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Abstract

Acanthamoeba castellanii is infected with diverse nucleocytoplasmic large DNA viruses.

Here, we report the co-isolation of 12 viral strains from marine sediments in Uranouchi Inlet,

Kochi, Japan. Based on the morphological features revealed by electron microscopy, these

isolates were classified into four viral groups including Megamimiviridae, Molliviridae,

Pandoraviridae, and Pithoviridae. Genomic analyses indicated that these isolates showed

high similarities to the known viral genomes with which they are taxonomically clustered,

and their phylogenetic relationships were also supported by core gene similarities. It is

noteworthy that Molliviridae was isolated from the marine sediments in the Japanese warm

temperate zone because other strains have only been found in the subarctic region.

Furthermore, this strain has 19 and 4 strain-specific genes found in Mollivirus sibericum and

Mollivirus kamchatka, respectively. This study extends our knowledge about the habitat and

genomic diversity of Molliviridae.

Introduction

Acanthamoeba are free-living protists that are widely distributed in the environment. These

protists incorporate bacterial cells into phagosomes via pseudopod extension. In this step,

certain viruses are also incorporated into Acanthamoeba cells, and cell lysis occurs in some

cases [1, 2]. Owing to this unique feature, several Acanthamoeba species, including A.

polyphaga and A. castellanii have been used as hosts to isolate viruses.

Acanthamoeba polyphaga mimivirus is the first identified giant virus that infects

Acanthamoeba; it was isolated in 1992 and identified in 2003 [3]. Since this discovery, several

Acanthamoeba viruses that belong to diverse families have been isolated [1, 2]; Asfarviridae
[4], Marseilleviridae [5], Medusaviridae [6], Megamimiviridae [3], Molliviridae [7],

Pandoraviridae [8], and Pithoviridae [9, 10]. These giant viruses replicate themselves in

structures known as “viral factories” built in the host cytoplasm or directly exploit the host

nucleus to replicate and assemble viral progeny [11]. Thus, these viruses are also called

nucleocytoplasmic large DNA viruses (NCLDVs) [12, 13].
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NCLDVs are known to have a set of highly conserved genes (core genes). These core genes

encode proteins involved in important cellular processes such as nucleotide synthesis, DNA

replication, DNA recombination and repair, and transcription [13]. Phylogenetic analysis

based on the presence or absence of these genes suggested that NCLDVs are monophyletic

and represent a fourth domain of life that originated from a common ancestor [14].

Furthermore, recent metagenomic analysis predicted that horizontal gene transfer occurs

between various NCLDVs and host eukaryotes [15]. Therefore, NCLDVs are important

biological entities for understanding evolutionary processes and ecological networks [2, 15].

These NCLDVs universally and heterogeneously exist in marine environments [16]. For

example, high proportions of unique NCLDVs are present in the polar biomes [16]. Likewise,

Molliviridae were only isolated from the subarctic region in areas such as Siberia and

Kamchatka [10, 17]. Therefore, investigating NCLDVs in different locations is essential for

elucidating the marine ecosystem dynamics.

Uranouchi Inlet is a small semi-enclosed sea area located at the southeastern side of

Shikoku Island, Japan. Although the existence of diverse Mimiviridae in the inlet was revealed

[18], the Acanthamoeba viruses have not been isolated to date. Here, we isolated and charac-

terized Acanthamoeba viruses of four families from Uranouchi Inlet, Japan.

Materials and methods

Culture conditions

Acanthamoeba castellanii Neff (ATCC 30010) was kindly provided by Prof. Masaharu

Takemura. This strain was cultured in PYG medium (ATCC medium 712) supplemented with

an antibiotic mixture at 26˚C for a week. The antibiotic mixture contained 100 mg/L

ampicillin (FUJIFILM Wako, Osaka, Japan), 100 mg/L chloramphenicol (Nacalai Tesque,

Kyoto, Japan), 100 mg/L tetracycline hydrochloride (Nacalai Tesque), 100 mg/mL Neomycin

(Nacalai Tesque), 1 mg/L penicillin-streptomycin solution (FUJIFILM Wako), and 25 mg/L

amphotericin B (FUJIFILM Wako).

