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Abstract

Recent advances in the field of machine learning have yielded novel research perspectives

in behavioural economics and financial markets microstructure studies. In this paper we

study the impact of individual trader leaning characteristics on markets using a stock market

simulator designed with a multi-agent architecture. Each agent, representing an autono-

mous investor, trades stocks through reinforcement learning, using a centralized double-

auction limit order book. This approach allows us to study the impact of individual trader

traits on the whole stock market at the mesoscale in a bottom-up approach. We chose to

test three trader trait aspects: agent learning rate increases, herding behaviour and random

trading. As hypothesized, we find that larger learning rates significantly increase the number

of crashes. We also find that herding behaviour undermines market stability, while random

trading tends to preserve it.

1 Introduction

Background: Understanding how markets behave has been one of the central questions in

financial market economics. Traditionally, market dynamics are studied as phenomena in

themselves with a top-down approach to complexity inference, for example by using statistical

or econometric models [1]. Yet trading in real financial markets comes as a result of the collec-

tive interactions of human actors, either directly in the form of economic traders, or indirectly

in the form of investors imperatives that constrain algorithmic trading strategies [2]. Under-

standing how these two trading approaches and their gap differ can potentially be bridged

using multi-agent systems (MAS), or agent-based models (ABM), which have been sought

after by industry practitioners and regulators alike [3]. They are currently an active area of

research [4, 5] and tools to study cross-market structure [6], market regulatory impact [2], the

law of supply and demand [7], high-frequency trading [8, 9], quantitative easing [10], and

other exogenous effects [11]. Modern MAS applied to financial markets have been able to

reenact the so-called market stylised facts [5], which are statistical properties of the stock price

return and volatility signals, observed across different markets, assets and time scales. Stylised
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facts play an important role in economic theory, because they imply some degree of market

memory [12, 13] (e.g. the way historical market prices can help forecasting future prices).

Recent trends give MAS research in economics a whole new potential range of realism, coming

from the association of two present-day major scientific breakthroughs: i- the steady advances

of cognitive neuroscience and neuroeconomics [14, 15], and ii- the progress of machine learn-

ing due to the increasing computational power and use of big data methods [16] over the past

decade. Even more promising is the synergy of these two fields, with the emergence of machine

learning algorithms incorporating decision-theoretic features from neuroeconomics [17, 18],

or neuroscience models approached from the angle of machine learning [19, 20].

Studies have also examined cognitive traits and biases in individual financial decision mak-

ing [14], yet few have revealed the global impact of individual cognitive traits and biases in

large populations of economic agents on the quantifiable financial market dynamics [21]. Such

approaches have also used methods from reinforcement learning [22–24] or adaptive learning

[25, 26]. The framework of reinforcement learning has multiple parallels with decision pro-

cesses in the brain [17–20]. Reinforcement learning hence computationally offers the possibil-

ity to quantitatively study the agent learning side of price formation, which is so crucial to

basic market activity. The current literature in financial trading spans over a large and growing

number of studies employing reinforcement learning [27]. Their approach ranges from critic-

only approach [28–30] to actor-only approach [31–33], to combining actor-critic approach

[34] (for a thorough analysis of the three approaches, see [35]). While each approach has its

own strengths and weaknesses, and despite studies often starting from unrealistic assumptions

[36], RL algorithms have been improved and tested on a number of tasks for trading perfor-

mance along the last two decades. From discovering predictable structure in foreign exchange

markets [33], reinforcement learning algorithms were adapted to portfolio management

[37, 38] and trading in the context of individual actor-critic algorithms [39]. RL agents can

also be combined together, assigning them different roles (learning when to buy, when to sell

or at which price), to solve trading tasks cooperatively [40–43]. RL agents can be designed to

compete as traders against each other in the context of self-play RL, and their ability to learn

and adapt their own strategy in complex environments offers the opportunity to study how

their interaction shapes the evolution of their own strategies. Multi-agent RL (MARL) models

[44] can therefore be implemented to simulate bottom-up stock market dynamics and assess

emerging order book dynamics from limit orders issued by heterogeneous agents [45]. How-

ever, the recent reinforcement learning approaches have been calibrated by financial data that

is incomplete at best [22–24], or have not been built over a full system of autonomous rein-

forcement learning agents to emulate the market [22, 46]. Even so, such studies confirm a

trend of recent interest in reinforcement learning applied to financial MAS [28, 46–48] or

order book models [49–51].

