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Abstract

Bayesian Control charts are emerging as the most efficient statistical tools for monitoring

manufacturing processes and providing effective control over process variability. The

Bayesian approach is particularly suitable for addressing parametric uncertainty in the

manufacturing industry. In this study, we determine the monitoring threshold for the shape

parameter of the Inverse Gaussian distribution (IGD) and design different exponentially-

weighted-moving-average (EWMA) control charts based on different loss functions (LFs).

The impact of hyperparameters is investigated on Bayes estimates (BEs) and posterior

risks (PRs). The performance measures such as average run length (ARL), standard devia-

tion of run length (SDRL), and median of run length (MRL) are employed to evaluate the

suggested approach. The designed Bayesian charts are evaluated for different settings of

smoothing constant of the EWMA chart, different sample sizes, and pre-specified false

alarm rates. The simulative study demonstrates the effectiveness of the suggested Bayes-

ian method-based EWMA charts as compared to the conventional classical setup-based

EWMA charts. The proposed techniques of EWMA charts are highly efficient in detecting

shifts in the shape parameter and outperform their classical counterpart in detecting faults

quickly. The proposed technique is also applied to real-data case studies from the aero-

space manufacturing industry. The quality characteristic of interest was selected as the

monthly industrial production index of aircraft from January 1980 to December 2022. The

real-data-based findings also validate the conclusions based on the simulative results.

1 Introduction

A control chart is a vital graphical tool for monitoring and minimizing process variation in sta-

tistical process control (SPC). Shewhart [1] initially designed memory-less control chart based

on current sample information for process monitoring and used it to identify large process

shifts. Later, Roberts [2] designed an EWMA memory-based control chart specifically for

small shift detection while giving more weights to the most recent observations. Over the
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period of time, EWMA is designed for process mean monitoring by [3–5] and for process vari-

ation monitoring by [6–8]. Saghir et al. [9] investigated how the estimates affected the geomet-

ric-poisson EWMA chart used to monitor the number of defects in the process. EWMA and

double-exponentially-weighted-moving-average (DEWMA) were investigated in [10] for the

censored data of type-I.

The control charts are designed with respect to the underlying probability of the quality

characteristic of interest. Process monitoring relies heavily on the use of waiting time distribu-

tions as an important statistical tool. It can be used to analyze and optimize systems that

involve waiting times, such as queues, transportation and manufacturing. This helps to

improve customer satisfaction, reduce costs, and increase productivity. The applications of

waiting time distributions are frequent in the field of manufacturing and industrial engineer-

ing. These include serving as a versatile tool for the process analysis and optimization, inven-

tory management, quality control, capacity planning, supply chain management and

predictive maintenance. The waiting time distribution has diverse applications in science,

such as [11] analyzed and examined the definition, measurement and available data regarding

waiting times in healthcare. Waiting time distribution was used by [12] to develop a novel

model called the customer-centric two-product split delivery vehicle routing problem for

manufacturing system.

In several applications of statistical distributions such as IGD, weibull distribution, and

gamma distribution, the shape parameter is a crucial parameter, particularly when it comes to

quality control. The monitoring of shape parameter is essential for detecting any changes in

the process and ensuring the production of a high-quality product. The literature provides

some studies on the monitoring of shape parameter under classical method in manufacturing

industry. Such as [13] developed and compared the Shewhart and EWMA charts. The mem-

ory-less and memory-type charts were constructed for the weighted power function distribu-

tion (WPFD) by [14]. Huberts et al [15] investigated that how well performed the memory-less

and memory-type control chart for cautious updating scheme and suggested simple methods.

Kinat et al.[16] introduced control charts based on GLM specifically designed for scenarios

where the response variable adheres to an IG distribution. Amin et al. [17] constructed Phase

II Generalized Linear Models (GLM) based memory type control charts by utilizing deviance

residuals and Pearson residuals derived from an IG regression model.

The control charting structures are proposed under classical and Bayesian frameworks with

respect to the nature and objective of process evaluation. The Bayesian method is a modern

inferential technique which combines the prior information with the sample data to handle

uncertainty regarding the parameters of interest. These charts leverage prior knowledge to

minimize uncertainty about the process parameters. Unlike the traditional classical control

chart, the Bayesian control chart updates the parameters with new data availability and hence

providing more precise and timely identification of process errors. The Bayesian EWMA

charts are established to handle the parametric uncertainty and to detect small shifts in process

parameters [18]. The Bayesian control charting scheme also incorporates various loss func-

tions (LFs) under symmetric and asymmetric scenarios for uncertain process parameters and

design different Bayesian EWMA charts such as [19–22]. Aunali and Venkatesan [23] pro-

posed a Bayesian estimator for the quick detection of small shifts in the process mean. Ali [24]

introduced Bayesian predictive monitoring of time between events. The Bayesian setup has

also been studied in [22,25–35]. Jones et al.[36] reconfigured the CUSUM and EWMA CCs to

monitor the process under the Bayesian approach. Seirani et al. [37] presented an economic–

statistical design for the Bayesian �X control chart.
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In control charting, the parameters of data distributions are desired to be monitored to

assess the shifts occurring in the manufacturing processes. Change / shift in parameters

changes the behavior of the process. So, the study of change / shift in parameters is of utmost

importance. Therefore, we have attempted to study the process in classical and Bayesian setups

of the shape parameter of the waiting time inverse Gaussian distribution. The literature sug-

gested articles on the monitoring of shape parameter of various waiting time distributions that

define the manufacturing process. However, there are certain scenarios within the

manufacturing industry in which uncertainty of the shape parameter is unavoidable. This

study considers the case of parametric uncertainty in manufacturing process and design novel

Bayesian EWMA structures for shape parameter when underlying distribution of quality char-

acteristic of interest follows IGD. The Bayesian EWMA charts are based on the Bayes estimates

of the posterior distribution of the shape parameter. The posterior distribution is derived after

incorporating the prior distribution of the shape parameter with the likelihood function of the

sampling distribution of IGD. Then the BEs, PRs and UCLs are derived using various symmet-

ric and asymmetric LFs, such as squared-error loss function (SELF), DeGroot loss function

(DLF), modified squared-error loss function (MSELF), K loss function (KLF), weighted

squared-error loss function (WSELF) and precautionary loss function (PLF). This study aims

to develop Bayesian EWMA control charts using BEs constructed under various LFs and then

assess the efficiency of the proposed charts. The new settings of Bayesian EWMA charts are

evaluated for possible effect of hyperparameter values, different sample sizes and different val-

ues of smoothing constant. As far as the significance of the study related to the real-life data is

concerned, we frequently come across the situations when the manufacturing process data fol-

low the waiting time distributions. In such situations, it becomes necessary to monitor the

parameters of the distribution. As we have considered the waiting time following the IGD so,

we have endeavored to establish the Bayesian EWMA charts based on the shape parameter of

the IGD.