Isolation of lytic agents causing A. castellanii cell death

Soil samples were collected in Uranouchi Inlet, Kochi Prefecture, Japan from 22 August 2019

through 30 July 2020 (S1 Fig). Permission for sampling for this study was obtained from the

Japan Coast Guard and Kochi Prefecture. Up to 3 g of the sample was suspended in a 10-fold

volume of distilled water, and then stirred at room temperature for 1 h. The suspended

samples were incubated at 4˚C until they naturally settled. Each supernatant was filtered

through 5.0-μm pore size cellulose membrane (150 mm, ADVANTEC, Tokyo, Japan). An

aliquot (50 μL) of filtrates was inoculated into A. castellanii cultures (250 μL) in 96-well plates

(Thermo Fisher Scientific, MA, USA) and incubated for a week under the above conditions.

Each well was monitored by optical microcopy every other day. The cell lysates were

diluted with distilled water; then, serial 10-fold dilutions (250 μL) were inoculated into A.

castellanii (150 μL) cultures in 96-well plates. After incubation for a week, this extinction

dilution procedure was conducted again with the lysates from the most diluted well.

Verification of bacterial absence from the lysate

Five media were prepared for sterility tests using PYG medium following instructions from

the National Institute for Environmental Studies (B-I, B-II, B-IV, B-V, and YT; https://mcc.

nies.go.jp/02medium.html). The lysates (10 μL) were inoculated into each medium (500 μL)

and incubated in 48-well plates (Thermo Fisher Scientific) at 26˚C. Each well was monitored
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by optical microscopy every other day. Additionally, the lysates (100 μL) were filtered through

0.2-μm (ADVANTEC) and 0.1-μm (Pall Corporation, NY, USA) syringe membrane filters,

respectively, and then inoculated into A. castellanii culture (150 μL) to confirm whether the

filtrates retained the lytic activity.

DNA was extracted from the lysates using the phenol/chloroform/isoamyl alcohol procedure

after incubation with 10% (v/v) SDS (Tokyo Chemical Industry Co., Ltd., Tokyo, Japan) and

protease K (FUJIFILM Wako) for 1 h at 56˚C. The extracted DNA was subjected to PCR

amplification of the 16S rRNA gene using Ex Taq (TaKaRa Bio Inc., Shiga, Japan) with 27F and

1492R primers [19]. PCR conditions were as follows: initial denaturation at 94˚C for 2 min,

followed by 35 cycles of 94˚C for 30 s, 55˚C for 30 s, and 72˚C for 30 s; and a final extension at

72˚C for 7 min. The resultant products were confirmed by electrophoresis on a 2% agarose gel.

Electron microscopy

After incubation for two weeks, the lysates were prepared for electron microscopy. An aliquot

(35 μL) of the samples was mixed with 5 μL of 4% osmium tetroxide, and then incubated for 5

min at room temperature. The fixed samples were collected on a 0.2-μm membrane filter (25

mm), washed twice, and immersed in distilled water at 4˚C overnight. The filters were

immersed in 30%, 50%, 70%, 90%, and 95% ethanol every 5 min. Then, the filters were

immersed in 100% ethanol three times for 20 min at room temperature and completely dried

using a critical point dryer (JEOL JCPD-5). The dried samples were coated with osmium

tetroxide by an osmium coater (Neoc-Pro, Meiwafosis Co., Ltd., Tokyo, Japan) and observed

using field-emission scanning electron microscopy (FE-SEM; JEOL JSM-6500F).

After culturing for one week, A. castellanii (150 mL) was mixed with 20 mL of each lysate, and

then incubated for 24 h under the above conditions. An aliquot (42.5 mL) of the cultures was

centrifuged at 600 g for 10 min at 4˚C. The cell pellet was washed with 0.1 M phosphate buffer

(pH6.8) and suspended in the same buffer (460 μL). The samples were fixed in 25%

glutaraldehyde (Nacalai Tesque) at a final concentration of 2% and incubated for 1 h at 4˚C. After

washing twice, the fixed samples were resuspended in 500 μL of phosphate buffer and stored at

4˚C until analysis. After centrifugation at 1,100 g for 5 min, the samples were mixed with 1 mL of

distilled water containing 1% (w/v) Agarose-S (Nippon Gene Co., Ltd., Toyama, Japan) and

solidified during centrifugation again under the same conditions. The agarose blocks with A.

castellanii cells were cut into 1-mm cubes and then immersed in 500 μL of phosphate buffer.

