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Abstract

Although robustness of connectivity and modular structures in networks have been attracted

much attentions in complex networks, most researches have focused on those two features

in Erdos-Renyi random graphs and Scale-Free networks whose degree distributions follow

Poisson and power-law, respectively. This paper investigates the effect of modularity on

robustness in a modular d-regular graphs. Our results reveal that high modularity reduces

the robustness even from the optimal robustness of a random d-regular graph in the pure

effect of degree distributions. Moreover, we find that a low modular d-regular graph exhibits

small-world property that average path length is O(logN). These results indicate that low

modularity on modular structures leads to coexistence of both high robustness and effi-

ciency of paths.

Introduction

Energy, transportation, and communication systems provide essential services for supporting

human activity and society. However, in these network systems, there is a common topological

structure called Scale-Free (SF), which has the extreme vulnerability against malicious attacks

to hubs [1]. Therefore, constructing more robust networks is one of the important issues in

complex networks. Recently, it has been revealed that enhancing loops is crucial for construct-

ing a robust network in supporting from the asymptotical equivalence of network dismantling

and decycling problems when the second moment of degree is not divergent [2]. Here, the dis-

mantling problem is to find the minimum set of nodes which removal makes a network frag-

mented into at most a given size, while the decycling problem is to find the minimum set of

nodes which are necessary to form loops. When all loops are removed from a network, the net-

work becomes a tree which is easily fragmented by any articular-node removals. Thus, enhanc-

ing loops is important to make a network hard to become a tree. Actually, several rewiring

methods [3] based on enhancing loops generate robust networks with a common phenomena

of decreasing the gap between the maximum and minimum degrees. In other words, the net-

work is more robust as the gap becomes smaller. In the extreme case, it is suggested that a ran-

dom d-regular graph with zero gap has the optimal robustness in the pure effect of degree

distributions [4, 5]. Regular graphs have been so far studied mainly for not robustness but
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spectral analysis [6] or graph theory, while there are huge researches [7, 8] for robustness in

Erdos-renyi (ER) random graphs and SF networks. Therefore, regular graphs become a blind

spot in investigating the robustness of connectivity.

On the other hand, a modular structure is also an important issue in complex networks,

because many real-world networks have modular structures. For example, in social networks,

modules are corresponding to communities or groups with shared interests or backgrounds. If

a network has high modularity, nodes in a same module are densely connected to each other,

whereas nodes in different modules are sparsely connected.

Recently, it has been shown that [9, 10] ER random graphs and SF networks with modular

structures become weaker against attacks than them without modular structures. Here, the

modularity of networks is controlled by rewiring links. Moreover, Module-Based (MB) attacks

which are targeting interconnected nodes with high betweenness centrality are highly destruc-

tive to modular networks [11]. Thus, we predict that random d-regular graphs with modules

become vulnerable against MB attacks, even the original graphs have the optimal robustness

[4, 5]. The modularity of the modular network is controlled by rewiring inspired from [9, 10]

with preserving degree distributions. In addition, we show that d-regular graphs with low

modularity have both high robustness of connectivity and efficiency of paths.

This paper is organized as follows. First, we introduce a modular network of d-regular

graphs and an anti-modularization that is rewiring links to decrease the modularity. Second,

we show that rewired networks on anti-modularization have high robustness of connectivity

and efficiency of paths. Third, we modify the conventional modularization [10] to maintain d-

regular graphs and show that modified modularization has the same results with our anti-

modularization. Finally, we summarize the obtained results.