The following sections outline the structure of the study: Section 2 covers the Bayesian

approach. Section 3 discusses the proposed control charting structures. Performance assess-

ments and elicitation of hyperparameters are explored in Sections 4 and 5 respectively. Section

6 provides a comparative study and a computing algorithm. Numerical study is discussed in

Section 7. Section 8 examines the real data application of the method. Section 9 concludes the

entire study.

2 Bayesian method

Bayesian method effectively handles the parametric uncertainty after using the prior knowl-

edge of the parameters to find the posterior estimates of the unknown process parameters. To

determine the posterior distribution of the model parameters given the data, prior knowledge

is combined with the current data set. This distribution acts as a foundation for further analy-

sis. This section will give a brief overview of the terminology commonly used in Bayesian

methods, derive posterior distribution of the shape parameter of IGD under-study and outline

the different loss functions utilized in this context.

2.1 Sampling distribution

As elaborated in Section 1, we have used the positively skewed waiting time distribution, i.e.,

the IGD. Suppose that x1, x2, . . ., xn denote a random sample of size n from the IGD (μ,θ) Its
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pdf is as follows:

f ðx; m; yÞ ¼
y

2px3

� �1=2

exp �
yðx � mÞ2

2m2x

� �

; x > 0;m > 0; y > 0: ð1Þ

Where μ and θ are the location and shape parameters.

2.2 Prior and posterior distributions

Bayesian method is utilized to estimate the parameters of a distribution. The concept of a prior

distribution refers to the distribution of the parameters. Priors can be divided in to two major

groups: informative and uninformative. An informative prior represents prior knowledge

about the unknown parameter, and when there is no prior knowledge available, uninformative

prior is used. Seirani et al [38] used these types of priors for the Bayesian evaluation. We have

assumed gamma prior for the shape parameter θ, represented by p(θ) which is expressed as

pðyÞ ¼
ba

GðaÞ
y

a� 1e� by; y > 0; a > 0; b > 0: ð2Þ

Where a and b are the hyperparameters. As we know that a change in the values of the

hyperparameters may lead to different nature of the distribution. So, the effect of different

combinations of the values of the hyperparameters on the prior gamma is depicted in Fig 1.

Fig 1. Effect of hyperparameters on the prior distribution.

https://doi.org/10.1371/journal.pone.0301259.g001
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The figure exhibits that the prior gamma distribution is of skewed nature in general. How-

ever, if the value of hyperparameter a is increased and those of b are decreased, the shape of

the prior distribution becomes symmetric. By combining the prior distribution with sample

data, the resulting posterior distribution p(θ|x) is obtained. It includes all information about

the unknown parameter and may be expressed as

pðy j xÞ ¼
pðyÞpðx j m; yÞ

Z

y

pðyÞpðx j m; yÞdy
:

Which may in proportional form be expressed as

pðy j xÞ / pðyÞpðx j m; yÞ: ð3Þ

as the divisor defines the total probability and is independent of the parameter of interest θ.

The likelihood function p(x|μ,θ) based on the sampling distribution is expressed as

pðx j m; yÞ ¼
Yn

i¼1
f xi; m; yð Þ ¼

y

2p

� �n=2Yn

i¼1

1

x3
i

� �1=2

exp �
y

2m2

Xn

i¼1

xi � mð Þ
2

xi

� �

: ð4Þ

So, the posterior distribution of θ is defined as

pðy j xÞ /
ba

GðaÞ
y

a� 1e� by:
y

2p

� �n
2

�
Yn

i¼1

1

x3
i

� �1
2

exp �
y

2m2

Xn

i¼1

xi � mð Þ
2

xi

( )

pðy j xÞ / y
n
2
þa� 1exp � y bþ

Xn

i¼1

xi � mð Þ
2

2m2xi

� �� �

: ð5Þ

This means that yjx � gamma n
2
þ a; bþ

Pn
i¼1

xi � mð Þ2

2m2xi

� �
: For simplicity, we denote a ¼ n

2
þ a

and b ¼ bþ
Pn

i¼1

xi � mð Þ2

2m2xi
: The effect of hyperparameters on the posterior distribution is visual-

ized in Fig 2.

The posterior distribution as shown in Fig 2, has a skewed shape in general. However, by

increasing the values of the hyperparameter a and decreasing those for b, the shape of the pos-

terior distribution approaches symmetry.

2.3 Loss function

Loss functions are fundamental in Bayesian estimation as they provide a principled way to

quantify the cost of estimation errors and guide decision-making. The use of loss functions in

Bayesian analysis helps ensure that the estimated parameters align with the objectives and con-

sequences of the decision-making process in a given context. A loss function (LF), defined by

Lðy; ŷÞ;plays a fundamental role in the Bayesian inference by quantifying the loss or cost

involved in estimating the parameter. It minimizes the risk, which is defined as the expected

loss and denoted by EfLðy; ŷÞg in Bayesian setup. Wald [39] introduced the term LF. In deci-

sion theory, the LF is employed to determine the optimal estimator. Various LFs were

employed in [19]. There are several loss functions that exist in Bayesian inference such as

weighted balanced, Linex, Quadratic, General entropy, Mean absolute error, Mean squared

error, Zero one loss functions, etc. This study also includes a variety of LFs that are used for

the process monitoring of the shape parameter of IGD and are described in the following

subsections.

PLOS ONE Developing Bayesian EWMA chart for Change Detection in the Shape Parameter of IGD

PLOS ONE | https://doi.org/10.1371/journal.pone.0301259 May 6, 2024 5 / 27

https://doi.org/10.1371/journal.pone.0301259


2.3.1 Squared-error loss function (SELF). The SELF is a measure that quantifies the

accuracy of predictions by squaring the difference between predicted and actual values of the

parameter of interest. It highlights larger errors and is widely used in regression analysis,

machine learning and control chart evaluation. It is mathematically convenient. The squaring

operation ensures a smooth and differentiable function, making it easy to work with in mathe-

matical calculations. In the context of statistics, minimizing the squared differences between

observed and predicted values corresponds to maximizing the likelihood under the assump-

tion of normal (Gaussian) distribution of errors. This is often a reasonable assumption in

many real-world scenarios. In developing the least square theory, [40,41] suggested the SELF.