Ultrathin sections of each sample were prepared by Dr. Kenichi Yagyu as follows. After

washing with the buffer, the samples were fixed with 0.1 M phosphate buffer (pH7.3)

including 1% osmium tetroxide at 4˚C for 1 h, followed by dehydration treatment with

ethanol. The treated samples were coated with Epon 812 (TAAB Laboratories Equipment,

Reading, UK), and then ultrathin sectioned using a Leica EM UC7 microtome (Leica

Microsystems, Wetzlar, Germany). After double staining with uranium and lead dye, the

samples were observed using transmission electron microscopy (TEM; JEOL JEM-1400Plus).

Viral genome sequencing, assembly, and phylogenetic analyses

After culturing for one week, A. castellanii (80 mL) were infected with each viral lysate

(800 μL), and then incubated for two weeks. After centrifugation at 200 g for 5 min, the

supernatants were further centrifuged at 20,400 g for 20 min. The samples were resuspended

in 900 μL of distilled water, and then subjected to DNA extraction using the above-mentioned

method. DNA libraries were prepared using the NEBNext Ultra II FS DNA Library Prep Kit

for Illumina (New England Biolabs, MA, USA) according to the manufacturer’s instructions.

Library sequencing (2 × 150-bp read length; NovaSeq 6000) was performed by Rhelixa Co.,
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Ltd. (Tokyo, Japan). After adapter trimming and quality filtering (Q30), total reads from each

sample were assembled using SPAdes version 3.15.3 with default k-mer lengths [20]. Detection

of the viral signal was performed using VirSorter 2.2.3 with the “—include-groups NCLDV”

option [21]. ViPTree server version 3.4 was used for proteomic tree construction, gene

annotation, and genomic alignment views [22]. The genomic similarity score (SG) value was set

to� 0.15 (viral genus level cut-off) according to a previous study [23]. Maximum likelihood

analysis of the core genes coding DNA polymerase family B and VVA18 helicase was performed

using the Molecular Evolutionary Genetics Analysis (MEGA) package version 11.0.13 [24].

Results

Isolation of lytic agents from soil samples

During the survey period, we collected 31 soil samples from sediments at multiple stations in

Uranouchi Inlet (S1 Fig). Among these samples, nine inocula showed lytic activity against A.

castellanii (S1 Table). After purification by the extinction dilution method, we isolated 12 lytic

agents that caused A. castellanii cell death (S1 Table).

Sterility tests of lytic agents showed no increase in turbidity in the inoculated five media

due to the propagation of microbial cells. Likewise, agarose gel electrophoresis did not indicate

a band corresponding to the 16S rRNA gene. Furthermore, the filtered agents showed no lytic

activities against A. castellanii cells. Based on these results, we concluded that lytic activities

could originate from giant viruses but not microorganisms or bacterial viruses.

Morphological features of A. castellanii viruses

TEM and FE-SEM images of the lytic agents demonstrated that A. castellanii viruses isolated

in this study were classified into four distinct morphotypes (Fig 1). The seven isolates showed

typical features of pandoraviruses, with ovoid particles (avg. major and minor axes: 1.1 and

Fig 1. Morphological features of A. castellanii viruses isolated from marine sediments in Uranouchi Inlet. (A) Pa1-1, (B) Pa1-2, (C)

Pa1-3, (D) Pa1-4, (E) Pa2-1, (F) Pa6-1, (G) Pa11-1, (H) Mo1-1, (I) Me1-1, (J) Me1-2, (K) Ce2-1, (L) Ce7-1.

https://doi.org/10.1371/journal.pone.0301185.g001
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0.75 μm, respectively) with an apex-like aperture (Figs 1A–1G and 2A–2C) [8]. The Mo1-1

isolate had spherical particles (0.75 μm in diameter) surrounded by a hairy tegument that

consisted of three layers (Figs 1H and 2D–2F), which was consistent with morphological

features of known molliviruses [7]. The two isolates Me1-1 and Me1-2 also showed unique

morphological features of Megamimiviridae, including a large capsid (avg. 0.45 μm in

diameter) with fibrous structures (Figs 1I, 1J and 2G–2I) [25]. The other isolates, Ce2-1 and

Ce7-1, had morphological features consistent with cedratviruses, including ovoid particles

Fig 2. Scanning electron microscopy images of selected A. castellanii viruses isolated in this study. Left, middle,

and right columns represent the images of infected cell, enlarged view of the cell surface, and viral particle, respectively.