Control of modularity

We consider a modular network that consists of random d-regular graphs. Each of random d-

regular graphs corresponds to a module. As shown in Fig 1A, mo modules with size Nm are ini-

tially connected as a ring. Here, the total number of nodes and links are constant N = Nm × mo

and M = (d × N)/2 in the network. The initial configuration of modular network has consider-

ably high modularity, because a ring structure maintains the connectivity of the entire network

Fig 1. Configuration of a modular network before/after rewirings. (A) Initial configuration of strongly modular network. (B) Rewired

modular network to increase the robustness of connectivity. Node colors indicate modules.

https://doi.org/10.1371/journal.pone.0301269.g001
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by the minimum number of inter-module links (inter-links) and the maximum number of

intra-module links (intra-links). However, this network is extremely vulnerable by removing

target nodes which are connecting between modules. As a special case, when each module is

set as a clique, such network is called caveman graph [12]. For a caveman graph, small-world

(SW) property with the average path length of O(logN) emerges by rewiring from a few intra-

links to inter-links. We discuss not only the robustness but also the efficiency with SW prop-

erty in modular networks of d-regular graphs.

To control the modularity of network, intra-links are rewired to inter-links on anti-modu-

larization as shown in Fig 1B. This is regarded as the inverse process of the conventional mod-

ularization [10], although it tends to not make a ring as mentioned later. Table 1 shows the

initial number of intra- and inter-links. By rewirings, the number of intra-links is only decreas-

ing on anti-modularization, because the sum of intra- and inter-links is constant M. In con-

trast, the number of inter-links is only decreasing on modularization [10]. With a rewiring

rate w0, intra-links are randomly rewired to inter-links on anti-modularization as shown in Fig

1(B), while with a rewiring rate w, inter-links are randomly rewired to intra-links on modulari-

zation [10]. Moreover, the relation of w0 and w is derived from the following equation

mo þ w0ðM � moÞw0 ¼ ð1 � wÞðM � M=moÞ; ð1Þ

whose left- and right-hand sides are the existing number of inter-links on anti-modularization

and the remaining number of them on modularization [10] after both rewirings. Then, we have

w0 ¼ 1 �
1þ wðmo � 1Þ

moðM � moÞ
M: ð2Þ

The detail process of anti-modularization is summarized as follows. Through the process,

the degree distributions and whole connectivity of rewired networks are maintained, while

they are not on the conventional modularization [10]. We will compare such differences in the

next section.

Step 1 At first, remove an intra-link randomly in a module. Then, randomly select one end-

node of the removed link.

Step 2 Remove another intra-link randomly in a different module from that in Step1. Then,

randomly select one end-node from the removed link.

Step 3 Create a new inter-link between two selected nodes by rewiring.

Step 4 Remove another intra-link randomly in a different module from that in Step 2 or the

previous Step 4. Then, randomly select one end-node from the removed link.

Step 5 To preserve the degree at a node, the unselected end-node in Step 2 or the previous Step

4 is selected again. Create a new inter-link between two selected nodes by rewiring.

Step 6 Steps 4 and 5 are repeated until w0(M − mo) inter-links are created for a given 0< w0 <
1. If connected components or nodes are isolated by rewiring, select other end-node or

Table 1. Initial numbers of intra- and inter- links.

Intra-links rewirings Inter-links

anti-modularization M − mo w0
!

mo

modularization [10] M/mo w
 

M − M/mo

https://doi.org/10.1371/journal.pone.0301269.t001
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intra-link again. At the end of repeated process, the last inter-link is connected to the node

which is unselected in Step 1.

To investigate the robustness of connectivity, the following three types of attacks RF, IB,

and MB are considered. In RF (Random Failures), nodes are randomly selected for removal.

In IB (Initial Betweenness) attacks, nodes are selected in decreasing order of betweenness cen-

trality. In MB (Module-Based) attacks [11], nodes are basically selected in decreasing order of

betweenness centrality, however the nodes belong to the Largest Connected Component

(LCC) and end-nodes of inter-links have the order of priority. MB and IB attacks are highly

distructive especially for modular networks [11], while RF gives well-known typical damages

and is considered to compare the robustness with them.

Coexistance of robustness and efficiency

We investigate the robustness of connectivity and efficiency of paths in rewired networks on

anti-modularization. In addition, we compare the robustness in rewired networks on both

anti-modularization and modified modularization to maintain degree distribution, and show

that the results for both modularization are almost coincidence. Here, the degree and the size

of modular network are d = 4, 9, 19 and N = 104. Since N is constant, the size of each module

Nm is also constant for a given number mo of modules which is a control parameter. When mo

is maximum, the module becomes a clique Kd+1 in a caveman graph [12]. Modularity Q and

following eight measures are investigated and are averaged over 100 realizations for the net-

works in varying a rewiring rate w0.

