

Arg159, Gly160, Glu161,

Lys164, Glu 165, Glu204 and

Leu207.

IC50 AurB

7.4 μM

[80]

(Continued)
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used whereby the number of molecules contained was reported at about 700 hundred thou-

sand [73]. The reported number was increased to 120 million when another study screened

the database (ZINC15) about a decade later (81). ZINC database also contains different subsets

to tailor for different aims of screening. For example, the Acros Organic database used by Jord-

heim et al. was one of the subsets after filtering with the Lipinski rules [70]. On the other hand,

Khan and colleagues used the subset of synthesizable natural compounds (Zbc) loaded with

biogenic lead-like compounds, primary and secondary metabolites of natural products [71].

Last but not least, the database of ‘FDA-approved drugs (via DSSTOX)’ used in another study

was also obtained from ZINC (http://zinc.docking.org/catalogs/fda) [84].

It is inevitable that some of the compounds are overlapping in various libraries, but each

library still carries unique features. In this review, some of the studies used more than one

database to cater to their different objectives, these included a combination of two public data-

bases [71, 76], two commercial databases [58, 59], or a plant database together with a synthetic

Table 7. (Continued)

Database/ Compounds

Screened

Target(s) Involved: PDB

ID

Cancer Type Name & Structure of

Identified Best Hit Derived

from Anthraquinone

Observed Interactions/

Predicted Binding Mode by the

Molecular Modelling

In-vitro

Validation

(Potency)

Study

235 compounds that have

ring subsets from ZINC15

database after filtered off

macrocyclic molecules

Histone deacetyl-lases

isoform 6 (HDAC6):

5EF7 and 5EDU

General Compound 3 Hydrogen bonds were observed

with the side chain of Y745,

backbone amide oxygen of

G582, and imidazole side chain

of H573. The middle quinone

and phenyl rings were

sandwiched between lipophilic

side chains of F583 and F643,

forming pi-pi interactions. Two

carbonyl oxygens of the

quinone ring formed hydrogen

bond with H614 and S531.

IC50 HDAC6: 56

nM

[81]

21 natural anthraquinone

derivatives retrieved from

PubChem

Matrix metallo-

proteinase-13 (MMP-13):

5B5O

General Pulmatin Four hydrogens and four

hydrophobic interactions

formed with Gly183, Leu184,

Ala186, Glu223, Ile243 and

Tyr244.

Not performed [82]

78 anthraquinone-based

inhibitors retrieved from

literatures used for 3D

QSAR modelling

Phospho-glycerate

mutase 1 (PGAM1): 5Y35

General Compound Number 81

(among the seven new

inhibitors designed based on

the QSAR modelling)

Not reported Not performed [83]

3000 FDA-approved drugs

from ZINC database

NEDD8-activating

enzyme (NAE): 3GZN

General Mitoxantrone Three hydrogen bonds were

observed with Thr103, Gln112,

and Lys307 at the binding site.

One of the alkyl chains

extended out into the solvent

region, while the other probed

deeper into the binding pocket.

EC50 Caco-2 cell:

1.3 μM

[84]

Emodin analogues queried

by substructure search

from Key Organic database

(49,415 compounds)

Aurora Kinase A

(AURKA): 5ORL

Ovarian cancer 8L-902 (among the 9

analogues identified)

One hydrogen bond

interaction, two pi–pi

interactions, one pi–sigma

interaction, and four pi–alkyl

interactions were observed.

Not calculated [85]

MolPort (6,504,839

molecules)

Ubiquitin-like containing

PHD & RING fingers

domains 1 (UHRF1):

3CLZ

General UM63 Interaction was stabilized by pi-

pi stacking with the side chain

of Tyr478 and several hydrogen

bonds to key residues Asp469,

Thr479, Gly448, Gly465,

Ala463.

