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Abstract

The diagnosis of human knee abnormalities using the surface electromyography (sEMG)

signal obtained from lower limb muscles with machine learning is a major problem due to

the noisy nature of the sEMG signal and the imbalance in data corresponding to healthy and

knee abnormal subjects. To address this challenge, a combination of wavelet decomposi-

tion (WD) with ensemble empirical mode decomposition (EEMD) and the Synthetic Minority

Oversampling Technique (S-WD-EEMD) is proposed. In this study, a hybrid WD-EEMD is

considered for the minimization of noises produced in the sEMG signal during the collection,

while the Synthetic Minority Oversampling Technique (SMOTE) is considered to balance

the data by increasing the minority class samples during the training of machine learning

techniques. The findings indicate that the hybrid WD-EEMD with SMOTE oversampling

technique enhances the efficacy of the examined classifiers when employed on the imbal-

anced sEMG data. The F-Score of the Extra Tree Classifier, when utilizing WD-EEMD sig-

nal processing with SMOTE oversampling, is 98.4%, whereas, without the SMOTE

oversampling technique, it is 95.1%.

1 Introduction

Knee pain is a common problem affecting numerous individuals, significantly impairing their

ability to participate in various daily activities. The knee joint, a synovial joint in our body,

comprises three bones: the femur, tibia, and patella. It is fortified by ligaments, tendons, mus-

cles, and cartilage. The knee joint not only provides stability for a wide range of motion but

also supports various activities (e.g., walking, running, jumping, and bending) and acts as a

shock absorber. As supported by a survey [1], one out of every four individuals aged 18–24

experiences knee problems resulting from various causes, including knee sprains, fractures,

and ligament tears, and conditions, such as tendonitis, arthritis, cerebral palsy, or degenerative
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joint disease. A timely and accurate diagnosis of these abnormalities is crucial for effective

treatment planning and rehabilitation.

Knee disorders have been diagnosed in the past using a combination of clinical evalua-

tion, patient history, physical examination, and imaging modalities. During clinical evalua-

tion, the patient’s stated symptoms, such as pain, swelling, and reduced range of motion, are

considered. During a physical check, inspection, palpation, and specialized orthopedic tests

are used to look for particular signs of knee problems [2]. For the clinical identification of

these diseases, imaging methods of Magnetic Resonance Imaging (MRI), X-rays, Computed

Tomography (CT) scans, and angiography are also used [3, 4]. Even though these old ways

of diagnosing have been useful, they have their challenges. They may be subjective, depend

on the skill and experience of the doctor, and take more time and resources for imaging vis-

its. Also, some knee problems may not have clear physical signs or differences on the first

images, which means that more research or follow-up exams are needed. Advances in medi-

cal technology and the development of new testing methods, such as bio-mechanical analy-

sis and computational modeling, have made it easier to find knee problems early and

accurately [5].

The incorporation of artificial intelligence (AI) in the medical sector enhances the quality

and speed of medical consultation [6]. When it comes to detecting knee issues, AI proves to be

helpful in various aspects, including improved accuracy, time efficiency, assisting healthcare

professionals, standardization of diagnosis, early detection and prevention, and augmenting

limited resources. AI algorithms analyze large datasets with precision, consistency, and faster

speed than humans, thereby improving the accuracy of detecting knee issues [7]. AI systems

can pick up on minor differences or abnormalities that humans might miss or not notice. This

makes it less likely that a diagnosis will be delayed or incorrect [8]. In time-sensitive situations,

the speed of detection is especially important because it allows for quick recognition and analy-

sis. AI can conduct automated analyses, assisting radiologists and orthopedic experts in mak-

ing diagnoses [9]. This could make their jobs easier and help them work more efficiently

overall. There is a lack of radiologists and orthopedic experts in many healthcare systems. AI

can help a lot with this problem by adding another level of analysis and screening for knee

problems, especially in places where it’s hard to get specialized care. AI can help a lot when it

comes to finding knee problems, but it can’t replace the judgment and experience of doctors

and nurses. AI is used by healthcare workers so that they can improve their skills, work more

efficiently, and give better care to their patients.

Electromyography (EMG) is employed by healthcare practitioners to quantitatively assess

and record the electrical signals generated by skeletal muscles. EMG signals give important

information about how muscles work, their amplitude and timing of activation, and if there

are any problems or abnormalities. They also play a crucial role in diagnosis, rehabilitation,

treatment planning, and research. There are two methods often employed for the acquisition

of EMG data, namely surface EMG (sEMG) and intracellular EMG (iEMG). sEMG includes

placing electrodes on the skin right above the muscle of interest. These electrodes pick up and

record the electrical energy that is produced by muscles under the skin. sEMG is a useful and

non-invasive way to measure muscle function and activity, while iEMG involves inserting nee-

dle probes directly into the muscle tissue to record electrical activity. Both sEMG and iEMG

are useful in their ways. sEMG is less invasive, which makes it better for regular checks and

studies on larger scales. Most of the time, sEMG is better than iEMG for finding issues with

the knee. It is preferred because it is easy to use, less risky for the patient, and can measure a

wide range of muscle action patterns [10]. sEMG is a useful tool for clinical screening and ther-

apy because it tells us a lot about how knee problems affect muscle activation, coordination,

and abnormalities [11].
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sEMG signals have been used to make a wide range of applications, such as exoskeletons or

muscle signal actuated systems for upper and lower limb prosthetics [12], as well as to find

neuromuscular diseases [13] and monitoring of fitness and exercise performance [14]. The

outcomes of machine learning algorithms are shown to correlate with six different lower-limb

movements that are classified by Khimraj et al. [15]. Based on the time-domain (TD) features

of the signals, Hudgins et al. classified four distinct types of limb movements that are measured

by sEMGs using multilayer perceptron neural networks [16]. Huang et al. [17] used a back-

propagation neural network (BPNN) and autoencoders to estimate the human arm joint force

from sEMG data. Silva et al. [18] investigated a spinal cord injury by using sEMG signals that

are obtained during upper limb movement. Sudarsan et al. used sEMG signals to control an

artificial limb that was designed and developed [19]. Hand motions may be identified from

sEMG signals in amputees, as indicated by Tuncer et al. [20] by the extraction of discrete wave-

let features utilizing ternary patterns. Cai et al. [21] explored five subjects utilizing Support

Vector Machine (SVM) based classification for diverse upper appendage developments. Chan-

dra Prakash et al. [22] proposed a linear time-series-based prediction model that could be used

to control robotic assistive devices to increase the strength of the lower extremities.