This LF was used in [33] which is of symmetrical type and is expressed as Lðy; ŷÞ ¼ ðy � ŷÞ2.

Here ŷ denotes the estimator which minimizes the posterior risk. The posterior mean which is

represented by ŷSELF ¼ ESELFðy j xÞ; is the BE under SELF.

2.3.2 Weighted SELF (WSELF). The WSELF is a modified version of SELF. It involves

multiplying each prediction error by a weight which allows us to give more importance to spe-

cific errors. By adjusting these weights, we can prioritize certain errors over others when evalu-

ating how well a prediction model performs. This asymmetrical LF was used by [42] and

expressed as Lðy; ŷÞ ¼ ðy� ŷÞ2

y
; where ŷ denotes an estimator of the unknown parameter θ. BE

under WSELF is expressed as ŷWSELF ¼ E y
� 1
j x

� �� �� 1
:

Fig 2. Effect of hyperparameters on posterior distribution.

https://doi.org/10.1371/journal.pone.0301259.g002
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2.3.3 Modified SELF (MSELF). The MSELF is a modified version of the SELF that is

adjusted or changed to fit the specific needs of a specific problem or situation. These adjust-

ments can involve altering how the squared difference of the predicted and actual values is cal-

culated, adding extra terms or penalties, or using custom weights. This non-symmetrical LF is

defined by [43] as ð1 � ŷ=yÞ
2
. The BE under MSELF is represented as ŷMSELF ¼

E y� 1 jxð Þ
E y� 2 jxð Þ

:. Here

ŷ is an estimator of the parameter θ. The goal of this LF is to create a measurement of predic-

tion accuracy that is customized to handle unique factors.

2.3.4 K Loss Function (KLF). The KLF is utilized as a cost or loss function in specific

applications, especially in machine learning and optimization problems. By minimizing this

LF through various optimization techniques, it aids in optimizing model parameters or esti-

mating parameters in statistical models. Its use can contribute to enhancing the performance

and accuracy of the models in these domains. This LF was utilized by (cf. [42,44]) and

explained as Lðy; ŷÞ ¼ ð
ffiffiffiffiffiffiffiffi

y=ŷ

q

�

ffiffiffiffiffiffiffiffi

ŷ=y

q

Þ
2
: The representation of BE under KLF is as

ŷKLF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EðyjxÞ

E y� 1 jxð Þ

r

:

2.3.5 DeGroot Error Loss Function (DLF). The DLF is typically defined as ratio of the

squared difference between the estimated and true values to the square of the estimated value.

The specific form of this LF depends on the problem being addressed. The main purpose of

DLF is to evaluate the accuracy of decision making and estimation procedures by assigning

penalties for incorrect decisions or the estimates. By minimizing the DLF, the optimal decision

rules or estimators can be selected that can lead to improved performance and minimized

expected loss. The DLF, Lðy; ŷÞ ¼ ðy� ŷÞ2

ŷ2 ; was introduced by [45] and was later utilized by [46]

to obtain BEs. The estimator ŷ, which minimizes the PR, is used for parameter θ. The BE for

DLF can be calculated as ŷDLF ¼
E y2 jxð Þ
EðyjxÞ :

2.3.6 Precautionary Loss Function (PLF). Loss functions like the precautionary loss

function are designed to create conservative estimators that prioritize avoiding underestima-

tion. These estimators are particularly valuable in situations where underestimation could lead

to severe consequences. The PLF is a straightforward and valuable asymmetric LF that helps to

address this concern. This LF is presented by [47,48]. It is frequently used in the fields of risk

management, decision making and financial planning. PLF is represented as Lðy; ŷÞ ¼

ðy � ŷÞ
2
ŷ and its BE under PLF is given as ŷPLF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E y
2
j x

� �q

:

This study evaluates the performance of these LFs in terms of BEs and PRs. Table 1 provides

a summary of the LFs under investigation along with their expressions, associated BEs and

PRs. The findings of this study will contribute to improve the efficiency of different loss func-

tions in the Bayesian framework.

3 The proposed control charting structures

This section presents the detailed structures of the Bayesian and classical EWMA control chart

of the shape parameter of IGD. The EWMA control chart exhibit higher sensitivity in detect-

ing small process shifts as compared to the Shewhart type control chart [49]. It is important to

note that in numerous practical applications, there is a practical interest in detecting one-sided

changes, which can be either increases or decreases as reported in [50]. For example, in certain

situations, it is crucial to ensure that leakage remains below a specific threshold, while breaking

strength must meet or exceed a fixed nominal value. As the sampling and the posterior distri-

bution of the shape parameter are positively skewed, so in this study, we have constructed only
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the UCLs under different settings of BEs and PRs. The following subsections first describe the

EWMA charting structure for the shape parameter under classical setup and then the Bayesian

EWMA charts based on different LFs.

3.1 The classical EWMA control chart

Let x1, x2, . . ., xn form a random sample from IGD, i.e., X~IGD(μ, θ) where θ is the unknown

shape parameter. For the ith sample, the estimated statistic ŷ i of the shape parameter θ is used

to obtain the EWMA statistic zi under classical setup and is given as

zi ¼ lŷ i þ ð1 � lÞzi� 1; i ¼ 1; 2; 3; . . . ; n and z0 ¼ y0; ð6Þ

where λ stands for the smoothing constant, and z0 = θ0 is the value of the shape parameter in

the in-control process. The classical estimator of θ along with its mean and variance are given

as

ŷ ¼
n

Pn
i¼1

x� 1
i � n�x � 1

; ð7Þ

EðŷÞ ¼ E
n

Pn
i¼1

x� 1
i � n�x � 1

� �

; ð8Þ

varðŷÞ ¼ 2
Xn

i¼1
x� 1

i � n�x � 1

h i� 2

: ð9Þ

The UCL can be constructed as

UCL ¼ EðŷÞ þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

varðŷÞ
l

2 � l

� �

1 � ð1 � lÞ
2i� �

s

: ð10Þ

Table 1. Bayes estimators and posterior risks under different loss functions.