IC50 to SRA-

induced base

flipping:

4.4 μM

[86]

https://doi.org/10.1371/journal.pone.0301396.t007
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Fig 3. Chemical structure depiction of the hit compounds.

https://doi.org/10.1371/journal.pone.0301396.g003
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database [64]. In order to optimize the screening outcome, another useful strategy was the con-

struction of a virtual combinatorial library by enumerating the main scaffold of existing active

compounds with a pre-selected drug block in which a target-focus library could be formed

[80].

It is also worth highlighting the efforts of the research community in building natural prod-

uct databases owing to the increasing momentum seen in herbal research. The HERB database

used by Gao et al. [67] was built by linking targets and diseases to herbs, aiming to aid the

modernization of Traditional Chinese Medicine especially in rational drug design [98].

Besides, another TCM database@Taiwan used in one of the studies [74] was designed in both

English and Chinese languages, deemed as the largest collection of 3D structures for Tradi-

tional Chinese Medicine to date in a freely accessible ready-to-dock format to support the in-

silico research [99].

Ligand constructors were used to draw the 3D structures of the ligands when the data

required was not readily available. Among the tools used included Chemicalize [55], Gauss-

View [56], SYBYL sketcher module [65], ACD/Chemsketch [75], Marvin Sketch [80], and

ChemDraw [83].

Identified targets and anticancer properties of anthraquinone derivatives

The main target proteins investigated in the included studies for developing potential thera-

peutics against different types of cancer are presented. The best hit was either derived from a

set of starting compounds that contained anthraquinone scaffold or discovered by screening

varied sizes of databases. The identified hit compounds that contained anthraquinone scaffold,

the observed interactions with the target proteins simulated by the molecular modelling and

their corresponding potency (if tested experimentally) are also displayed (Table 7). (Refer to

Fig 3 for the chemical structure depiction of the respective hit compounds).

Anthraquinone scaffold is a privileged scaffold that carries biological activities against a

wide range of macromolecular targets. Privileged scaffold is defined as the core structure that

can interact with more than one receptor with high affinity [100]. The prioritized anthraqui-

none derivatives from the included studies exhibit different types of interactions with the iden-

tified targets, these included hydrogen bonding, hydrophobic interactions, pi-pi stacking, pi-

sigma and pi-alkyl interactions (Table 7). The calculated IC50 (half maximal inhibitory concen-

tration) of these hit compounds determined from the in-vitro experiment ranged from micro-

molar [58, 59, 61–64, 66, 70, 73, 80, 86] to nanomolar [77, 81] scale, indicating the high affinity

of these anthraquinone derivatives against the various macromolecule targets. There was one

study reported the potency of the identified hit in the form of Kd [dissociation constant] [68]

and another study calculated EC50 (half-maximal effective concentration) [84], both of these

values were also in the micromolar scale, suggesting the potential of these hit compounds as

the promising candidates for further development into new anticancer drugs.

The majority of the studies looked into the role of these targets in general cancer whereas

some of them dived into specific cancer types. Among these were the top killer cancers in men

and women namely lung cancer [58, 60, 77] and breast cancer [64, 68] respectively. Another

two types of cancer that threaten the female population included cervical [76] and ovarian can-

cer [85]. Stubborn diseases with poor prognosis such as melanoma [57], cholangiocarcinoma

[67] and acute myeloid leukaemia [70] were also investigated. The macromolecular targets

involved are responsible for managing these different malignancies via various mechanisms,

mainly to tackle the hallmarks of cancer [101] (Fig 4).

Many of the studies investigated the role of anthraquinone derivatives against the protein

kinases family, the enzymes that carry multiple roles at once. The serine-threonine kinases like
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CDK2 [56], CK1δ [61], CK2 [62, 63], MELK [64], AURA [85], AURB [80], BRAF [57]

involved in many cellular processes including signal transduction and controlling cell cycle

progression in various phases. Another tyrosine kinase family investigated were FAK [69],

EGFR [58, 60, 77], and HER2 [72] that mediated cell proliferation and survival. Dysregulation

of these kinases in malignant cells resulted in a sustained supply of blood to the tumours,

uncontrolled growth and immortality of the cells, in which anthraquinone derivatives man-

aged to serve as inhibitors against these targets to activate apoptosis. Inhibition of targets like

RCN2 [67] and cN-II [70] also induced programmed cell death by activation of natural killer

cells.