Researchers have devoted the last decade focusing on exploiting sEMG signals to identify

lower limb activities or detect lower limb disorders [23–25]. Chen et al. used deep belief net-

works and sEMG signals to estimate flexion and extension joint angles of the human lower

limb [26]. Bonato et al. studied the effect of exhaustion of hamstring muscles and quadriceps

on sEMG activity [27]. According to Swaroop et al., myopathy and neuropathy can be classi-

fied through sEMG signals using a three-layered neural network with backpropagation [28].

In a study by Kugler et al. [29], EMG data was used for the identification of rare Parkinson’s

disease via SVM-based methods. Morbidoni et al. utilized a deep learning methodology to clas-

sify the gait phases based on sEMG data collected during walking [30].

Analyzing sEMG based signals collected from the muscles is difficult due to the presence of

noisy signals that include ambient and inherent noise from the sensing device, crosstalk and

motion artifacts from the irregular muscular movements [31]. In such cases, denoising tech-

niques that involve wavelet decomposition [23], empirical mode decomposition [32], or inde-

pendent component analysis [33] can prove to be essential for the minimization of noise. In

previous studies [34, 35], the authors introduced a mix of denoising methodologies known as

WD-EEMD (Wavelet Decomposition with Ensemble Empirical Mode Decomposition). It

assists in the examination of sEMG signals during the identification of lower limb and upper

limb activities. This hybrid approach demonstrated superior performance compared to indi-

vidual decomposition strategies. The method of wavelet decomposition (WD) is employed in

signal processing to partition a signal into discrete sub-bands of varying frequencies. The tech-

nique allows for the examination of the signal at several resolutions, facilitating investigation

at different scales. The process of wavelet decomposition necessitates the utilization of wavelet

analysis, which utilizes wavelet functions to examine the time-frequency characteristics of a

given signal. Various wavelet scales are used to distinguish between different frequency bands,

and the wavelet transform effectively partitions the signal into discrete frequency segments

[36]. EMD is a widely employed signal processing approach that facilitates the decomposition

of signals into their constituent intrinsic mode functions (IMFs). During the latter part of the

1990s, Huang et al. [37] introduced a data-driven methodology for the analysis of signals that

exhibit nonlinearity and nonstationarity. This processing technique involves the decomposi-

tion of a raw signal into finite representative components called the Intrinsic Mode Functions

(IMFs). These IMFs are subsequently averaged to obtain the final reconstructed signal. This is

called the EMD technique and the many intrinsic mode functions (IMFs) as a result of decom-

position can effectively extract the diverse oscillating components of the signal occurring at
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different scales. The individual IMF components are organized based on their respective scales,

with the greatest frequency oscillations being presented first and the lowest frequency compo-

nents being presented last. A wavelet denoiser can effectively eliminate white gaussian noise

(WGN) from the desired range of sEMG signal frequency while preserving its key features. At

the same time, it is also found to be very effective against the interfering noise from nearby

muscles. Ensemble Empirical Mode Decomposition (EEMD) [38], on the other hand, can filter

out the interference from power lines (PLI) and the disturbances due to baseline wandering

(BW). WD-EEMD, which combines wavelet decomposition and EEMD, is an effective method

for minimizing various noises in the sEMG signal.

Class imbalance is a prevalent occurrence in numerous real-world scenarios, such as anom-

aly detection, fraud detection, medical diagnosis, and rare event prediction [39, 40]. It arises

when the categories or classes of the target variable in classification problems are not evenly

represented in the dataset. In simpler terms, one class or category may have a significantly

larger number of instances compared to the other, or vice versa. Addressing the class imbal-

ance problem is crucial, as it presents challenges for predictive modeling and can impact the

performance and accuracy of the models. It can particularly affect the performance of the

minority class, as the model tends to be biased towards the majority class [41]. Akbar et al. pro-

posed a computational model, iAFP-gap-SMOTE in distinguishing antifreeze proteins (AFPs)

from non-AFPs [42].

The imbalance issue in the obtained sEMG data may occur during the act of walking,

mostly owing to variances in data length observed between people with abnormal knee prob-

lems and those with healthy knees [43]. Individuals who have knee abnormalities tend to

exhibit prolonged completion times for movement tasks, leading to an extended sEMG signal

duration in comparison to that of individuals without such abnormalities. Hence, the consid-

erable disparity in signal duration observed between individuals with abnormal conditions

and those who are healthy presents a challenge of class imbalance within the sEMG data

acquired during the activity of walking. Dataset resampling is the prevailing method utilized to

address this issue. This process can encompass either oversampling the minority class by the

generation of synthetic samples or duplication of existing instances or undersampling the

majority class by eliminating instances from the dataset, to attain a balanced distribution of

classes [44]. In our previous study [43], the Synthetic Minority Over-sampling Technique

(SMOTE) is used for balancing the imbalanced sEMG dataset by synthesizing data corre-

sponding to lower limb signals from healthy and knee abnormalities. Furthermore, it is shown

that the identification process is improved. It works on the principle of resampling. It gener-

ates artificial samples for the minority class by interpolating between existing minority class

samples. SMOTE helps in balancing the class distribution by creating synthetic instances that

are similar to the minority class more accurately. The results obtained during that study sug-

gest that SMOTE oversampling techniques enhance the performance of classifiers using sEMG

data with imbalanced distributions.

In this study, the authors have proposed a hybrid framework that combines WD-EEMD

signal pre-processing with the SMOTE oversampling technique to detect individuals with

knee injuries using imbalanced sEMG data. The important contributions made in this study

are listed as follows:

• Develop a hybrid framework (S-WD-EEMD) for identifying knee disorders using imbal-

anced sEMG data while accounting for variations in signal time frames between normal and

abnormal individuals.

• A hybrid of WD and EEMD is used to minimize the noise present in the sEMG signals col-

lected from the lower limb muscles.
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• A window followed by an overlap is traversed over the signal from which eleven time-

domain (TD) features of sEMG signals are obtained.

• A SMOTE oversampling technique is used to enhance the extracted features of the minority

class data (healthy individuals).