Loss function Mathematical expression Bayes estimator (BE) Posterior risk (PR)

SELF ðy � ŷÞ
2 Eðy j xÞ ¼ a

b E y
2
j x

� �
� ðEðy j xÞÞ2 ¼ a

b2

WSELF ðy� ŷÞ2

y
E y

� 1
j x

� �� �� 1
¼ a� 1

b
Eðy j xÞ � E y

� 1
j x

� �� �� 1
¼ 1

b

MSELF ð1 � ŷ j yÞ
2 E y� 1 jxð Þ

E y� 2 jxð Þ
¼ a� 2

b

1� E y� 1 jxð Þ½ �
2

E y� 2 jxð Þ
¼ 1

ða� 1Þ

KLF
ð

ffiffiffiffiffiffiffiffiffiffi

y j ŷ

q

�

ffiffiffiffiffiffiffiffiffiffi

ŷ j y

q

Þ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
EðyjxÞ

E y� 1 jxð Þ

r

¼

ffiffiffiffiffiffiffiffiffi
aða� 1Þ
p

b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Eðy j xÞE y
� 1
j x

� �q

� 1
h i

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a

a � 1

� �r

� 1

� �

DLF ðy� ŷÞ2

d2

E y2 jxð Þ
EðyjxÞ ¼

aþ1

b

varðyjxÞ
E y2 jxð Þ

¼ 1

aþ1

PLF ðy � ŷÞ
2
ŷ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E y
2
j x

� �q

¼

ffiffiffiffiffiffiffiffiffi
aðaþ1Þ
p

b
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E y
2
j x

� �q

� Eðy j xÞ
� �

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aðaþ 1Þ

p
� a

b

" #

a

https://doi.org/10.1371/journal.pone.0301259.t001
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3.2 The Bayesian EWMA control chart

This subsection describes the Bayesian EWMA control chart based on the BEs of the shape

parameter under the LFs under study. The Bayesian EWMA plotting statistic under any LF is

defined as

zi ¼ lŷLFðiÞ þ ð1 � lÞzi� 1; i ¼ 1; 2; 3; . . . ; n and z0 ¼ y0: ð11Þ

Where ŷLFðiÞ denotes the BE of the shape parameter for any specific loss function and the ith

sample, and rest of the notations are defined earlier. The BE under SELF, its expected value,

PR, and the corresponding UCL based on the Bayesian EWMA chart is designed as follows:

y^SELF ¼
a

b
¼

n
2
þ a

bþ
Pn

i¼1

xi � mð Þ2

2m2xi

ð12Þ

The mean and variance of the estimator θ are derived as:

Eðŷ j xÞSELF ¼ E
a

b

� �

¼ E
n
2
þ a

bþ
Pn

i¼1

xi � mð Þ2

2m2xi

0

@

1

A ð13Þ

varðŷ j xÞSELF ¼ var
a

b

� �

¼ var
n
2
þ a

bþ
Pn

i¼1

xi� mð Þ2

2m2xi

0

@

1

A ð14Þ

The similar quantities based on the other LFs under study are derived and reported in

Table 1. The general form of UCL of Bayesian EWMA for any specific LF is

UCLLF ¼ Eðŷ j xÞLF þ L
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And the corresponding UCL of Bayesian EWMA chart under SELF is defined as

UCLSELF ¼ Eðŷ j xÞSELF þ L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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l
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s

ð16Þ

The UCLs for the Bayesian EWMA chart based on all the other LFs can similarly be evalu-

ated using the information contained in Table 1.

4 Performance measures

The control charting structures under classical and Bayesian frameworks designed in Section 3

are further assessed using different performance measures, such as ARL, SDRL and MRL.

These measures are well-known for evaluating the efficiency of a control chart at a certain shift

value. The ARL values are widely employed performance measures for the evaluation of the

control chart [50,51]. It shows how many samples are usually taken before a signal is detected.

A lower ARL suggests that process changes are detected more quickly, whereas a greater ARL

indicates a slower response (cf. [52–55]).

The SDRL is another statistical performance measure which quantifies the dispersion of the

lengths of runs in a set of data. This technique is frequently used to assess a system’s consis-

tency and stability over time and provides information on the reliability of run length behav-

ior. The MRL is an essential measure used to assess individual control charts and determine
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the level of skewness in the run length (RL) performance. The MRL value is obtained by select-

ing the ((m+1)/2)th value from the ordered RLs. In addition to ARL values, the SDRL (for

spread) and MRL (for skewness) are also computed as supplemental indicators. The control

chart that yields smaller ARL, SDRL, and MRL values is the most effective chart (cf. [56–59]).

5 Elicitation of hyperparameters values

Bayes estimates are significantly dependent on the prior distribution which is further depen-

dent on the hyperparameters. So, it is not out of the context to say that the Bayes estimates also

depend on the hyperparameters. It is the earnest need of applying Bayesian approach to elicit

the values of the hyperparameters in accordance with the experts’ opinions. When a large

amount of information about the parameter(s) is available, it is important to quantify this

knowledge in the form of a prior and subsequently utilize it in the Bayesian analysis. Elicitation

involves the precise measurement of prior information through a systematic process and vari-

ous elicitation techniques were developed by (cf. [60–66]). To see the impact of the hyper

parametric values on the BEs and PRs, these quantities are evaluated across a range of hyper-

parameters a and b, and the resulting estimates are displayed in figures (cf. Figs 3–8). These

figures reflect the effect of the values of hyperparameters a and b varying from 0 to 10 on Bayes

estimates and posterior risk under different loss functions under study. The values of the

hyperparameters a and b vary from 0 to 10.

Figs 3–8 are three-dimensional figures plotted among a, b, and BEs (or PRs) with values of

all of these quantities reported on three axes of the figures. These present a study on the impact

of change in the hyperparameters a, b on BEs and PRs using the loss functions under study.

The values of hyperparameters vary from zero to infinity. In the study, it is found that as the

hyperparameter a increases and b decreases, the values of BE increase across all the LFs. For

SELF, WSELF, KLF, and PLF, the values of PR increase as the hyperparameter a increases and

b decreases and the vice versa. But for any fixed value of b for MSELF and DLF, the PR values

decrease by increasing the values of a and the vice versa. These results highlight the importance

of selecting appropriate hyperparameters for a given loss function to optimize the Bayesian

EWMA chart performance.

Fig 3. Effect of hyperparameters on the (a) BE and (b) PR under SELF.

https://doi.org/10.1371/journal.pone.0301259.g003
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In cases where there is insufficient information about the hyperparameters, it is common to

adopt a mild information approach, as proposed by [50]. By following [50], we have used the

values of a = 3.0 and b = 0.1466 for the hyperparameters of the gamma prior. These values will

be used throughout the upcoming Bayesian analysis in this study.