Our approach: We base our work on our reinforcement learning MAS stock market simula-

tor—SYMBA (SYstème Multi-agents Boursier Artificiel). IN SYMBA all of the agents are auton-

omous and are endowed with reinforcement learning [52], by which they forecast stock prices

and send individual transaction orders to a centralised order book. In a previous publication

[53], we detailed the cautious calibration procedure of SYMBA to real stock market data, also

see Supplementary Material. In [54], we then studied how its agents learn and acquire new

trading strategies over time. SYMBA hence emulates the microstructure of a financial stock

market through a bottom-up approach to system complexity, via these autonomous economic

agents (e.g. investors, institutions) and their economic transactions (e.g. buying, selling, hold-

ing stocks). Each individual agent is modelled according to two distinct features: i- a reinforce-

ment learning algorithm to develop its own skills for price forecasting and stock trading (i.e.

each agent learns to forecast and trade over time), ii- such an agent learning process framed
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for a rather chartist or fundamentalist approach to stock price valuation. At each time step of

the simulation, the agents individually learn to either buy, sell or hold stocks, in a given num-

ber and at a given price. To do this, each sends its transaction order to an order book that is

common to all agents and which sorts and matches the transaction orders received. By rein-

forcement learning, the agents analyze the results (rewards) of their past investments (actions)

based on the actions they chose during specific market phases (states). As market prices unfold

over time, agents learn to adapt and refine their strategies (policy). The law of supply and

demand, and other key phenomena to price formation [55, 56] such as illiquidity and bid-ask

spread formation are thus reenacted. We then compare the simulated price and volume time

series of each stock to real financial data. The SYMBA MAS parameters can be calibrated so

that the output matches real stock markets, thereby measuring the collective role played by the

learning parameters of the agents in a quantitative way. Each agent learns to forecast and trade

autonomously by reinforcement learning with a long-only equity strategy, and each agent’s

discretionary asset pricing process relies on learning to weight both chartist and fundamental-

ist inputs. These features allow us to plumb the financial market from the macro- to the micro-

scopic level: in [53], we compared the overall stock market return statistics to real world data,

while in [54] we characterised the trading performance of the agents from the learning dynam-

ics of their trading strategies over time.

This study: In this study we use our stock market simulator to investigate the mesoscopic

effect of the agent learning parameters on the emergent collective market dynamics. More spe-

cifically, we chose to test the effects of three manipulations in traders behaviour on stock mar-

ket stability: learning rate amplification (Section 4), herding behaviour (Section 5) and noise

trading (Section 6). In the first manipulation, increased learning rates will make agent more

sensitive to more recent outcomes, reflecting the more recent states of market microstructure.

The agent will therefore tend to select actions that were successful most recently. Secondly, we

study the impact of herding behaviour, which we view as a source of market reflexivity (i.e.

market endogeneity) [57] that can lower market stability. Herding can arise from imitating the

trading or following the investment advice from another agent (e.g. renowned investor, trader,

or analyst, etc.) in the form of recommendations or reviews. However, herding behaviour is

more than imitation, it may also include common responses to aligned expectations (e.g. when

the price of a given stock starts decreasing) or heuristics (e.g. agents stopping to buy a stock

because of an influential investor starting to sell it, etc.). Finally, we study how information

asymmetry among agents influences market stability. With the ever-increasing amount of big

data, information has an ever increasing impact on price formation and markets. We examine

the role played by agent information on market price formation [58], by introducing an

increasing percentage of “noise traders”, i. e. agents trading randomly [59].