• Performance parameters of machine learning classifiers are calculated for the identification

of knee abnormal individuals with and without oversampled data.

The article is organized as follows: The problem along with the literature overview has been

introduced in Section 1. Section 2 is about the dataset considered during the study, and section

3 discusses the materials and the proposed methodology. The results and discussions of the

proposed models are included in section 4. The study is concluded along with some recom-

mendations for the future in section 5.

2 Dataset

This study used sEMG signal data publicly available in the UCI-hosted machine learning

repository by Sanchez et al. [45]. This dataset contains the sEMG signals of 22 subjects over

the age of 18, 11 of whom had injuries or pain to their knees, and 11 of whom were healthy.

Anterior cruciate ligament injuries were reported in six abnormal subjects, meniscus injuries

in four, and sciatic nerve injuries in one. However, there is no record of previous injury in the

healthy subjects. As the subjects flexed their legs up, extended their legs from a sitting position,

and walked, data was recorded with the help of a goniometer and DataLog MWX8 datalogger

(Biometrics Ltd.). The recorded sEMG data was collected from lower limb muscles, i.e., vastus

medialis (VM), semitendinosus (ST), rectus femoris (RF), and biceps femoris (BF), using a

goniometer connected near the outer part of the joint. Those with abnormal knees and healthy

subjects with the left leg were selected for acquiring EMG signals. The data acquired had a

14-bit resolution and was sampled at a rate of 1000 samples per second. sEMG signals were fil-

tered through a bandpass filter allowing only 20 Hz to 460 Hz. A transition state data set was

not collected, e.g., sitting to walking, standing to sitting, walking to standing, etc. The MWX8

device was used to transfer the data directly to the computer using Bluetooth. The present

study focused on the issue of imbalances in sEMG data during walking, so it used the sEMG

signals acquired only while the healthy and abnormal individuals walked and not the transition

data.

3 Proposed methodology

In this section, an overview of the procedure corresponding to the execution of the study for

detecting knee abnormalities using imbalanced sEMG signal data is discussed acquired during

walking. Fig 1 depicts the overall procedure describing the execution of the proposed

methodology.

3.1 Wavelet Denoising (WD)

A significant characteristic of wavelet denoising is that it preserves the important features of

the signal while simultaneously removing noise from it through wavelet analysis. Signals

with both low-frequency components of interest and high-frequency noise can be easily pro-

cessed using this method. Wavelet denoising comprises signal decomposition, thresholding,

and reconstruction. First, the signal is decomposed using wavelet analysis into frequency

subbands and then combined to produce a signal. By fitting and compressing the signal itera-

tively, different levels of approximation and detail coefficients can be obtained by multilevel

PLOS ONE S-WD-EEMD for diagnosis of human knee abnormality

PLOS ONE | https://doi.org/10.1371/journal.pone.0301263 May 31, 2024 5 / 22

https://doi.org/10.1371/journal.pone.0301263


wavelet decomposition [36]. A thresholding technique is applied to wavelet coefficients after

the signal has been decomposed. As a result of this method, the coefficients representing the

important aspects of a signal are preserved, while the coefficients representing noise are

removed. A variety of thresholding methods are available, including soft thresholding, hard

thresholding, and adaptive thresholding [46]. As a result of soft thresholding, wavelet coeffi-

cients below a threshold are zeroed, and the rest of the coefficients are reduced by a specified

factor, while with hard thresholding, wavelet coefficients below a set threshold are equated to

zero. By adapting the threshold value according to the wavelet coefficients or the signal’s sta-

tistical properties, adaptive thresholding combines the characteristics of hard and soft

thresholding [47]. The white Gaussian noise Z(n) is usually represented as:

ZðnÞ ¼ XðnÞ þ KðnÞ ð1Þ

where the original signal is represented by X(n) and the noise is represented by K(n). Recon-

struction involves regenerating the denoised signal using the modified wavelet coefficients

after thresholding using the inverse wavelet transform. As a result of combining the approxi-

mation coefficients and modified details, the denoised signal is obtained. In addition to han-

dling both high-frequency and low-frequency noise effectively, this method has several other

advantages, such as maintaining signal features at different scales. The non-parametric

method makes no assumptions about the distribution of noise, making it the superior

Fig 1. Proposed approach for detecting abnormalities in knees from sEMG signals recorded during walking.

https://doi.org/10.1371/journal.pone.0301263.g001
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method [48]. The universal threshold utilized during the study can be defined using the fol-

lowing equation:

l ¼ s
ffiffiffiffiffiffiffiffiffiffi
2lnN
p

ð2Þ

here, σ defines the ratio of Mean Absolute Deviation to numerical value 0.6745, and N

defines the signal length.

3.2 Empirical Mode Decomposition

Empirical Mode Decomposition (EMD) is a method for the analysis of signals that involves

the computation of IMFs. In doing so, the complexity of the signal is divided into elementary

oscillatory components. This technique was introduced in 1998 by Huang et al. [37] and is par-

ticularly useful for analyzing nonlinear and non-stationary signals. One of the greatest advan-

tages of EMD lies in its ability to decompose the signals in the time domain, which cannot be

done with standard Fourier or wavelet-based approaches. It employs a data-driven methodol-

ogy that allows it to analyze signals with variable frequencies and amplitudes. EMD offers a

data-adaptive and localized decomposition that allows for the examination of signal compo-

nents based on their scales. Various ways of analyzing the IMFs acquired through EMD can be

used to understand the underlying dynamics of a signal. The original signal is obtained by

summation of IMFs:

yðtÞ ¼
XN� 1

n¼1

IMFnðtÞ þ aNðtÞ ð3Þ

where aN represents the residual after the extraction of N − 1 IMFs.

While EMD has grown in popularity, it does have certain drawbacks, one of which is mode

mixing, which refers to the depiction of comparable oscillatory patterns in multiple IMFs [49].

End-effects, which add artifacts at the signal border, are another drawback [50]. Researchers

have suggested different modifications and alternatives, such as EEMD and Complementary

EEMD with Adaptive Noise (CEEMDAN), to increase accuracy and overcome these con-

straints [51]. This work considers EEMD, which solves the problems associated with the mix-

ing of modes and end effects. A noise-assisted approach is used in EEMD to deconstruct a

signal into IMFs. This is accomplished by repeatedly adding white noise to the original signal

and then decomposing the resultant noisy signal with EMD.

ynðtÞ ¼ yðtÞ þ rnðtÞ ð4Þ

here rn(t) is the nth instance of white noise and y(t) is the original signal. yn(t) is the resultant

noisy signal made out of the combination of noise on top of the original signal. The decompo-

sition of different noisy signals is then averaged to get the final IMF components.