Fig 4. Effect of hyperparameters on the (a) BE and (b) PR under WSELF.

https://doi.org/10.1371/journal.pone.0301259.g004

Fig 5. Effect of hyperparameters on the (a) BE and (b) PR under MSELF.

https://doi.org/10.1371/journal.pone.0301259.g005
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6 Comparative study

This section presents a comparative analysis of control chart for monitoring the shape parame-

ter using both classical and Bayesian approaches. The study aims to assess the effectiveness of

various Bayesian charts and compare them to their classical counterparts. To conduct the anal-

ysis, many researchers utilized the Monte Carlo simulation method and developed an algo-

rithm. Shift values are incorporated into the shape parameter and the resulting measures of

run lengths including ARL, SDRL, and MRL values are evaluated. These values are employed

Fig 6. Effect of hyperparameters on the (a) BE and (b) PR under KLF.

https://doi.org/10.1371/journal.pone.0301259.g006

Fig 7. Effect of hyperparameters on the (a) BE and (b) PR under DLF.

https://doi.org/10.1371/journal.pone.0301259.g007
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to assess the efficiency of the suggested control chart. The control chart is supposed to be the

best if the value of ARL1 for a particular shift is small. The values of ARL0 have been fixed by

adjusting the values of L under various LFs. The ARL0 is specified at 370. Performance of the

designed chart is assessed at λ = 0.1 and 0.2. The following algorithm is proposed to monitor

the process using Bayesian method with different loss functions

Step 1: Establishing the control limits

1. Fix the value of L and λ and estimate the control limits.

2. Generate random sample from IGD for the in-control process.

3. For the specified loss functions, compute the EWMA statistic Zi for the classical and

Bayesian control chart.

4. Repeat steps 1–3 if the plotted statistic falls within the control limits.

5. When the plotted statistic falls outside the limits, record the number of generated

samples.

6. Compute ARL1 after repeating the steps 3–5 for 100000 times.

Step 2: Examine the ARL that is out-of-control.

1. Generate the random sample from the IGD for the shifted process.

2. Compute the EWMA statistic Zi.

3. If plotting statistic is within the specified limits, proceed to repeat steps 1–2. Otherwise,

make a note of the number of generated points.

4. To obtain the ARL1, SDRL1 and MDRL1 values, the steps (1–3) are repeated 50,000 times.

Fig 8. Effect of hyperparameters on the (a) BE and (b) PR under PLF.

https://doi.org/10.1371/journal.pone.0301259.g008
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In this study, we calculated the ARL, SDRL, and MRL using both frequentist and Bayesian

setups with various loss functions for sample sizes of n = 5, 10, 15. The ARL values were deter-

mined for in-control situations with ARL0 set at 370 and for shifts of different magnitudes

ranging from 1.2–3.0 (i.e., δ = 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.6, 3.0). Furthermore, ARL1, SDRL1,

and MRL1 values are computed for each shift.

The results were summarized in Tables 2–7 and visually presented in Figs 910–14. When

the shape parameter (θ) deviates from its in-control state, the manufacturing process is consid-

ered unstable. In the in-control state where δ = 1, it signifies the absence of any shift in the

shape parameter, indicating a stable state of the process while δ>1 represents an increase in

the process shape parameter. A comprehensive simulation study is conducted to examine the

performance of control chart designed with different loss functions in comparison to classical

control chart. The results presented in Tables 2–7 indicates that the control charts designed

using different loss functions outperformed their classical counterparts. The simulation study

yielded several key findings, which are summarized below at λ = 0.1 and 0.2.

1. In this study, it was observed that the ARL1 values tend to decrease as the shift (δ) values

increase. As an example, when n = 5 and δ = 1.2, ARL1 was found to be 212.97, whereas at δ
= 1.4, the ARL1 decreased to 127.29 at L = 2.26 under classical setup (cf. Table 2).

2. The ARL1 values were found to exhibit noteworthy improvement for various shift (δ) values

and control chart under various LFs. For example, when n = 5, δ = 1.2, ARL1 = 90.76 at

L = 3.13 whereas at δ = 1.4 under SELF, the ARL1 value decreased to 40.37 (cf. Table 2).

3. When sample sizes are increased, the ARL1 values decrease. For instance, for n = 5 and δ =
1.2, the ARL1 value is 91.46 at L = 3.13, whereas for n = 10 and δ = 1.2, the ARL1 value is

55.62 at L = 2.95 for WSELF. (cf. Tables 2 and 3). This indicates that increasing the sample

size can lead to improved performance in terms of ARL1 values.

4. ARL1 values for different loss functions also exhibit improvement. For example, with δ =
1.2 and n = 5, the ARL1 values are 90.76 for SELF, 91.46 for WSELF, 88.29 for MSELF, 91.11
for KLF, 93.01 for DLF, and 91.89 for PLF. Interestingly, all the loss functions exhibit the

same value of L = 3.13, indicating that they perform similarly in this regard. (cf. Table 2).

5. At large sample sizes (n), the control chart using the MSELF loss function outperforms than

other loss functions. For instance, with δ = 1.2 and n = 15, the ARL1 value for SELF is 38.28
at L = 2.83, for WSELF it is 38.15 at L = 2.85, for MSELF it is 35.88 at L = 2.85, for KLF it is

38.73 at L = 2.83, for DLF it is 39.87 at L = 2.84, for PLF it is 38.91 at L = 2.83, and for the

classical setup it is 40.61 at L = 2.88 (cf. Table 4). These results conclude that the MSELF

Table 2. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 5, λ = 0.1 at ARL0 = 370.

δ
Classical SELF WSELF MSELF KLF DLF PLF

ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 2.62 L = 3.13 L = 3.13 L = 3.13 L = 3.13 L = 3.13 L = 3.13

1.2 212.97 207.39 150 90.76 74.78 69 91.46 78.81 68 88.29 75.99 66 91.11 77.13 68 93.01 77.67 71 91.8948 78.09 69

1.4 127.29 124.62 90 40.37 28.48 33 40.80 29.28 33 39.27 29.15 32 40.47 28.60 33 41.47 29.05 34 41.83 29.18 34

1.6 80.64 74.73 59 25.01 15.08 22 24.23 15.09 21 23.39 15.09 20 24.57 15.14 21 25.36 15.27 22 25.21 15.40 22

1.8 56.31 49.11 42 17.72 9.56 16 17.28 9.80 16 16.32 9.42 15 17.45 9.70 16 18.05 9.87 16 18.08 9.82 16

2 41.44 35.13 32 13.59 6.99 13 13.29 7.06 12 12.43 6.95 11 13.72 7.08 13 14.05 6.90 13 13.85 7.03 13

2.2 31.83 25.66 26 11.15 5.50 10 10.98 5.47 10 10.10 5.44 9 11.10 5.54 10 11.45 5.47 11 11.35 5.50 11

2.6 20.89 14.98 18 8.27 3.90 8 7.98 3.87 8 7.41 3.74 7 8.18 3.88 8 8.48 3.84 8 8.49 3.94 8

3 15.33 10.19 13 6.57 3.05 6 6.29 2.98 6 5.81 2.90 5 6.48 3.03 6 6.80 3.04 7 6.66 2.99 6

https://doi.org/10.1371/journal.pone.0301259.t002
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demonstrate the superior performance in detecting shifts in large sample sizes as compared

to the other LFs.