Motivation for trait selection: There are many individual traits that are studied in behavioral

economics, and that could be probed via the agent reinforcement learning framework in our

model. However, in this paper we limit ourselves to study the impact of the traits of a collective

of agents on the market at the mesoscale. As we show below, the exploration of learning rate

variations, herding behavior, and the role of noise traders allows for a multifaceted analysis of

market dynamics, ranging from extreme volatility to more stable conditions. This selection of

manipulations and agent traits allows one to study the effects of both agent rationality (e.g.

noise trading) and collective actions (learning rate and herding). The learning rate in rein-

forcement learning agents is a critical factor in determining the adaptability of agents to new

market information. Faster learning rates result in agents that heavily weigh recent experi-

ences, leading to quick alterations in trading strategies. This can significantly influence market

trends and volatility. For example, [60] explored how varying learning rates [35] among trad-

ers may lead to market instabilities, and conversely, slower learning rates contribute to more
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steady but potentially less agile trading strategies. These insights underscore the importance of

understanding how the speed of learning among market participants can shape overall market

behavior. The tendency of investors to mimic the actions of a larger group (e.g. herding) can

cause significant market disruptions, potentially leading to overreactions or the formation of

price bubbles. Our study on herding behavior, inspired by the findings of [61], examines how

collective actions, driven by herding, can critically influence market quality, offering insights

into the mechanisms behind correlated trading behaviors. Finally, exploring the impact of

noise traders (i.e. agents who act randomly and without coherent strategies) is crucial for a

comprehensive understanding of market dynamics in that it deals with agent rationality. As

demonstrated by [62], noise traders can introduce an element of unpredictability that counters

the effects of more strategic traders, affecting market liquidity and overall stability. By incorpo-

rating these agents, one can study the intricate interplay between systematic strategies and

trading randomness, as well as the potential for irrational behavior to impact market

conditions.

Working hypotheses: We hypothesise that each one of these manipulations will have a

unique impact on the emergent structure of the market: (1) faster learning in agents will lead

to increased agent bankruptcies and more frequent crashes, (2) herding behavior among the

agents should lead to market instabilities and (3) an increasing number of noise traders brings

financial stability to the whole market. Noise traders should provide more liquidity (and higher

trading volumes in both bid and offer), as they keep a balance between bid and ask orders, hin-

dering trends towards either bear or bull markets. These experiments are of particular interest

because all the three manipulations and their impact on market stability relate closely to a core

concept in finance: market memory [63, 64]. This topic has sparked an important historical

debate in the scope of the well-known efficient-market hypothesis [65, 66]), which states that

in a market large enough where information spreads instantaneously to all agents, these react

rationally and immediately to it, so that market prices are always at their fair value, and no

consistent profit can be consistently earned over time by investors buying undervalued stocks

and selling overvalued ones, or exploiting historical data patterns so as to forecast future data.

Structure: This paper is organized as follows. A short primer on reinforcement learning is

first given in Section 2 (with more details in the Supplementary Material section). Then, Sec-

tion 3 describes our model’s general architecture (with its iteration procedure), its agents (with

their reinforcement learning algorithms to forecast and trade stocks), and its order book (with

its double auction limit orders procedure). For the sake of clarity, the entire code of SYMBA is

available to the community on GitHub [67]. We also provide as Supplementary Material a

detailed sum up of the main results of the calibration procedure from [53] to validate the

model. In Section 4, we study the impact of the reinforcement learning rate on agent perfor-

mance and overall market dynamics. In Section 5, we study the impact of agent herding and

market reflexivity (i.e. market endogeneity). Finally, in Section 6, we study via different popu-

lations of noise traders how information asymmetry among agents influences the market sta-

bility. ‘In the supplementary Material we lay out in more detail how the model was calibrated

and other technical issues.

2 Reinforcement learning

We here briefly review the basics of reinforcement learning theory that pertain to this study.

Together with supervised and unsupervised learning, reinforcement learning has been termed

one of the three paradigm shifts of machine learning [68], and is today at the forefront of

almost all breakthroughs in machine learning research. Like many other machine learning

methods, reinforcement learning has its roots in behavioural psychology and decision theory
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[69]. In reinforcement learning, we consider an agent in a given state s 2 S of its environment

that must learn the best way to consistently receive a preset reward r 2 R from this environ-

ment through a selection of its possible actions a 2 A. The states and actions can be defined as

more or less complex concepts, and notice the rewards can be positive or negative. In the

beginning of the task, the agent is completely agnostic as to which actions are best to use: it

will have to learn this on its own by trial and error, through a formalism known as the explora-

tion vs. exploitation procedure. The goal of the agent is to find its policy π(s, a) = Pr(a|s),
which is the set of probabilities associated to each of the agent’s action selection within each

possible state of its environment, so as to maximise its (delayed) rewards in a dynamic (and

often stochastic) environment. A more expanded review of reinforcement learning is pre-

sented in the Supplementary Materials.