Another calcium/calmodulin-dependent kinase known as eEF-2K stimulated the cancer

growth by mediating through autophagy and facilitating the switch from oxidative phosphory-

lation to glycolysis in response to metabolic stresses [68]. Other cancer-promoting enzymes

that involved in carcinogen metabolism included hOGA [66], PGAM1 [83], NAT1 [73] and

DHFR [75]. Anthraquinone derivatives such as mitoxantrone, alizarin and damnacanthal

managed to turn off this special metabolic pathway and increase the susceptibility of cancer

cells to apoptosis induced by chemotherapy.

Fig 4. Targets involved that tackled the hallmarks of cancer.

https://doi.org/10.1371/journal.pone.0301396.g004
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Apart from that, anthraquinone derivatives were also found to trigger telomere dysfunction

by targeting G4 and suppressing tumour growth [74, 79]. Emodin, one of the naturally-occur-

ring anthraquinones was reported to work synergistically with telomerase inhibitor in sustain-

ing the telomere defect and enhancing cancer cell damage [74]. On the other hand,

oncoproteins such as HPVE6, HPVE7 [76], UHRF1 [59, 86] and anti-apoptotic protein BCL-

2, XIAP, LIVIN [76] are involved in protecting the cancer cells from growth suppressor and

hence facilitating their growth. Anthrarobin and rhein were among the potential hits found to

modulate these target proteins leading to cancer cells suppression.

Over-expression of proteins like mutated TP53 [55], mutated EGFR [58] and MMP-13 [82]

enhanced the ability of cancer cells to evade adjacent tissues leading to metastasis. Alizarin,

Pulmatin and 1,4-dihydroxy-5-methoxy-anthraquinone were identified as potential inhibitors

for mutated TP53, MMP-13 and mutated EGFR respectively and help in preventing the spread

of cancer cells. Another investigated target, TLR4 was found to serve as a mediator of innate

immune system activation [78]. In addition, the elevated level of ABCG2 on the plasma mem-

brane reduced the effect of anti-cancer drugs by enhancing the efflux process leading to multi-

drug resistance (MDR) [71]. This phenomenon was also observed with overexpression of CK2

[62, 63]. Virtual screening discovered quinalizarin, rhein and mitoxantrone as modulators of

these targets and exhibit therapeutic roles in managing multidrug resistance. Last but not least,

one of the studies showed that phytochemicals like emodin and glucofrangulin B also carried

phytoestrogenic activities in which their effect on estrogen receptors was investigated [65].

These anthraquinone derivatives may play an important role in hormone-related disorders

including breast cancer that commonly associated with elevated levels of estrogen in blood.

Taken altogether, this review shows that anthraquinone was proven to be a valuable com-

pound containing the most privileged scaffold with great therapeutic potential to be developed

into wide-spectrum anticancer drugs.

Fig 5. Risk of bias assessment outcome.

https://doi.org/10.1371/journal.pone.0301396.g005
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Risk of bias assessment

The risk of bias checklist was designed mainly to assess the reporting quality of docking-based

studies (Table 2). Since molecular docking was involved as the main screening tool in all of the

studies included in this review, the risk assessment managed to cover all papers. The results

are illustrated in Fig 5.

For all 32 papers, none of them described on the control of histidine and addition of metal

as part of their target preparation steps. It may be due to the lacking of clear guidelines to

guide the proper reporting of in-silico research. Nevertheless, nearly 70% of the studies

reported on the ligand optimization steps which include ionization assessment and generation

of possible conformation, as well as the description on general target protein preparation

mainly performed by the built-in tools associated with the docking software, whilst there were

still some studies did not elaborate this domain.