6. The control chart based on the classical setup demonstrates inferior performance compared

to the charts using the Bayesian setup. For example, with δ = 1.2 and n = 10, the classical

setup gives an ARL1 value of 72.28, while the SELF gives an ARL1 value of 56.91 at L = 2.96,

WSELF gives an ARL1 value of 55.62 at L = 2.95, MSELF gives an ARL1 value of 53.38 at

L = 2.95, KLF gives an ARL1 value of 55.47 at L = 2.95, DLF chart gives an ARL1 value of

57.79 at L = 2.94 and PLF gives an ARL1 value of 57.20 at L = 2.95. (cf. Table 3). This indi-

cates that the Bayesian setup can lead to better performance in control charts than the clas-

sical setup.

7. As the sample size increases from 10 to 15, the magnitude of difference in ARL1 values for

control chart under MSELF is superior to other charts SELF, WSELF, KLF, DLF and PLF.

Specifically, with δ = 1.2, there are 32.74%, 31.41%, 32.78%, 30.18%, 31.01% and 31.97%
decreases in ARL1 values for SELF, WSELF, MSELF, KLF, DLF and PLF respectively (cf.

Tables 3 and 4). The results suggested that MSELF is superior choice for control charts

when dealing with large sample sizes.

8. Additionally, it has been observed that the ARL1 at λ = 0.1 is smaller than ARL1 at λ = 0.2. It

means that the efficiency of the designed control chart is improved at λ = 0.1 as compared

to that at λ = 0.2 for all sample sizes (cf. 2–7). This implies that the efficiency of the pro-

posed control chart is increased by decreasing the values of λ.

Tables 2–7 and Figs 9–14 reveals that the Bayes estimates exhibit superior performance as

compared to the classical estimates when it comes to ARL values for detecting shifts in the

Table 3. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 10, λ = 0.1 at ARL0 = 370.

δ
Classical SELF WSELF MSELF KLF DLF PLF

ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 3.05 L = 2.96 L = 2.95 L = 2.95 L = 2.95 L = 2.94 L = 2.95

1.2 72.28 61.25 54 56.91 41.94 45 55.63 42.06 44 53.39 41.26 42 55.48 40.79 44 57.80 42.05 46 57.21 42.35 45

1.4 28.13 19.15 24 24.01 12.91 21 22.91 12.92 20 21.65 13.05 19 23.55 13.01 21 24.30 12.74 22 24.19 12.99 21

1.6 16.38 9.56 15 14.71 6.60 14 13.94 6.58 13 13.01 6.72 12 14.32 6.63 13 15.43 6.71 14 15.01 6.61 14

1.8 11.25 5.97 10 10.72 4.42 10 10.00 4.34 9 9.11 4.27 9 10.36 4.34 10 11.15 4.44 11 10.93 4.38 10

2 8.51 4.31 8 8.49 3.28 8 7.85 3.26 8 7.06 3.18 7 8.13 3.28 8 8.81 3.32 8 8.64 3.27 8

2.2 6.89 3.37 7 6.95 2.67 7 6.53 2.66 6 5.79 2.55 6 6.72 2.63 7 7.32 2.67 7 7.13 2.68 7

2.6 4.98 2.34 5 5.22 1.95 5 4.79 1.88 5 4.24 1.82 4 4.99 1.91 5 5.45 1.94 5 5.36 1.95 5

3 3.91 1.78 4 4.18 1.56 4 3.85 1.49 4 3.41 1.43 3 4.03 1.52 4 4.40 1.59 4 4.31 1.55 4

https://doi.org/10.1371/journal.pone.0301259.t003

Table 4. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 15, λ = 0.1 at ARL0 = 370.

δ
Classical SELF WSELF MSELF KLF DLF PLF

ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 2.88 L = 2.83 L = 2.85 L = 2.85 L = 2.83 L = 2.84 L = 2.83

1.2 40.62 30.11 33 38.29 24.52 32 38.15 24.94 31 35.89 25.00 30 38.73 25.08 32 39.88 25.20 33 38.91 24.20 33

1.4 15.91 9.04 14 16.54 7.29 15 15.71 7.52 14 14.33 7.41 13 16.23 7.40 15 17.36 7.48 16 17.06 7.50 16

1.6 9.39 4.55 9 10.54 3.98 10 9.82 4.04 9 8.79 3.98 8 10.22 4.04 10 11.10 4.12 11 10.83 3.99 10

1.8 6.70 3.07 6 7.75 2.81 7 7.16 2.76 7 6.25 2.72 6 7.49 2.78 7 8.22 2.82 8 7.98 2.79 8

2 5.16 2.28 5 6.18 2.11 6 5.66 2.10 5 4.88 2.00 5 5.91 2.12 6 6.58 2.15 6 6.36 2.14 6

2.2 4.21 1.83 4 5.11 1.74 5 4.67 1.72 5 4.03 1.64 4 4.90 1.73 5 5.50 1.79 5 5.29 1.76 5

2.6 3.10 1.31 3 3.88 1.30 4 3.50 1.24 3 3.02 1.18 3 3.70 1.29 4 4.18 1.33 4 4.05 1.33 4

3 2.51 1.02 2 3.13 1.05 3 2.83 1.01 3 2.44 0.93 2 3.01 1.03 3 3.41 1.08 3 3.26 1.06 3

https://doi.org/10.1371/journal.pone.0301259.t004
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process for samples of size n = 5, 10 and 15. It is also revealed that EWMA control chart per-

forms best for the Bayes estimates evaluated using MSELF as compares to those produced

using the other LFs. Moreover, the performance of the chart improves further in detecting the

shift by increasing the sample size. From Figs 9–14, it shows that the values of ARL1 decrease

by increasing the shift. Moreover, the values of ARL1 under Bayesian approach for all the loss

functions are less as compared to those for the classical case. It shows that Bayes estimates are

more efficient in detecting the small shift than their classical counterparts.