• Modularity [13] Q ¼ 1

2M

P
i;j Aij �

kikj
2M

� �
di;j, where A is adjacency matrix, ki is degree of node

i, and δi,j is 1 if nodes i and j belong to a same module or 0 otherwirse.

• Ratio S1st(q)/N of the 1st LCC size, where S1st(q) denotes the number of nodes in the 1st LCC

after attacks to qN nodes. 0< q� 1 is a fraction of attacks.

• Robustness

1. Robustnes index [14] R ¼ 1

N

P1

q¼1
N

SðqÞ
N after attacks to qN nodes. The summation means

q ¼ 1

N ;
2

N ; :::
N� 1

N , and N
N ¼ 1:

Except for R, there are other following measures of robustness [15] in the viewpoints of

shortest paths and graph spectrum.

2. Reciprocal of network efficiency H ¼ 1
2

NðN� 1Þ

P
i2V

P
j2V;i6¼j

1
dij

, where dij denotes the shortest

path length between nodes i and j. H is called harmonic mean.

3. Average path length L ¼ 1

NðN� 1Þ

P
i;jdij, where dij denotes the shortest path length between

nodes i and j. L is called arithmetic mean.

4. Diameter D = max{dij}, where dij is the shortest path length between node i and j. Small

values of H, L and D mean that a network is robust.

5. Average betweenness centrality b ¼ 1

N

P
k2V

P
i2V

P
j2V;i6¼j6¼k

nijðkÞ
nij

, where nij(k) is the num-

ber of shortest paths between node i and j through node k. A small value of b indicates

that lots of nodes are connected by the shortest path without relying on specific nodes

like hubs.
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6. Spectral gap λd = λ1 − λ2, which is the difference between the largest and second largest

eigenvalues λ1 and λ2 of the adjacency matrix of a network. Since a small value of λd is

related to network bottlenecks and bridges, a larger value of λd indicates better

robustness.

7. Algebraic connectivity μ2, which is the second smallest eigenvalue of the Laplacian

matrix of a network. A larger value of μ2 means more rapid diffusion.

Increasing robustness by anti-modularization

Mainly, we explain the results for d = 9. See figures from S3 to S8 Figs as similar results

obtained for d = 4 and d = 19. We investigate the ratio S1st(q)/N of the 1st LCC size against MB

attacks in rewired networks on anti-modularization. Fig 2A–2F are corresponding to 9-regular

graphs with mo = 1000, 500, 100, 50, 20, and 5, respectively. As shown in Fig 2A, the curve for

w0 = 0 (gray line) decreases very rapidly because of initial ring structure. However, as the rewir-

ing rate w0 increases on anti-modularization, the curves are shifting to right. At w0 = 0.9, the

curve is approaching purple lines for non-modular random d-regular graphs. Such curve-shift-

ing are also observed in the results for different size of modules mo = 500, 100, 50, 20, and 5 in

each of Fig 2B–2F. In comparing with same color lines in Fig 2A–2E, curves are more shifting

to right as smaller mo.

On the other hand, in Fig 2A–2F, curves for w0 � 0.5 (blue and purple lines) are almost

identical. Moreover, as shown in Fig 2F, for w0 = 0 and 0.1 (gray and red lines), the curves rap-

idly decrease to S1st(q)/N� Nm/N = 2000/10000 = 0.2 at first. Then, the curves gradually

decrease from around 0.2. Note that MB attacks destroy a network in two steps. First, MB

attacks are targeting the end-nodes of inter-links, and divide into several isolated modules.

Next, each of isolated modules is collapsed gradually. See S1 and S2 Figs in cases of IB attacks

and RF.