IMFq ¼
1

T

XT

1

hq;n; q ¼ 1; 2; :::;Q n ¼ 1; 2; :::;T ð5Þ

By calculating the average of the noisy signals, EEMD helps in the reduction of the mode mix-

ing and end effects. The EEMD approach improves the credibility of the decomposition results

and robustness; it also provides a better representation of the underlying signal modes.

3.3 WD-EEMD

WD-EEMD is a hybrid technique for signal processing that incorporates wavelet denoising

and EEMD. EEMD is utilized to eradicate low-frequency noise, whereas wavelet denoising is
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utilized to remove high-frequency noise. Particularly for non-stationary signals, the com-

bined implementation of these techniques can be more effective than using them individu-

ally. The process begins with the application of wavelet denoising to reduce signal

disruption. Then, EEMD decomposition is performed on the signal that has been denoised.

By minimizing noise before decomposition, WD-EEMD seeks to more precisely reveal the

signal’s underlying components. Through a wavelet transform, the signal is decomposed

into wavelet coefficients in wavelet analysis. Nevertheless, these coefficients frequently

include high-frequency disruption. In response, the high-frequency wavelet coefficients are

thresholded or eliminated, effectively removing the high-frequency noise and improving sig-

nal quality. Using EMD, the remaining wavelet coefficients are decomposed into a succes-

sion of IMFs. These IMFs are subsequently filtered or thresholded to eliminate any

remaining noise in the low frequency of the signal, which is essential to eliminate noise and

enhance the signal. The hybrid approach of wavelet denoising and EEMD has been effec-

tively applied to denoise an EMG signal for a variety of activities, including lower limb activi-

ties, and upper limb activities [34, 35]. In certain circumstances, this technique can be more

effective than wavelet denoising or EEMD alone, despite requiring additional computational

resources [34].

In this study, several subsets of sEMG signals are obtained through wavelet decomposition

in the time-frequency domain (TFD), each of which contains a series of coefficients represent-

ing the time domain evolution of the signal along with its associated frequency range. This

method is implemented by setting the mother wavelet parameter to db7 from the Daubechies

family at the fourth level to decompose the raw sEMG signal [52]. At the end of decomposi-

tion, a single approximate coefficient is obtained from the last level and four detailed coeffi-

cients are obtained from all four levels of decomposition to reconstruct the signal. Garotte

thresholding is applied with a universal selection rule on the second detail coefficient level

(D2) [35]. After that, a reconstructed signal from WD is processed with EEMD which decom-

poses the signal further into a set of IMFs with a residual. Each IMF consists of either a single

frequency or bands of limited frequency that allow a better frequency domain (FD) representa-

tion of the sEMG signal. Finally, three IMFs (IMF1, IMF2, IMF3) are considered for the fea-

ture extraction.

3.4 Feature extraction

The conventional approach to applying a machine learning model relies on handcrafted fea-

tures [53–55]. This method has garnered widespread acceptance within the research commu-

nity and has yielded remarkable results on numerous widely recognized public datasets. It

involves extracting meaningful features from a signal and subsequently employing a generic

machine learning classifier, such as a Support Vector Machine (SVM) or Linear Discriminant

Analysis (LDA), for classification purposes.

In this study, following the preprocessing stage involving WD-EEMD based noise reduc-

tion, a window of length 256ms is traversed along the signal. Features are extracted over this

window to avoid misclassification due to the stochastic nature of the signal. This technique is

referred to as a sliding window technique, which can be either adjacent or overlapping [31].

To improve the accuracy and reduce the computational latency of a classifier, nine time

domain features are extracted from the signal. These features are used as inputs to the classifier

model. An assessment of knee abnormalities using sEMG signals recorded during walking has

been carried out using eleven time-domain features [56].

3.4.1 Mean Absolute Value (MAV). Taking the absolute values of the signal (yj) and aver-

aging ofM value together, we get the mean absolute value. Signal variability is measured by
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this parameter.

MAV ¼
1

M

XM

j¼1

j yj j ð6Þ

3.4.2 Root Mean Square (RMS). RMS is the equivalent mean value of the signal, which is

obtained from the squared root of the mean of squared values ofM data. Essentially, it mea-

sures the signal’s overall energy.

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M

XM

j¼1

j yj j
2

v
u
u
t ð7Þ

3.4.3 Zero Crossings (ZC). The number of times signal direction changes is measured to

obtain

ZC ¼
XM� 1

j¼1

f ðyjÞ

here : f ðyjÞ ¼
1 if ðyj > 0 and yjþ1 < 0Þ

or ðyj < 0 and yjþ1 > 0Þ

0 otherwise

8
<

:

ð8Þ

3.4.4 Slope Sign Change (SSC). In slope sign change, the slope changes sign for each time

it changes. It is an indicator of how many times the signal trend has changed.

SSC ¼
XM� 1

j¼2

f ðyjÞ

where : f ðyjÞ ¼
1 if ðyj > yj� 1 and yj > yjþ1Þ

or ðyj < yj� 1 and yj < yjþ1Þ

0 otherwise

8
<

:

ð9Þ

3.4.5 Variance (VAR). The measure of the data spread around the mean is called vari-

ance. Data points are squared and the average is calculated as the squared difference between

the data points and the mean.

VAR ¼
1

M � 1

XM

j¼1

y2

j ð10Þ

3.4.6 Difference Absolute Standard Deviation Value (DASDV). DASDV is the differ-

ence between two consecutive windows’ absolute standard deviations. The signal’s variability

over time is measured by this parameter.

DASDV ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

M � 1

XM� 1

j¼1

ðyjþ1 � yjÞ
2

v
u
u
t ð11Þ
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3.4.7 Average Amplitude Change (AAC). Using two consecutive windows, you can cal-

culate the Average Amplitude Change by averaging the absolute changes in amplitude. Over

time, the signal changes at a certain rate.