7 Numerical study

To monitor the shape parameter θ of the IGD using Bayesian technique under different loss

functions, the following algorithm will be followed:

1. Generate k samples each of size n = 5 from the IGD (1, 1).

2. Construct classical and Bayesian control limits for all the LFs under study.

3. Plot Zi, i = 1,2, . . ., k against the corresponding UCL for all the loss functions under study.

4. Declare the process to be out of control if Zi falls beyond the respective UCL.

To numerically illustrate the above-cited study, 50 samples each of size 5 were generated

and the values of Zi, i = 1,2, . . ., 50 and the corresponding UCLs were computed. The graphical

presentation of the resulting information is made in Figs 15 and 16.

Figs 15 and 16 illustrates the application of Bayesian process monitoring for the shape

parameter of IGD across all the loss functions using the posterior distribution. The figure pro-

vides visual representation of sample number for which the EWMA statistic of θ falls outside

the UCL and marked out-of-control alarm. The simulation results revealed that the Bayesian

Table 5. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 5, λ = 0.2 at ARL0 = 370.

Classical SELF WSELF MSELF KLF DLF PLF

δ ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 2.89 L = 3.99 L = 3.96 L = 3.96 L = 3.99 L = 3.96 L = 3.98

1.2 229.93 233.26 158 114.07 108.68 81 110.8 105.74 78 112.3 108.7 78 115.26 110.47 82 113.92 109.12 81 114.54 108.99 81

1.4 154.41 151.85 108 51.52 45.9 38 50.28 45.82 37 50.36 46.09 36 51.76 47.15 38 51.74 45.81 38 51.7 46.11 38

1.6 109.93 107.77 77 29.6 24.69 23 28.42 23.91 22 28.57 24.2 22 28.96 24.19 22 29.27 24.12 22 29.36 24.28 23

1.8 78.89 76.77 56 18.72 14.6 15 18.8 14.69 15 18.27 14.61 14 19.01 14.84 15 19.09 14.94 15 19.2 14.96 15

2 59.32 57.18 42 13.91 10.35 11 13.58 9.87 11 13.29 10.15 11 13.93 10.21 11 13.94 9.93 11 13.99 10.1 12

2.2 45.32 43.19 33 10.65 7.16 9 10.58 7.25 9 10.29 7.26 9 10.74 7.4 9 10.89 7.27 9 10.87 7.24 9

2.6 29.96 27.5 22 7.5 4.61 7 7.25 4.53 6 7.06 4.6 6 7.38 4.64 6 7.58 4.65 7 7.5 4.62 7

3 20.89 18.16 16 5.74 3.31 5 5.51 3.31 5 5.34 3.31 5 5.66 3.36 5 5.81 3.36 5 5.78 3.32 5

https://doi.org/10.1371/journal.pone.0301259.t005

Table 6. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 10, λ = 0.2 at ARL0 = 370.

δ
Classical SELF WSELF MSELF KLF DLF PLF

ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 3.85 L = 3.65 L = 3.65 L = 3.67 L = 3.65 L = 3.65 L = 3.65

1.2 107.47 102.78 77 76.74 70.63 55 76.59 71.28 54 76.56 71.94 55 77.34 71.91 55 75.53 69.81 54 77.56 71.14 56

1.4 40.38 35.9 30 27.98 22.29 21 27.02 21.59 21 27.05 22.10 21 27.74 21.91 22 27.36 21.15 21 28.19 22.20 22

1.6 20.57 16.27 16 14.85 9.98 12 14.46 10.00 12 14.14 10.11 12 14.51 9.80 12 14.87 9.64 13 14.77 9.81 12

1.8 12.86 9.23 11 9.77 5.78 9 9.47 5.71 8 9.04 5.64 8 9.61 5.77 8 9.85 5.60 9 9.81 5.70 9

2 9.03 6.02 8 7.22 3.87 7 6.91 3.86 6 6.63 3.90 6 7.05 3.80 6 7.43 3.90 7 7.40 3.96 7

2.2 6.88 4.28 6 5.78 2.91 5 5.50 2.84 5 5.24 2.91 5 5.67 2.87 5 5.91 2.89 6 5.83 2.87 5

2.6 4.75 2.71 4 4.09 1.92 4 3.93 1.92 4 3.70 1.92 3 4.03 1.93 4 4.24 1.95 4 4.19 1.95 4

3 3.59 1.92 3 3.27 1.46 3 3.09 1.42 3 2.89 1.42 3 3.19 1.46 3 3.36 1.45 3 3.31 1.47 3

https://doi.org/10.1371/journal.pone.0301259.t006
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control chart with various loss functions resulted in a higher number of out-of-control alarms

for the shape parameter as compared to classical control charts. Furthermore, the Bayesian

approach outperforms the classical approach in detecting shifts in the process.

8 Real data application

This study illustrates how EWMA control chart can be employed for the detection of prospec-

tive changes in the IP of aerospace under frequentist and Bayesian approaches. This section

demonstrates a practical application of the Bayesian control chart to monitor the shape param-

eter of IGD. To show the importance of the suggested methodology, its application is illus-

trated by real life data. Manufacturing data from the aerospace industry have been used for

Table 7. ARL, SDRL and MDRL comparison using frequentist and Bayesian setups under different loss functions for n = 15, λ = 0.2 at ARL0 = 370.