Table 2 shows a critical fraction qc denoted by qMB
c , qIB

c , and qRF
c at the maximum size of the

2nd LCC against MB, IB attacks and RF in rewired networks with d = 9 and mo = 200. Since

the 1st LCC is fragmented at the critical fraction qc, the whole connectivity is broken consider-

ably. Values of qMB
c , qIB

c , and qRF
c increase as larger w0. Especially, qMB

c , qIB
c are rapidly increasing

between the case of w0 = 0.1 and w0 = 0.3. When w0 � 0.3, qRF
c is higher than qMB

c and qIB
c . How-

ever, when w0 � 0.5, qRF
c becomes lower than qMB

c and qIB
c . In particular, for w0 = 0.9, qIB

c is

approaching 0.875, which is the percolation threshold 1 − 1/(d − 1) = 1 − 0.125 for d = 9 in ran-

dom d-regular graphs [4]. From Table 2, we find that random d-regular graphs with low mod-

ularity (w0 � 0.5) have stronger robustness with high qc against selected IB attacks than that

against unintended RF. This phenomena is unusual in ER random graphs or SF networks [16].

As a considerable reason, IB attacks remove only the core part which is frequently passed by

the shortest paths, while the remaining nodes maintain the connectivity on the peripheral in

d-regular graphs.

We note that the rewired networks for high w0 on anti-modularization have low modular-

ity. Fig 3 shows that robustness index R against each of three types of attacks is monotonically

decreasing function of modularity Q even for varying mo shown by color lines. In Fig 3A and

3B, when Q< 0.2, all colored curves are approaching cyan lines, which indicates the robust-

ness index RIB against IB attacks for non-modular random 9-regular graphs. All colored curves

in Fig 3C are also approaching cyan lines when Q< 0.5. In addition, there are two behaviors

among curves in Fig 3A and 3B. One is that, from mo = 1000 to mo = 50, red curves are shifting

to green curves. The other is that, from mo = 50 to mo = 5, green curves are shifting to purple
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Fig 2. The 1st LCC size against MB attacks in rewired networks with d = 9 and the number mo of modules. (A) mo = 1000, (B) mo = 500,

(C) mo = 100, (D) mo = 50, (E) mo = 20, and (F) mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

https://doi.org/10.1371/journal.pone.0301269.g002

Table 2. Values of the critical fraction qc against three types of attacks in rewired networks with d = 9 and mo = 200.

w’=0.01 w’=0.05 w’=0.1 w’=0.3 w’=0.5 w’=0.9

MB 0.075 0.340 0.546 0.786 0.858 0.874

IB 0.092 0.353 0.559 0.803 0.886 0.911

RF 0.592 0.775 0.809 0.848 0.850 0.861

https://doi.org/10.1371/journal.pone.0301269.t002
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curves. However, these behaviors are not observed in in Fig 3C. The reasons for such behaviors

are unknown in the current stage, and will be investigated in future works.

We should remark that RMB, RIB and RRF in rewired networks with high Q become lower

than those in non-modular ER networks (black line) and SF networks known as the extremely

vulnerable structure (black dotted line). This means that modular random d-regular graphs

become more vulnerable than SF networks by increasing the modularity, even if non-modular

random d-regular graphs have the optimal robustness against malicious attacks [4, 5]. Note

that robustness against IB and Initial Degree (ID) attacks also decrease as increasing the mod-

ualarity Q in SF networks and real-world networks [10].

As shown in Fig 4A–4F, we investigate other measures of robustness: average betweenness

centrality, the reciprocal of network efficiency, average path length, diameter, spectral gap, and

algebraic connectivity. Consequently, when modularity Q increase, the values of average

betweenness centrality, the reciprocal of network efficiency, average path length, and diameter

also increase (Fig 4A–4D), while the values of spectral gap and algebraic connectivity decrease

(Fig 4E and 4F). These results indicate that networks with low modularity have good robust-

ness. Similar results are obtained for other networks with varying d as shown in S9 and S10

Figs.