AAC ¼
1

M

XM� 1

j¼1

j yjþ1 � yj j ð12Þ

3.4.8 Skewness (Skew). An indicator of the asymmetry of the distribution is the skewness

of the data. When skewing is positive, the data is skewed to the right, while when skewing is

negative, the data is skewed to the left.

Skew ¼
E½ðy � mÞ3�

s3
ð13Þ

where, μ, σ, and E are the mean, standard deviation of the data, and the signal expected value

estimator respectively.

3.4.9 Kurtosis (Kurt). As a measure of the peakiness of data distributions, kurtosis is

used. Generally, the data is flat when the kurtosis is low, and peaked when the kurtosis is high.

Kurt ¼
E½ðy � mÞ4�

s4
ð14Þ

Four different muscle types are presented here, thus illustrating 44 features across eleven

time domain features. In the presence of abnormal knees, the length of the signal differs

from that of healthy knees and, consequently, the number of features extracted differs for

both classes.

3.5 Synthetic Minority Oversampling Technique (SMOTE)

An important aspect of machine learning is using SMOTE to address class imbalance prob-

lems in datasets. Chawla et al. [57] proposed this algorithm, which is designed to create syn-

thetic data points in the minority class, which can balance the distribution of the dataset and

improve the model’s performance. SMOTE is a useful approach when working with unknown

datasets because it does not require any prior knowledge of data distribution. The SMOTE

algorithm uses a straightforward but effective method to generate these synthetic instances.

The first step of the SMOTE algorithm is to identify the k nearest neighbors of each instance in

the minority class. The value of k is predetermined and typically set to five [58]. This step helps

to identify the most similar instances in the minority class to the instance being analyzed.

Once the k nearest neighbors have been identified, SMOTE selects one of these neighbors ran-

domly and generates a synthetic instance by interpolating between the original instance and

the chosen neighbor. This interpolation is done by selecting random values for each feature of

the original instance and its neighbor. This helps the model to learn the patterns in the minor-

ity class and make more accurate predictions. These random values are used to compute a

weighted average, which generates a new instance. The weight given to each feature is deter-

mined by a random number between 0 and 1. The above steps are repeated until the desired

number of synthetic instances have been generated. The number of synthetic instances gener-

ated depends on the degree of imbalance in the dataset and the size of the minority class.

SMOTE improves the model’s ability to learn patterns from the minority class by adding more

instances in the minority class, thus balancing the dataset.
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3.6 Machine learning models

After the completion of oversampling and feature extraction, the extracted features can be

used by the classification algorithm for further analysis. The classifiers implemented in this

study are Iterative Dichotomiser 3 (ID3), Bootstrap aggregating (Bagging), Random forests

(RF), Classification and Regression Trees(CART), Gradient boosting machines(GBC), Support

vector machines (SVM), Extra tree (ET), and Multilayer perceptron (MLP).

3.6.1 Iterative Dichotomiser 3 (ID3). It is used for the classification of data. Recursively,

it partitions the data into smaller and smaller subsets until it reaches the full classification [59].

Since it employs a decision tree of a significant depth, it is more prone to an overfitting prob-

lem. It may occur for the high depth of the decision tree.

3.6.2 Classification and Regression Tree (CART). It classifies or regresses data based on

decision trees [60]. Unlike ID3, CART divides the data based on the Gini index rather than

information gain. As a result, priority for separation is first given to the feature having a lesser

Gini index:

Gini ¼ 1 �
Xm

j¼1

ðkjÞ
2

ð15Þ

where kj denotes the probability of occurrence of a feature in a particular class.

3.6.3 Bagging classifier. It is an ensemble meta-algorithm that combines multiple

machine learning algorithms to increase their predictive accuracy [61]. Using bootstrap

samples, multiple copies of a learning algorithm are trained on different training data. A

final prediction is created by combining the predictions from different learning

algorithms.

3.6.4 Gradient Boosting Classifier (GBC). It performs prediction by combining multiple

decision trees through an ensemble meta-algorithm [62]. It corrects the errors of previous

decision trees by sequentially training more decision trees. A greedy tree training algorithm

ends when a stopping criterion is met, and the algorithm is terminated based on the stopping

criteria.

3.6.5 Random Forest classifier (RF). It combines a set of simplistic machine learning

models that improves predictive accuracy by combining multiple decision trees [63]. At each

node of the decision tree, RF selects features randomly and splits points. It improves the accu-

racy of the prediction and reduces the variance.

3.6.6 Support Vector Machines (SVM). Such algorithms are commonly used in classifi-

cation and regression tasks [64]. SVMs maximize the margin between two classes by finding

the hyperplane between them. The SVM is a powerful algorithm, but it can be computationally

intensive.

3.6.7 Multi-layer Perceptron classifier (MLP). This machine learning algorithm is used

for classification and regression [65]. Multilayer neural networks are comprised of multiple

layers of neurons, making them potent and efficient. However, their training poses a chal-

lenge due to the non-convex nature of the loss function in MLPs with hidden layers. This

non-convexity introduces the presence of multiple local minima, complicating the training

process.

3.6.8 Extra Trees classifier (ET). It is a machine learning algorithm that improves predic-

tive accuracy through the combination of multiple decision trees [66]. ET produces a final pre-

diction by combining the predictions of each decision tree in a forest. A powerful algorithm,

ET, requires a lot of computational power.
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4 Result and discussions

The evaluation metrics of the classifiers are evaluated without and with the oversampling

approach. These approaches are utilized for the problem of imbalanced data in knee abnor-

mality detection. The oversampling approach is used to generate balanced data from the exist-

ing original sample of data. The activity signal of the subjects is divided into training and

testing sets, with a 10-fold stratified cross-validation technique [67]. It differs from the 10-fold

cross-validation. In which the data is randomly partitioned into folds. However, when dealing

with imbalanced datasets (such as in knee abnormality detection where certain classes may be

underrepresented), it’s important to ensure that each fold maintains the same class distribu-

tion as the original dataset. Stratified cross-validation achieves this by preserving the percent-

age of samples for each class in every fold. So, 10-fold stratified cross-validation results in the

dataset is divided into 10 equal-sized subsets, and each subset maintains the same class distri-

bution as the original dataset. The model is trained and evaluated 10 times, each time using a

different subset as the test set randomly. The number of samples utilized for the classifiers’ test-

ing and training set, with and without oversampling, is illustrated in Fig 2. The data for the

training of knee abnormal and healthy are 1533, and 342, respectively; the data for the testing

are 170, and 38, respectively. Fig 2(B) illustrates the after-oversampling of the data using the

SMOTE technique. After the oversample training, the training set data of the healthy knee is

increased to equal the abnormal knee (1533), and the testing data remains the same, similar to

the without oversample. The obtained results on the oversampled data reflect a significant

enhancement in the classifier’s performance.