3 Model

Features: We have previously showed SYMBA performance and its calibration process to real

stock market data [53] and see Supplemenatry Materials. The SYMBA agents utilize reinforce-

ment learning to interact with the market through the order book. Each agent’s unique asset

pricing process, which balances chartist and fundamentalist perspectives, allows for an analysis

of the impact of various learning parameters on the market at the mesoscale (i.e. between

micro- and macroscale). This is achieved by comparing our simulated data with real stock

market data. The data we use for such a comparison comes from a data-feed of 642 stocks

from the London Stock Exchange that have been continuously traded over the years 2007 to

2018 (these thus comprise a survivorship bias). Our data consists of professional-grade, end-

of-day stock market quotes. These quotes include the date, opening price, highest price, lowest

price, closing price, and trading volume for each day. Importantly, these figures are directly

sourced from the London Stock Exchange (LSE) and are not a compilation of data from

smaller exchanges (i.e. consolidated data). Additionally, our dataset includes precise informa-

tion on stock splits. This ensures that our analysis is not mistakenly influenced by extreme

market events that are actually just the result of stock splits.

Architecture: SYMBA (see pseudo-code in the Supplementary Material section, on Fig 11)

is structured along two major parameters: i- a number I of agents aiming to learn actions

that maximise over time the net asset value of their individual portfolio, which consists in

risk-free assets (bonds) and a number J of stocks (equity), and ii- a number J of different

double-auction limit order books, each compiling the transactions of a stock j 2 J at each

time step t of the simulation. For the results shown in Section 4 to 6, we consider the case

J = 1, and instead use batches of S 2 R simulation runs for the statistical validation of these

results. Each agent is initialized in such a way that it is agnostic wrt. both price forecasting

and trading. An agent autonomously learns these by two distinct reinforcement learning

algorithms, and sends (or not) at each time step t a transaction order to the order book for a

specific number of each stock j to buy or sell. Otherwise the agent simply holds its position

and waits for a better time to trade. At each time step, each order book thus collects the

transaction orders of all agents and processes them by sorting the bid orders in a descending

way, and the ask orders in an ascending way. The order book then matches the orders for

transactions at mid-price at each level, starting from the top, until bids no longer exceed

offers. That latest effective transaction at the lowest possible level then defines the market

price of stock j at next time step Pj(t + 1). The total number of stocks transacted at time step

t is its traded volume at next time step Vj(t + 1). The absolute difference between the average

of all bids and asks is its spread Wj(t + 1). The market price at time t = 0 is set by default at P
(t = 0) = £100.
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Agents: For their own asset pricing, agents approximate by cointegration [70] another time

series T j
ðtÞ generated at time t = 0, which corresponds to the fundamental prices of asset j (as

in other models [71, 72]). The inspiration for the profile of T j
ðtÞ is the enterprise value [73],

which gives the theoretical price at which the company issuing the stocks would be acquired.

The enterprise value can give a rough fundamental stock price estimate, if divided by the total

number of stocks outstanding. For more details on the way T j
ðtÞ is generated and then indi-

vidually approximated by each agent, we refer the reader to [53]. The weight given to this fun-

damentalist valuation or to the market price is learned by each agent, so that agents range

from chartists to fundamentalists (see below). Agents trade as such for a learning phase of

1000 time steps, after which all their portfolio assets are reset to their initial values, and the

simulation then let to run for statistical inference and microstructure study. Past this learning

phase, we consider a simulation of T time steps, where one time step typically represents a

trading day, and thus Tw = 5, Tm = 21, Ty = 286 correspond to a trading week, month, and year

on the London Stock Exchange, respectively. The entire code in C++ of SYMBA is available on

GitHub [67].

Each agent is initialized with distinct parameters. For every stock j at each time step t, an

agent runs a reinforcement learning algorithm, F i, for price forecasting, followed by another

algorithm, T i
, to determine trading strategies based on F i’s outcomes. Fig 1 shows a general

overview of the iteration procedure of the simulator.

i- Agent parameters: Each agent is initialised at time t = 0 with a specific set of seven param-

eters, as well as two parameters setting their initial portfolio, as detailed in [53]. Let

UðÞ;Ufg;N ðÞ;N fg respectively denote the continuous and discrete uniform distributions,

and the continuous and discrete normal distributions. The agent parameters include:

• Risk-free assets of value Ai
bondsðt ¼ 0Þ � N ð0; 104Þ and a number of stocks Qi, j(t = 0) drawn

from a discrete positive half-normal distribution N þ
f0; 100g, amounting to a value of its

stock holdings Ai
equityðt ¼ 0Þ ¼

PJ
j¼0

Qi;jðt ¼ 0ÞPjðt ¼ 0Þ.