Fig 3. Relation between modularity Q and robustness index R against three types of attacks. (A) RMB against MB, (B) RIB against IB, and

(C) RRF against RF. Color lines represent the results for the number mo of modules. Black solid, dotted, and cyan lines represent the robustness

after these attacks in non-modular ER, SF networks and random d-regular graphs.

https://doi.org/10.1371/journal.pone.0301269.g003
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Fig 4. Relation between modularity Q and six measures of robustness in rewired networks with d = 9. (A) Average betweenness centrality, (B)

reciprocal of network efficiency, (C) average path length, (D) diameter, (E) spectral gap, (F) algebraic connectivity. Color lines represent the results for

the numbers mo of modules.

https://doi.org/10.1371/journal.pone.0301269.g004
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Emerging SW property by anti-modularization

Moreover, we have investigated efficiency of paths in two ways. First, as similar to the result of

SW property for a caveman graph [12], we show that SW property emerges in regular graphs.

Then, we compare the numerical values of average path length with newly proposed estima-

tion [17].

Fig 5A shows the average path length L as function of network size N, when d = 4 and Nm =

10 are fixed. In a ring structure (when w0 = 0), L is O(N) (black line). However, even only

rewiring a few intra-links, L becomes O(logN) for w0 = 0.1 (yellow line). This indicates that a

network has SW property [12]. Similar results are obtained for other networks in Fig 5B with

d = 9, Nm = 20 and in Fig 5C with d = 19, Nm = 50. It is common that L is O(logN) in these net-

works for w0 = 0.1. In addition, figures from S11 to S13 Figs show that SW property emerges in

rewired networks even for varying d and Nm. Remember the result in caveman graphs [12],

which consist of cliques initially connected as a ring. Our obtained results include the robust-

ness for the caveman graphs in Fig 2A, because cliques are the most densely case of regular

graphs.

In general for a sparse network with any degree distribution, the average path length

L �
logðN=hkiÞ

logððhk2i � hkiÞ=hkiÞ
þ 1

is derived through the analysis of generating functions [18]. From hki = d and hk2i = d2 for a

Fig 5. Average path length L in rewired networks for varying the network size N. Rewired networks with (A) d = 4, Nm = 10,

(B) d = 9, Nm = 20, and (C) d = 19, Nm = 50. Color lines represent a rewiring rate w0 on anti-modularization.

https://doi.org/10.1371/journal.pone.0301269.g005
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d-regular graph, the estimation

L �
logðN=dÞ
logðd � 1Þ

þ 1 ð2Þ

is obtained approximately as SW property. Thus, we compare Eq (2) with our results for the

modular networks after rewirings. Fig 6 shows that the color lines of O(logN) with slightly dif-

ferent slops approach black solid line for random d-regular graphs. In particular, purple line

for the case with w0 = 0.9 almost coincides with black solid line, while there is a small gap

between black solid and dashed lines. Note that dashed line corresponds to Eq (2). However, it

has been pointed out that there exist disparities between numerically obtained average path

length and more rigorous estimation than Eq (2) for random regular graphs, when they are

dense [17]. Our study for d = 4, 9 and 19� N is classified as sparse graphs, the derivation of

more rigorous estimation is intractable for the modular networks. Therefore, it will be a future

work to investigate the existing such disparities.

Comparing with modified modularization as the inverse process of anti-

modularization

Since the conventional modularization [10] does not maintain a degree distribution and whole

connectivity, we propose modified process of it. Fig 7A–7C show that the degree distributions

Fig 6. Disparities of average path length L between the values for rewired modular networks and theoretical value.

Rewired networks with (A) d = 4, Nm = 20, (B) d = 9, Nm = 20, and (C) d = 19, Nm = 20. Color lines represent a rewiring rate w0
on anti-modularization. Black solid and dashed lines indicate numerical and theoretical values for random d-regular graphs

without modular structures.

https://doi.org/10.1371/journal.pone.0301269.g006
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have widths in rewired networks with d = 9 and mo = 100 on the conventional modularization

[10]. We confirm that degree distributions also have widths in rewired networks for varying d
and mo. This means that rewired networks are no longer random d-regular graphs on the con-

ventional modularization [10].