Fig 2. Samples used to train and evaluate classifiers. (A) With original data. (B) With SMOTE oversampled data.

https://doi.org/10.1371/journal.pone.0301263.g002
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In this study, the healthy and knee-abnormal subjects are classified as a binary classification

problem. There are four possible outcomes in binary classification. True positives are data

points that are correctly predicted to belong to the positive class by a classifier, whereas an

accurate classification of a data point into the negative class is known as a true negative (TN).

If the classifier makes an incorrect prediction that the data point is positive, it is a false positive

(FP) and data points are classified as false negatives (FN) if the classifier predicts them as nega-

tives incorrectly. As a classifier predicts what class the data point will belong to, the terms

“true” and “false” indicate whether the prediction matches reality. The two possible classes in

which the data point may fall are referred to as “positive” and “negative”. These four outcomes

can produce a confusion matrix, illustrated in Table 1.

In this study, a total of 8 machine learning models (ID3, CART, GBC, RF, Bagging, SVM,

MLP, and ET) are considered for identifying individuals with knee abnormalities. Table 2

presents the details of the parameter settings selected for training the machine learning algo-

rithms. Table 3 provides an exhaustive and detailed comparative analysis of the studied

machine learning classifiers. Importantly, these classifiers are evaluated both in their raw form

and in conjunction with SMOTE with the studied pre-processing techniques. The assessment

metric of accuracy is important, however relying just on accuracy may not be sufficient, espe-

cially in situations when there is an imbalance of data [68]. Acknowledging this constraint, the

research adopts a broader perspective by going beyond the boundaries of precision to include

a range of other measures of performance. One such metric, recall assesses the classifiers’ acu-

men in accurately identifying all pertinent instances within the positive class. Precision scruti-

nizes the accuracy of the positive predictions generated by these classifiers. In essence, recall

and precision serve as critical tools for dissecting and assessing the intricacies of classifier per-

formance. The F1 score harmoniously combines precision and recall into a single measure,

effectively striking a balance that duly accounts for both false positives and false negatives. This

harmonious synthesis of performance metrics contributes to a more comprehensive and

nuanced appraisal of classifier efficacy, particularly in the intricate terrain of imbalanced data

distributions.

This study examines the effects of preprocessing techniques and resampling strategies on

the performance of classifiers. By conducting a thorough analysis, the study reveals the

strengths and weaknesses of each classifier and emphasises the importance of comprehensive

performance assessment in the dynamic field of machine learning. Within the confines of this

study, the authors have strategically used a combination of preprocessing techniques including

Wavelet Denoising (WD), Empirical Mode Decomposition (EMD), and a hybrid fusion that

merges both these methodologies. The study revolves around the examination of how these

preprocessing techniques wield their influence on classifier performance. Additionally, the

study provides valuable insights into the impact of SMOTE on the various performance met-

rics. It offers a nuanced perspective on how different preprocessing techniques interact with

SMOTE, shedding light on the intricacies of model performance.

WD-EEMD excels in extracting richer features from time series data in contrast to tradi-

tional methods, effectively capturing both time and frequency domain characteristics. Inte-

grating SMOTE with WD-EEMD ensures the generation of synthetic samples that align with

Table 1. Confusion matrix.

Predicted Negative Predicted Positive

Actual Negative True Negatives False Positives

Actual Positive False Negatives True Positives

https://doi.org/10.1371/journal.pone.0301263.t001
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the local data characteristics, thereby enhancing the diversity and relevance of the samples.

This augmentation contributes to improved generalization and heightened classification accu-

racy, especially in scenarios with imbalanced datasets. However, a notable limitation of this

hybrid approach is its potential to substantially escalate computational demands due to the

iterative processes involved in both techniques.

Referring to Table 3, in the case of the original dataset (imbalanced without oversampling)

employing the wavelet denoising pre-processing technique, the Extra Tree classifier demon-

strated an accuracy of 92.0%. In contrast, the ID3, CART, Bagging, Gradient Boosting, Ran-

dom Forest, SVM, and MLP classifiers showed accuracies of 81.8%, 81.9%, 88.7%, 89.5%,

91.0%, 81.8%, and 84.6%, respectively. Similarly, F-score was 1.5%, 3%, 66.9%, 69.4%, 72.2%,

Table 2. Parameters of machine learning models.

Model Parameter Model Parameter

ID3 criterion=‘entropy’ GBC loss=‘log_loss’

min_samples_split = 2 learning_rate = 0.1

min_samples_leaf = 1 n_estimators = 100

min_weight_fraction_leaf = 0.0 subsample = 1.0

min_impurity_decrease = 0.0 criterion=‘friedman_mse’

ccp_alpha = 0.0 min_samples_split = 2

CART criterion=‘gini’ min_samples_leaf = 1

min_samples_split = 2 min_weight_fraction_leaf = 0.0

min_samples_leaf = 1 max_depth = 3

min_weight_fraction_leaf = 0.0 min_impurity_decrease = 0.0

min_impurity_decrease = 0.0 validation_fraction = 0.1

ccp_alpha = 0.0 tol = 0.0001

Bagging n_estimators = 10 ccp_alpha = 0.0

max_samples = 1.0 RF n_estimators = 100

max_features = 1.0 criterion=‘gini’