(A–C) Pa1-1, (D–F) Mo1-1, (G–I) Me1-2, (J–L) Ce7-1. Red arrows indicate viral particles adsorbed to the cell.

https://doi.org/10.1371/journal.pone.0301185.g002
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(avg. major and minor axes: 1.2 and 0.7 μm, respectively) with a cork-like structure at both

ends (Figs 1K, 1L and 2J–2L) [9].

Genome analysis of A. castellanii viruses

To reveal the genomic features, we next sequenced and assembled 12 genomes of A. castellanii
viruses (� 10 kb) isolated from Uranouchi Inlet. Acanthamoeba castellanii viruses were largely

classified into four groups using a viral proteomic tree [26] based on their genome similarity

scores derived from tBLASTx scores (Fig 3) [22].

The seven pandoravirus genomes ranged from 1,304,282 to 1,853,886 bp and contained 847

to 1,109 predicted protein-coding genes (S2 Table). Of these, four pandoraviruses Pa1-1, Pa1-

3, Pa1-4, and Pa2-1, showed high sequence similarity with Pandoravirus macleodensis [27] and

each other (Fig 4A). Likewise, the genome sequences of the isolates Pa6-1 and Pa11-1 were

similar to that of P. dulcis (Fig 4B) [8]. Also, pandoravirus Pa1-2 showed high sequence

similarity with Pandoravirus neocaledonia [27]. Consistent with these results, phylogenetic

analysis of the DNA polymerase β gene also showed that these viruses were closely related to

known pandoraviruses (S2 Fig).

Mollivirus Mo1-1 had 620,463-bp genome containing 520 putative protein-coding genes

(S2 Table). This viral strain exhibited high sequence similarity with M. sibericum (Fig 5A) [10].

Additionally, phylogenetic trees of DNA polymerase β and VVA18 helicase genes indicated

that this isolate is closely related to molliviruses such as M. sibericum and M. kamchatka

Fig 3. Proteomic tree of 12 A. castellanii viral genomes isolated in this study and 533 related eukaryotic dsDNA viruses. (A) Whole

proteomic tree, including 534 related eukaryotic dsDNA viruses, generated by ViPTree server version 3.5. The dendrogram represents

the proteome-wide similarity relationships among the 12 A. castellanii viruses isolated in this study (red branches) and reference viral

genomes (black branches). Branch lengths are shown on a logarithmic scale from the root of the entire tree. (B) Inner and outer rings

that are outside the dendrogram represent viral family classifications and taxonomic groups of known hosts, respectively. (C) Enlarged

view of the proteomic tree that includes the viruses isolated in this study.

https://doi.org/10.1371/journal.pone.0301185.g003
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(S2 and S3 Figs). In coincidence with this result, this strain has unique genes found in M.

sibericum and M. kamchatka (S3 Table).

The Megamimiviridae genomes isolated in this study ranged in size from 1,214,619 to

1,220,862 bp and contained 1,089 to 1,095 predicted protein-coding genes (S2 Table). Two

isolates, Me1-1 and Me1-2, displayed high sequence similarities with Megavirus courdo11 [28],

M. Iba [29], and M. chiliensis [30] (Fig 5B). The core genes of these isolates formed sister

clades with megaviruses but not mimiviruses (S2 and S3 Figs).