Thus, we modify the process of modularization [10] to maintain connected d-regular

graphs. The basic idea is similar to our anti-modularization. Fig 8 illustrates the modified pro-

cess. Initially, module numbers 1, 2, . . ., mo are assigned to nodes randomly, while a size of

each module Nm is constant. (1) An inter-link (i, j) is randomly removed. Then, one end-node

j of the removed link is selected randomly. (2) A node k is randomly selected, which belongs to

a same module with node j and does not connected to node j. Then, a new intra-link is created

between nodes j and k. (3) To preserve a node degree, an inter-link (k, l) is randomly removed.

(4) Select node m in a same module with node l randomly. Then, create a new intra-link

between nodes l and m. (5) An inter-link (m, n) is randomly removed. After (5), node n is the

next target for rewiring. Such process is repeated until w(M − M/mo) intra-links are created

without isolation of connected components and nodes. However, at the end of repeated pro-

cess, the degree of first selected node i is decreased by one at (1), while the degree of last

selected p is increased by one.

As shown in Fig 9A for the robustness, curves of each colors on modified modularization

(dotted lines) and anti-modularization (solid lines) are almost identical in rewired networks

with mo = 100. However, as smaller number mo of modules, the gaps between solid and dotted

Fig 7. Degree distribution in rewired networks with d = 9 and mo = 100. For rewiring rates (A) w = 0.988, (B) w = 0.695,

and (C) w = 0.494. The values of w are corresponding to w0 = 0.01, 0.3, 0.5 from Eq (1).

https://doi.org/10.1371/journal.pone.0301269.g007
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lines are larger. Especially, in rewired networks with mo = 5, such gaps are remarkable for

orange and yellow lines in Fig 9C. Red lines in Fig 9A–9C are almost identical, although

rewired networks for high rewiring rate w on modified modularization tend to not have a ring

structure. See S15 and S16 Figs in cases of IB attacks and RF.

Conclusion

We have numerically investigated the robustness of connectivity in modular d-regular graphs

which have the optimal tolerance in the non-modular random case. The robustness against

MB, IB attacks and RF increases, when more intra-links are rewiring on anti-modularization.

In particular, our results have shown that the robustness decreases rapidly against MB attacks

than IB attacks as the modularity increases. When the modularity Q is above 0.8, the robust-

ness of modular d-regular graphs becomes lower than the robustness of very fragile SF net-

works. Moreover, we have shown that both high robustness and efficiency coexist in rewired

networks on anti-modularization. In fact, like caveman graphs [12], modular d-regular graphs

exhibit SW property by rewiring only a few intra-links for w0 = 0.1, whereas the numerical val-

ues of L for modular networks are slightly different from the well-known theoretical values

[18] for random regular graphs. At w0 = 0.1, modular d-regular graphs still have low robust-

ness. Thus, in order to be both high robust and efficient, more intra-links at least with 0.1< w0

< 0.3 are needed in modular d-regular graphs.

Unlike our results for regular graphs with N = 104, the previous study [9] shows that there

exists a critical number m∗
o of modules below which ER random graphs are completely broken

into modules by attacks on interconnected nodes. In particular, for ER random graphs with

N = 6 × 105, discontinuous jump of the 1st LCC size occurs for a critical number m* of mod-

ules. Although the study [9] also considers a modular network that consist of mo modules, it

additionally defines the ratio α between the probabilities for an intra- and inter-links. With

constant average degree hki and ratio α, the percolation threshold is shown as a function of mo

Fig 8. Process of the modified modularization. The numbers in brackets denote a sequence of the process. Yellow circles

represent modules. Black dotted and Blue solid lines are inter- and intra-links by rewirings, respectively.

https://doi.org/10.1371/journal.pone.0301269.g008
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modules. However, in varying mo for constant N = mo × Nm and M = N × d/2, if α is fixed,

rewiring rate w is also changed simultaneously because of a ¼
mo

1� w � ðmo � 1Þ [10]. Hence

there exists such differences, it is unknown whether or not the discontinuous jump also

appears in our case for very larger N. Thus, it is required to compare the results in this point.