ET n_estimators = 100 min_samples_split = 2

criterion=‘gini’ min_samples_leaf = 1

min_samples_split = 2 min_weight_fraction_leaf = 0.0

min_samples_leaf = 1 max_features=‘sqrt’

min_weight_fraction_leaf = 0.0 min_impurity_decrease = 0.0

max_features=‘sqrt’ ccp_alpha = 0.0

min_impurity_decrease = 0.0 MLP hidden_layer_sizes=(100)

verbose = 0 solver=‘adam’

ccp_alpha = 0.0 alpha = 0.0001

SVM C = 1.0 learning_rate_init = 0.001

kernel=‘rbf’ power_t = 0.5

degree = 3 max_iter = 200

gamma=‘scale’ tol = 0.0001

tol = 0.001 momentum = 0.9

cache_size = 200 validation_fraction = 0.1

max_iter=-1 beta_1 = 0.9

decision_function_shape=‘ovr’ beta_2 = 0.999

epsilon = 1e-08

n_iter_no_change = 10

max_fun = 15000

https://doi.org/10.1371/journal.pone.0301263.t002
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0%, 39.0%, 75.9% for the ID3, CART, Bagging, Gradient Boosting, Random Forest, SVM,

MLP and ET classifiers, respectively. In this scenario, the accuracy values appeared satisfactory;

however, the F-score values were less compelling. Following the implementation of the

SMOTE oversampling technique, it was discovered that the classification accuracy did not

show a significant improvement. However, noteworthy enhancement was observed in the

F-Score values compared to those obtained from the original dataset. When employing

SMOTE oversampling, the accuracies for the ID3, CART, Bagging, Gradient Boosting, Ran-

dom Forest, SVM, MLP, and ET classifiers were 73.9%, 74.9%, 87.7%, 87.8%, 91.4%, 74.4%,

80.5%, and 93.3%, respectively. Correspondingly, the F-scores were 71.6%, 72.3%, 75.6%,

83.4%, 85.0%, 74.4%, 77.4%, and 85.4% for the mentioned classifiers. Likewise, the F-score val-

ues for the examined machine learning classifiers exhibited higher values when employing the

SMOTE oversampling technique along with the EMD and hybrid WD-EEMD pre-processing

techniques compared to the original dataset (imbalanced dataset). These findings emphasize

the multifaceted nature of preprocessing techniques and their intricate interplay with resam-

pling methods like SMOTE. They underscore the importance of considering a holistic

approach when evaluating machine learning models, taking into account not only the choice

of classifier but also the preprocessing steps to attain the most accurate and robust results,

especially when tackling data with imbalances and complexities.

The WD-EEMD-based hybrid approach is of particular interest. It combines the strengths

of both the pre-processing techniques and when integrated with the ET classifier, gives an

accuracy of 98.3% and the F-score value is also 95.2% without SMOTE. After including the

Table 3. Classifier in terms of different performance metrics with different pre-processing techniques with SMOTE.

Pre-processing Oversampling Technique Performance Parameters ID3 CART Bagging GBC RF SVM MLP ET

WD Without Oversamplig (Original) Accuracy 81.8 81.9 88.7 89.5 91.0 81.8 84.6 92.0

Recall 99.9 99.8 97.1 97.4 98.5 100 97.9 98.7

Precision 0.8 1.6 51.3 54.2 57.4 0 25.0 62.1

F-Score 1.5 3 66.9 69.4 72.2 0 39.0 75.9

With SMOTE Oversapmling Accuracy 73.9 74.9 87.7 87.8 91.4 74.4 80.5 93.3

Recall 74.7 75.8 93.0 90.0 94.5 74.3 82.0 97.0

Precision 70.3 71.1 63.9 77.9 77.4 74.7 73.7 76.8

F-Score 71.6 72.3 75.6 83.4 85.0 74.4 77.4 85.4

EMD Without Oversamplig (Original) Accuracy 86.2 86.4 96.0 97 97.8 85.1 87.8 98.2

Recall 91.4 92.8 99 99.4 99.9 99.9 98.2 99.9

Precision 62.6 57.6 82.6 86.1 88.7 18.7 41.1 90.5

F-Score 74.2 70.6 89.9 92.1 93.8 31.1 50.6 94.9

With SMOTE Oversapmling Accuracy 84.6 84.5 95.1 96.6 98.2 90.4 91.6 98.8

Recall 86.7 86.8 98.1 97.5 98.9 90.0 92.3 99.5

Precision 75.3 73.9 81.6 92.4 95.0 91.8 88.9 95.5

F-Score 79.9 79.4 89.0 94.9 96.9 90.9 90.5 97.4

WD-EEMD Without Oversamplig (Original) Accuracy 82.2 81.4 95.3 96.9 97.4 82.3 86.8 98.3

Recall 99.8 94.0 98.9 99.4 99.7 100 98.4 99.9

Precision 3.4 25.3 79.2 85.8 87.1 2.9 35 91.1

F-Score 6.5 32.5 87.8 92.0 92.8 5.5 44.3 95.2

With SMOTE Oversapmling Accuracy 80.1 81.4 94.8 96.5 98.3 89.5 90.7 99.0

Recall 80.8 82.8 97.1 97.2 98.8 88.8 90.8 99.3

Precision 76.8 75.3 84.7 93.4 96.1 92.9 90.3 97.6

F-Score 78.5 77.9 90.4 95.2 97.4 90.7 90.4 98.4

https://doi.org/10.1371/journal.pone.0301263.t003
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SMOTE, the accuracy rises to 99.0% and F-score improves to 98.4% showcasing the advantage

of the proposed technique. These findings underscore the versatility and potency of various

preprocessing techniques, each with its unique advantages, and highlight the potential for even

greater performance improvements through hybridization. It reaffirms that the careful selec-

tion and combination of preprocessing methods can significantly elevate the accuracy and

robustness of machine learning models, particularly when dealing with complex and imbal-

anced datasets The research findings strongly indicate that the synergistic application of pre-

processing techniques, notably the hybrid WD-EMD method, yields substantial enhancements

in classifier accuracy. It is noteworthy that the Extra Tree classifier consistently emerges as the

top performer throughout these experiments. Therefore, the suggested S-WD-EEMD with the

Extra Tree classifier can be employed to detect abnormalities in the knee when there is an

imbalance in the EMG signals of lower limb muscles.