For the method of target protein generation, further search from the RCSB Protein Data

Bank revealed that the majority of the crystal structures used in the studies were obtained via

X-ray diffraction method, where this method was more commonly in use compared to NMR

spectroscopy. However, X-ray crystallography was ranked as “High Risk of Bias” in the check-

list as it was opined that only NMR spectroscopy captures the three-dimensional structure

details in a medium close to the actual biological environment [49]. Perhaps the ranking of

this domain is worth revisiting since both NMR spectroscopy and X-ray crystallography offer

different pros and cons, and both tools are highly complementary [102].

What is worth mentioning is almost all studies except two studies (data not found) per-

formed visual control to inspect the docking pose to ensure there were no structural artifacts

derived from the computer calculation. However, for docking validation by redocking, only a

quarter of the studies elaborated on this crucial process. Since CADD methods are based on

prediction by computational calculation and algorithm, experimental validation is still

required to confirm the outcome of the study. Unfortunately, more than half of the studies did

not pursue or yet report on the in-vitro validation.

In general, this assessment revealed that there is a gap in a proper or standard guide to

enhance the reporting quality of studies involving molecular docking in particular. Neverthe-

less, Monks and colleagues have developed a 20-items checklist to improve the reporting of

discrete-event simulation, system dynamics and agent-based simulation models within the

field of Operational Research and Management Science, termed as “Strengthening The

Reporting of Empirical Simulation Studies (STRESS)” [103]. However, the applicability of this

checklist for this type of review is yet to be discovered.

Limitation

One of the limitations of this review was that only articles written in English were included,

resulting in missing important papers which were written in other languages. Besides, the

included studies utilized different methods and approaches hence resulting in heterogenicity

and difficulties in performing pooled analysis. On the other hand, there is no other systematic

review that evaluated the anticancer drug design and discovery of anthraquinone derivatives

based on CADD methods. Therefore, there is no comparison that could be done for assessing

agreements or disagreements with other studies.

Conclusion

The outcome of bias risk assessment implied the need for proper and more standardized

guidelines in order to improve the reporting quality of in-silico studies. Nevertheless, the

increasing number of publications retrieved throughout the years has proven the role of

PLOS ONE CADD and anthraquinone in cancer treatment

PLOS ONE | https://doi.org/10.1371/journal.pone.0301396 May 22, 2024 27 / 34

https://doi.org/10.1371/journal.pone.0301396


CADD methods as an indispensable tool in the era of modern drug design and discovery.

These methods were particularly useful in the early stages of the drug design and discovery tra-

jectory to screen, identify and optimize the potential hits in a systematic manner for shortlist-

ing only the most promising compounds for further analysis.

Structure-based and ligand-based methods were either used alone or in combination to

obtain consensus prediction. Combining different tools offered the advantage of enrichment

enhancement, enabling the synergizing of the strengths and complementing the weaknesses of

each method. The choices of software used were mainly project specific although user-friendly

interface could have also served as one of the driving factors.

The findings in this review also strengthened the fact that CADD methods enabled deeper

exploration of the anticancer potential of anthraquinone-based compounds up to the molecu-

lar level. The utilization of in-silico techniques for the study of anthraquinone derivatives has

made it possible to obtain further insights into their structural, biological and pharmacological

properties. Notably, anthraquinone derivatives demonstrated remarkable anticancer proper-

ties by targeting a wide spectrum of biological targets that tackled the abnormalities of cancer

cells in an all-rounded fashion. The synergy between computational and experimental

approaches contributes to a more comprehensive understanding of anthraquinones’ potential

as anticancer therapeutics.

As cancer continues to pose a threat to the global healthcare system, the role of anthraqui-

nones, coupled with CADD methods, offers a promising avenue for drug discovery. By har-

nessing the power of computational tools and leveraging the natural diversity of

anthraquinone compounds, researchers can expedite the development of better drug to

address the unmet medical needs in cancer treatment by improving the treatment outcome for

cancer patients.

The insights gained from this review can serve as the scientific evidence-based guidance to

improve the success rate of future cancer research. It is recommended for upcoming research

to follow closely with the rapid advancement of CADD and make full use of integrated tools to

facilitate the design and discovery of novel anticancer therapeutics expanded from the privi-

leged anthraquinone scaffold.
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