On the other hand, we find that modular d-regular graphs with low modularity are more

robust against selected IB attacks than against unintended RF. We also confirm that the

robustness of rewired networks on modified modularization is almost identical to that on the

anti-modularization which is the inverse process of the modified one. However, there still

remains some unclear reasons for our results. For example, as shown in S4A Fig, curves of RIB

with w0 = 0.01 and 0.1 have inverse relationship. In addition, in Fig 2F, S3F and S6F Figs, some

curves of the 1st LCC size with w0 = 0.9 and w0 = 0.1 are crossing at high attack rates q’ 0.85,

0.7, and 0.92 of node removals. Thus, further investigations are necessary for such

phenomena.

Although huge computation times are required, it will be future works to investigate the

robustness of connectivity against various attacks: edge attacks [19], attacks based on other

node centrality [20], CoreHD [21], collective influence [22], belief propagation [23], or spatial

localized attacks [24]. Moreover, expanding our analytical framework may be meaningful as

another direction. For example, since our work mainly deals with malicious attack, it can be

Fig 9. Comparing the robustness against MB attacks in rewired networks on the anti-modularization and modified

modularization. The 1st LCC size against MB attacks in rewired networks with d = 9 and number mo of modules. (A) mo =

100, (B) mo = 20, and (C) mo = 5. Solid and dotted color lines represent the results by rewiring with w0 on anti-modularization

and w on modified modularization.

https://doi.org/10.1371/journal.pone.0301269.g009
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considered to investigate an effect of cascading failures [25]. Link addition on modular net-

works for studying robustness [26] could be considered because SW property emerge by not

only random rewiring but also link addition [27].

We obtain similar results for different attacks or values of d and mo as follows. Figures from

S1 to S8 Figs show the 1st LCC size against MB, IB attacks and RF in rewired networks with

d = 4, 9 and 19. The 1st LCC size against MB attacks with d = 9 is already shown in Fig 2. S11–

S13 Figs show the average path length in rewired networks with d = 4, 9 and 19 for varying Nm

from 5, 10, and 20 as cliques to 100. Thus, for each Nm, the network size N = Nm × mo is

changed by mo, while the minimum value of mo is 3. S14 Fig show disparities of L between the

values for rewired modular networks with Nm = 100 and theoretical value. S15 and S16 Figs

show the 1st LCC size against IB attacks and RF to compare the results on anti-modularization

and modified modularization. Note that the number mo of modules becomes the maximum

when it is equal to the size of clique K5, K10 or K20. Since network size N is 104, the maximum

values of mo are 2000, 1000, and 500 for each of module sizes Nm = 5, 10 and 20.

Supporting information

S1 Fig. The 1st LCC size against IB attacks in rewired networks with d = 9 and the number

mo of modules. (A) mo = 1000, (B) mo = 500, (C) mo = 100, (D) mo = 50, (E) mo = 20, and (F)

mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S2 Fig. The 1st LCC size against RF in rewired networks with d = 9 and the number mo of

modules. (A) mo = 1000, (B) mo = 500, (C) mo = 100, (D) mo = 50, (E) mo = 20, and (F) mo = 5.

Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S3 Fig. The 1st LCC size against MB attacks in rewired networks with d = 4 and the number

mo of modules. (A) mo = 2000, (B) mo = 1000, (C) mo = 500, (D) mo = 100, (E) mo = 20, and

(F) mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S4 Fig. The 1st LCC size against IB attacks in rewired networks with d = 4 and the number

mo of modules. (A) mo = 2000, (B) mo = 1000, (C) mo = 500, (D) mo = 100, (E) mo = 20, and

(F) mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S5 Fig. The 1st LCC size against RF in rewired networks with d = 4 and the number mo of

modules. (A) mo = 2000, (B) mo = 1000, (C) mo = 500, (D) mo = 100, (E) mo = 20, and (F) mo =

5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S6 Fig. The 1st LCC size against MB attacks in rewired networks with d = 19 and the num-

ber mo of modules. (A) mo = 500, (B) mo = 200, (C) mo = 100, (D) mo = 50, (E) mo = 20, and

(F) mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S7 Fig. The 1st LCC size against IB attacks in rewired networks with d = 19 and the number

mo of modules. (A) mo = 500, (B) mo = 200, (C) mo = 100, (D) mo = 50, (E) mo = 20, and (F)

mo = 5. Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)
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S8 Fig. The 1st LCC size against RF in rewired networks with d = 19 and the number mo of

modules. (A) mo = 500, (B) mo = 200, (C) mo = 100, (D) mo = 50, (E) mo = 20, and (F) mo = 5.