Fig 3 displays the confusion matrices of the ET classifier with different pre-processing tech-

niques for original data as well as oversampled data. A confusion matrix offers a structured

overview of a classification method’s performance, detailing the correspondence between

actual and predicted labels generated by the model. Fig 3(A) shows the confusion matrix of the

Extra Tree classifier with the original data preprocessed by wavelet denoising. It can be seen

that 98.9% samples of Abnormal individuals and 60.5% samples of healthy individuals are

Fig 3. Confusion matrix with Extra Trees classifier. (A-C) With original data. (D-F) With SMOTE oversampled data.

https://doi.org/10.1371/journal.pone.0301263.g003
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correctly predicted while 39.5% samples of healthy individuals are predicted as abnormal and

1.1% samples of abnormal individuals are predicted as healthy. Similarly, Fig 3(B) and 3(C)

also presents the confusion matrix of ET classifiers with original data with EMD and

WD-EEMD preprocessing technique, and Fig 3(D)–3(F) present the confusion matrix of ET

classifier with oversampled data with WD, EMD, and WD-EEMD preprocessing technique.

Based on the examination of the confusion matrices, it can be deduced that the utilized classifi-

cation models tended to favor the predominant class (abnormal individuals) during training

on the original dataset. Nevertheless, when augmenting the data of the minority class using

oversampling approaches, the classification models ceased to exhibit a bias towards a singular

class.

To support the findings presented in Table 3 and provide additional insights, a Receiver

Operating Characteristic (ROC) analysis was conducted and illustrated in Fig 4. ROC analysis

serves to validate the efficacy of a statistical machine learning model for a given problem by

plotting a curve representing the true positive rate against the false positive rate. Each point on

the ROC curve corresponds to an instance of a confusion matrix. Ideally, a model is considered

100% accurate if its ROC curve exhibits a point in the top-left corner of the plot. Observing

Fig 4. ROC curve.

https://doi.org/10.1371/journal.pone.0301263.g004
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Fig 4, it is apparent that before applying SMOTE, when the data exhibits a non-uniform distri-

bution, the ROC curves for all models slightly shift towards the false positive region. This sug-

gests a bias towards a specific class due to data imbalance, a common challenge in learning

with imbalanced data. However, upon applying SMOTE, there is a noticeable shift towards the

ideal point (0,1) on the ROC plot, indicating improved model performance. Furthermore, the

simultaneous application of WD and EEMD pre-processing with SMOTE leads to further

improvement in model performance, as evidenced by the ROC curve shifting closer to the

ideal point. This underscores the efficacy of these pre-processing techniques in enhancing

model identification across all testing data instances. These findings emphasize the critical

importance of addressing data imbalance to achieve satisfactory classification algorithm per-

formance. Moreover, the utilization of WD-EEMD pre-processing techniques not only miti-

gates outliers but also brings numerical features within a considerable range, thereby

facilitating enhanced classification.

Very few studies have been published regarding the detection of knee abnormalities in the

literature using the same dataset. In our previous research, we applied various oversampling

approaches such as SMOTE, ADAYSN, and SVM SMOTE, and evaluated their performance

using the Extra Tree machine learning classifier as presented in Table 4. Rani et al. [69] also

utilized the same dataset to classify subjects with knee abnormalities using machine learning

approaches. Their XGBoost classifier achieved an accuracy of 96% with an F-Score of 94%.

Table 4 compares our suggested model’s performance with previous studies on the same data-

set. Our findings suggest that the proposed technique performs better in identifying individu-

als with knee abnormalities.

5 Conclusion and future scope

In the context of knee problem detection utilizing surface electromyography (sEMG) signals,

our research tackles a significant obstacle in the field of medical data classification, which is

the existence of unbalanced. We have found that the intrinsic signal noise, in addition to the

substantial heterogeneity in sEMG signal durations that exists between healthy persons and

those with knee problems, makes it even more difficult to make an accurate diagnosis. To

address this difficulty, a hybrid technique S-WD-EEMD is proposed in this study. This

approach combines the Wavelet Decomposition-enhanced Ensemble Empirical Mode

Decomposition (WD-EEMD) with the Synthetic Minority Oversampling Technique

(SMOTE).

According to the findings of our study, the S-WD-EEMD methodology has several signifi-

cant benefits over the alternatives that are currently being used. SMOTE allows us to success-

fully address the imbalance problem that is inherent in the dataset, which in turn enables us to

classify knee anomalies more reliably and accurately. Second, the combination of WD and

EEMD optimizes the process of extracting features from sEMG data. This allows for the cap-

ture of significant signal properties while simultaneously reducing the impact of noise. Our

experimental findings demonstrate that the performance of the classifier is greatly enhanced

by the synergistic combination of oversampling and preprocessing procedures.

Table 4. Assessing the effectiveness of the proposed methodology by comparing its performance with existing literature studies utilizing similar datasets (in %).

Approach SMOTE + ET [43] ADAYSN + ET [43] SVM SMOTE + ET [43] XGBoost [69] Proposed Method

Accuracy 93.1 92.2 93.2 96 99.0

F-Score 85.3 84.2 85.1 94 98.4

https://doi.org/10.1371/journal.pone.0301263.t004
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The results demonstrate a significant improvement in classification accuracy, sensitivity,

and specificity when compared to the methodologies that have been traditionally used. Fur-

thermore, the S-WD-EEMD technique demonstrates excellent performance in the manage-

ment of unbalanced data settings, surpassing models that are considered to be state-of-the-art

in diagnostic tasks involving knee abnormalities. In medical settings, where the prompt and

accurate diagnosis of knee problems is of the utmost importance, this breakthrough offers a

great deal of potential for enhancing patient care and diagnostic accuracy. In summary, the

proposed model can be used to identify individuals with potential knee injuries (anterior cru-

ciate ligament and meniscus damage), or possibly those predisposed to knee injuries depend-

ing on how advanced the change in neuromuscular EMG functioning is relative to the tissue

structural damage. These individuals could then be referred for clinical examination and either

prevention or rehabilitation, depending on the level of injury.

In this study, a single offline sEMG dataset was utilized to evaluate the suggested approach.

To further establish the clinical applicability of our method, future research endeavors may

entail the validation of this method using a larger dataset. Such larger data would provide

invaluable insights into the applicability and efficacy of our approach in clinical settings,

thereby enhancing its clinical utility. Furthermore, the proposed hybrid approach combining

Wavelet Decomposition (WD), Ensemble Empirical Mode Decomposition (EEMD), and Syn-

thetic Minority Over-sampling Technique (SMOTE) can potentially be extended to other

medical applications characterized by imbalanced data. This suggests its potential for address-

ing similar challenges in diverse medical contexts, thereby expanding its applicability and rele-

vance beyond the scope of this study.
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