δ
Classical SELF WSELF MSELF KLF DLF PLF

ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL ARL SDRL MDRL

L = 3.54 L = 3.44 L = 3.44 L = 3.45 L = 3.42 L = 3.43 L = 3.42

1.2 56.72 51.89 41 49.83 43.37 37 48.01 41.15 36 48.46 42.53 36 47.62 41.69 35 49.52 41.61 37 49.27 42.08 37

1.4 18.68 14.5 15 16.73 11.37 14 15.91 11.08 13 15.63 11.25 13 16.11 11.02 13 16.79 10.87 14 16.97 11.28 14

1.6 9.78 6.46 8 9.25 5.08 8 8.86 5.12 8 8.37 4.97 7 8.99 5.00 8 9.48 5.09 9 9.44 5.08 8

1.8 6.32 3.71 6 6.31 3.05 6 6.01 3.08 6 5.64 3.07 5 6.12 3.02 6 6.58 3.13 6 6.47 3.09 6

2 4.7 2.62 4 4.82 2.15 5 4.58 2.21 4 4.23 2.17 4 4.72 2.22 4 5.03 2.22 5 4.95 2.21 5

2.2 3.76 1.94 3 3.91 1.7 4 3.72 1.69 4 3.40 1.67 3 3.78 1.69 4 4.11 1.72 4 4.04 1.72 4

2.6 2.7 1.31 3 2.92 1.2 3 2.70 1.16 3 2.47 1.14 2 2.79 1.19 3 3.03 1.20 3 2.96 1.20 3

3 2.14 0.99 2 2.34 0.93 2 2.16 0.91 2 1.99 0.86 2 2.25 0.92 2 2.45 0.96 2 2.38 0.94 2

https://doi.org/10.1371/journal.pone.0301259.t007

Fig 9. ARL1 under classical and Bayesian setups for n = 5 at λ = 0.1.

https://doi.org/10.1371/journal.pone.0301259.g009
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Fig 10. ARL1 under Classical and Bayesian setups for n = 10 at λ = 0.1.

https://doi.org/10.1371/journal.pone.0301259.g010

Fig 11. ARL1 under classical and Bayesian setups for n = 15 at λ = 0.1.

https://doi.org/10.1371/journal.pone.0301259.g011
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Fig 12. ARL1 under classical and Bayesian setups for n = 5 at λ = 0.2.

https://doi.org/10.1371/journal.pone.0301259.g012

Fig 13. ARL1 under classical and Bayesian setups for n = 10 at λ = 0.2.

https://doi.org/10.1371/journal.pone.0301259.g013
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this purpose, (cf. industrial10.pdf (federalreserve.gov)). Khaliq et al. [67] also considered the

data of aerospace industry from January 1997 to January 2015. As shown on this webpage, a

brief description of the data/variables of interest has been provided related to the objectives of

the study. Aerospace manufacturing includes the design, construction, testing, sale, and main-

tenance of airplanes, aircraft parts, missiles, rockets and spacecraft. There are several commer-

cial and military applications for aerospace activity. This industry manufactures thousands of

aircraft engine mounts, exhaust systems, landing gears and other components. There are

numerous variables to consider. Industrial production (IP) index has been chosen as the qual-

ity characteristic of interest for this study. It evaluates the actual output of the manufacturing,

mining, utility, and electric sectors. Data from January 1980 to December 2022 have been

considered.

Prior to proceed with the Bayesian EWMA monitoring of the shape parameter of the IGD

based on the real data, it is of prime importance to assess the goodness of fit of the model to

the observed data. We may use the model selection criteria to evaluate the goodness of fit of

the model to the observed data and compare different models, [68]. So we may use Akaike

information criterion (AIC), [69] and Bayesian information criterion (BIC, also known as

Schwarz criterion), which are respectively defined as

AIC ¼ � 2ln½Lðm; yÞ� þ 2k

and

BIC ¼ � 2ln½Lðm; yÞ� þ klnðnÞ

Fig 14. ARL1 under classical and Bayesian setups for n = 15 at λ = 0.

https://doi.org/10.1371/journal.pone.0301259.g014
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Here ln[L(μ, θ)] denotes the log-likelihood, n denotes the number of observations and k
denotes the number of parameters of the distribution under consideration. The smaller the

values of these criteria are, the better the fit is. We have assumed the real-life data to follow the

IGD and weibull distribution. So, we have evaluated the AIC and BIC for the data based on

IGD and weibull model and their model selection criteria are reported in Table 8.

Here we have observed that the values of AIC and BIC for the IGD are very small as com-

pared to those for the weibull distribution. Therefore, it can be concluded that the IGD gives a

better fit to the real-life aerospace data and we can monitor the shape parameter of IGD based

on the underlying real-life aerospace data.

To numerically illustrate the above-cited study based on real data of 43 samples each of size

12, the values of Zi, i = 1,2, . . ., 43 and the corresponding UCLs were evaluated. The graphical

presentation of the resulting information is made in Figs 17and 18.

Figs 17 and 18 illustrate the monitoring of the EWMA statistic of θ based on UCL com-

puted for classical estimates and Bayes estimates obtained using the loss functions under

study. Here we observed the similar pattern of shift detection by the control chart under study

across all the estimation methods, i.e., the classical approach as well as the Bayesian approach

for all the loss functions under study. Moreover, it is also noted that the Bayesian approach is

more competent than classical approach in fault detection of the process.

Fig 15. Classical process monitoring using simulated data for n = 5.

https://doi.org/10.1371/journal.pone.0301259.g015
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9 Conclusion

The aim of this research is to design EWMA control charts under frequentist and Bayesian

approaches to monitor the shape parameter of IGD. It is investigated that with increasing sam-

ple size, the recommended control charting method becomes increasingly effective in detect-

ing process shifts. This study evaluates the impact of hyperparameter values on the Bayes

estimates and posterior risks. Results showed that as hyperparameter a increases and b
decreases, the values of BE increase across all loss functions. However, the values of PR

decreases for SELF, WSELF, KLF and PLF. The simulation study reveals that the Bayes esti-

mates are more efficient than classical estimates in detecting process shifts for all sample sizes.

Fig 16. Bayesian process monitoring for all the loss functions using simulated data for n = 5.

https://doi.org/10.1371/journal.pone.0301259.g016

Table 8. Model selection criteria for IGD and weibull models.

Models Estimates of AIC BIC

μ θ
IGD 81.24159 1243.369 4552.227 4560.72

Weibull 2.865 × 1010 5.37 112012.8 112021.3

https://doi.org/10.1371/journal.pone.0301259.t008
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However, there is no significant difference in the performance of control chart for the loss

functions under study. The study also reveals that the classical approach is unable to detect the

out-of-control process, while the Bayesian approach is found to be more sensitive. It is further

noted that the Bayesian EWMA control chart using MSELF outperforms all its competitors,

and its performance is further improved by increasing sample size. The results of the entire

study are based on the skewed waiting time distribution, namely the IGD. However, they may

vary for other skewed distributions or symmetric distributions.

It is further recommended that the values of the hyperparameters may be elicited based on

the experts’ opinion and the Bayes estimates may be evaluated using these values of the hyper-

parameters. We may extend this study for other competing distributions and competing

charts.

Fig 17. Classical process monitoring using the manufacturing data from the aerospace industry.

https://doi.org/10.1371/journal.pone.0301259.g017
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