Color lines represent the rewiring rates w0 on anti-modularization.

(TIF)

S9 Fig. Relation between modularity Q and six measures of robustness in rewired networks

with d = 4. (A) Average betweenness centrality, (B) reciprocal of network efficiency, (C) aver-

age path length, (D) diameter, (E) spectral gap, (F) algebraic connectivity. Color lines represent

the results for the numbers mo of modules.

(TIF)

S10 Fig. Relation between modularity Q and six measures of robustness in rewired net-

works with d = 19. (A) Average betweenness centrality, (B) reciprocal of network efficiency,

(C) average path length, (D) diameter, (E) spectral gap, (F) algebraic connectivity. Color lines

represent the results for the numbers mo of modules.

(TIF)

S11 Fig. Average path length L in rewired networks with d = 4 for varying the network size

N. Rewired networks with (A) Nm = 5, (B) Nm = 20, (C) Nm = 50, and (D) Nm = 100. Color

lines represent a rewiring rate w0 on anti-modularization.

(TIF)

S12 Fig. Average path length L in rewired networks with d = 9 for varying the network size

N. Rewired networks with (A) Nm = 10, (B) Nm = 50, and (C) Nm = 100. Color lines represent a

rewiring rate w0 on anti-modularization.

(TIF)

S13 Fig. Average path length L in rewired networks with d = 19 for varying the network

size N. Rewired networks with (A) Nm = 20, (B) Nm = 100. Color lines represent a rewiring

rate w0 on anti-modularization.

(TIF)

S14 Fig. Difference of average path length L between the values for rewired modular net-

works and theoretical value. Rewired networks with (A) d = 4, Nm = 100, (B) d = 9, Nm = 100,

and (C) d = 19, Nm = 100. Color lines represent a rewiring rate w0 on anti-modularization.

Black solid and dashed lines indicate numerical and theoretical values for random d-regular

graphs without modular structures.

(TIF)

S15 Fig. Comparing the robustness against IB attacks in rewired networks on the anti-

modularization and modified modularization. The 1st LCC size against MB attacks in

rewired networks with d = 9 and the number mo of modules. (A) mo = 100, (B) mo = 20, and

(C) mo = 5. Solid and dotted color lines represent the results by rewiring with w0 on anti-mod-

ularization and w on modified modularization.

(TIF)

S16 Fig. Comparing the robustness against RF in rewired networks on the anti-modulari-

zation and modified modularization. The 1st LCC size against MB attacks in rewired net-

works with d = 9 and the number mo of modules. (A) mo = 100, (B) mo = 20, and (C) mo = 5.

Solid and dotted color lines represent the results by rewiring with w0 on anti-modularization

and w on modified modularization.

(TIF)
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17. Tishby I, Biham O, Kühn R, Katzav E. The mean and variance of the distribution of shortest path lengths

of random regular graphs. Journal of Physics A: Mathematical and Theoretical. 2022; 55(26):265005.

https://doi.org/10.1088/1751-8121/ac6f9a

18. Newman ME, Strogatz SH, Watts DJ. Random graphs with arbitrary degree distributions and their appli-

cations. Physical review E. 2001; 64(2):026118. https://doi.org/10.1103/PhysRevE.64.026118 PMID:

11497662

19. Holme P, Kim BJ, Yoon CN, Han SK. Attack vulnerability of complex networks. Physical review E. 2002;

65(5):056109. https://doi.org/10.1103/PhysRevE.65.056109 PMID: 12059649
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