Fig 4. Genome map of pandoraviruses isolated in this study. (A) Pandoravirus macleodensis relatives, (B) P. dulcis relatives. All

alignments are represented by colored lines that show the tBLASTx percent identities between two viral genomes.

https://doi.org/10.1371/journal.pone.0301185.g004
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Cedratviruses Ce2-1 and Ce7-1 had 330,233 and 396,117-bp genomes encoding 360 and

445 putative protein-coding genes, respectively (S2 Table). Both isolates exhibited high

sequence similarity with Cedratvirus A11 [9] (Fig 5C), which was also consistent with

morphological features. This phylogenetic relationship was supported by the VVA18 helicase

gene maximum-likelihood tree (S3 Fig).

Discussion

In this study, we isolated the giant viruses infecting A. castellanii from marine sediments. Our

results indicated that four phylogenetically distinct viral groups (Megamimiviridae, Molliviri-
dae, Pandoraviridae, and Pithoviridae) coexist in Uranouchi Inlet, Kochi, Japan. In particular,

sampling station 1, which is located at the closed-off section of the inlet, was a “hot spot”

Fig 5. Genome map of mollivirus, megaviruses, and cedratviruses isolated in this study. (A) Mollivirus sibericum and a relative, (B)

megavirus relatives, (C) Cedratvirus A11 and relatives. All alignments are represented by colored lines that show the tBLASTx percent

identities between two viral genomes.

https://doi.org/10.1371/journal.pone.0301185.g005
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where diverse giant viruses coexisted (S1 Fig and S1 Table). However, we could not isolate

giant viruses closely related to Asfarviridae [4], Marseilleviridae [5], and Medusaviridae [6].

All giant viruses isolated in this study showed high similarities to known viral genomes

taxonomically clustered together (Figs 3–5). However, it is worth noting that mollivirus Mo1-

1 was isolated from the sediment in Uranouchi Inlet. To date, Molliviridae has only been

isolated from the subarctic region, such as from the permafrost layer and Russian riverbank [7,

17]. Therefore, this is the first report on the existence of Molliviridae in a warm temperate

zone and endorses that they are not extinct from the current environment [17].

In the M. kamchatka genome, 96% of the encoded proteins were highly conserved

compared with those of M. sibericum which was in a dormant state for 30,000 years; this

indicates that most of these proteins contribute to viral fitness [17]. The highly conserved

genome of Mo1-1 also supported the importance of these proteins for the mollivirus lifecycle

(Fig 5A). Meanwhile, the Mo1-1 genome contains not only unique genes found in the M.

sibericum genome, but also M. kamchatka-specific genes [17] (S3 Table). Further studies are

needed to elucidate acquisition/loss events of these genes and their contribution to viral fitness

for each Molliviridae strains.

In conclusion, we revealed the diversity and genomic features of A. castellanii viruses in

Uranouchi Inlet, Japan. These findings expand our current knowledge regarding Molliviridae
habitat and genomic differences among the strains. The results of this study will provide an

opportunity to better understand the evolution and diversity of Molliviridae if they are isolated

from a wide range of climatic zones in the future.

Supporting information

S1 Fig. Sampling sites in Uranouchi Inlet, Kochi, Japan. Soil samples were collected at each

station (St) from 22 August 2019 through July 2020. The numbers in brackets represent those

of isolated A. castellanii viruses. The map was created by editing the map vector provided by

Geospatial Information Authority of Japan.

(TIF)

S2 Fig. Maximum-likelihood tree of DNA polymerase β genes. The tree contains the protein

sequences encoded in Acanthamoeba viruses, including the pandoraviruses, molliviruses, and

megaviruses isolated in this study. The scale bar represents the estimated substitution number

of amino acids per site. Numbers close to the nodes indicate bootstrap values above 75%.

(TIF)

S3 Fig. Maximum-likelihood tree of VVA18 helicase genes. The tree contains the protein

sequences encoded in Acanthamoeba viruses, including the cedrativiruses, molliviruses, and

megaviruses isolated in this study. The scale bar represents the estimated substitution number

of amino acids per site. Numbers close to the nodes indicate bootstrap values above 75%.

(TIF)

S1 Table. Summary of viruses isolated from the sediment in Uranouchi Inlet. Each viral

strain was named according to viral family, station number, and isolation order.

(XLSX)

S2 Table. Summary of sequencing data in this study.

(XLSX)

S3 Table. M. kamchatka- and M. sibericum-specific genes found in the Mo1-1 genome.

(XLSX)
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