• An investment horizon ti � UfTw; 6Tmg corresponding to the number of time steps after

which the agent liquidates its position.

• A memory interval hi � UfTw;Tg corresponding to the size of the rolling time interval used

by the agent for its learning process.

• A transaction gesture gi � Uð0:2; 0:8Þ scaling with the spread, and related to how far above

or below the value of its own stock pricing the agent is willing to trade and deal a

transaction.

• A reflexivity amplitude parameter ri � Uð0; 100%Þ gauging the weight given by the agent to

fundamental or chartist valuation of the stock.

Two agent parameters are particularly relevant to the present study:

• The learning rate bi � Uð0:05; 0:20Þ of both RL algorithms F i
and T i

(see below): its role is

to scale the update of the state-action probabilities when learning, for any action a? deemed

optimal in state s at time t, by increasing the policy probability associated with this action

compared to the other actions, 8a 6¼ a?:

ptþ1ðs; a?Þ ¼ ptðs; a?Þ þ b½1 � ptðs; a?Þ� ð1Þ

ptþ1ðs; aÞ ¼ ptðs; aÞ þ b½0 � ptðs; aÞ� ð2Þ
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Its boundaries are drawn from the literature in neuroscience on the values of the learning

rate [17, 18, 74].

• The drawdown limit li � Uð50%; 60%Þ: this is the threshold of the year-to-date peak-to-bot-

tom loss in net asset value, beyond which the agent is listed as bankrupt and unable to inter-

act with the market anymore.

ii- Agent forecasting: The states of the forecasting algorithm F i are described by: a longer-

term price volatility sF
0

(equal to 0 for low, 1 for mid, 2 for high), a shorter-term price volatility

sF
1

(0 for low, 1 for mid, 2 for high), and the gap between its own present fundamental valua-

tion and the present market price sF
2

(0 for low, 1 for mid, 2 for high).

Out of these states, the agent chooses an action in order to optimise the price prediction at

its investment horizon τi: the type of econometric forecast aF
0

(equal to 0 for mean-reverting, 1

for averaging, 2 for trend-following), the size of the historical lag interval for this econometric

forecast aF
1

(equal to 0 for short, 1 for mid, 2 for large), and the weight given to its reflexivity

amplitude parameter ρi for price estimation aF
2

(equal to 0 for low, 1 for mid, 2 for large).

Fig 1. Schematic of the SYMBA stock market simulator and its operational dynamics. This figure presents an integrated view of the SYMBA simulator,

emphasizing the dual-level interaction within the simulated financial market. At the core of the system, individual agents (bottom-left) utilize two distinct

reinforcement learning algorithms, F i
for forecasting and T i

for trading, to independently formulate and execute trading strategies at each simulation step.

These strategies are then aggregated at the market level through a centralized double-auction order book (top-right). The order book directs market

dynamics by matching buy and sell orders from different agents, effectively determining market prices and volumes (bottom-right). This figure illustrates

the iterative loop of agent decision-making and market adjustment (top-left), which collectively shapes the emergent macroscopic market behavior. By

simulating the interplay between individual agent strategies and market-level effects, SYMBA provides insights into how individual behaviors and collective

market responses yield in a complex financial ecosystem.

https://doi.org/10.1371/journal.pone.0301141.g001
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Then, the reinforcement learning algorithm F i computes the percentage difference

between the agent’s former stock price prediction Hi,j(t − τi) performed τi time steps ago, and

its present realisation Pj(t): |Hi,j(t − τi) − Pj(t)|/Pj(t). This difference is recorded it at each time

step in a time series that is continually sorted in ascending order and truncated to keep a size

corresponding to the agent memory interval hi. The associated percentile corresponding to

this value at time step t sets a discrete value of returns rF in the set {4, 2, 1, −1, −2, −4} if it

respectively belongs to the intervals [0%, 5%(, [5%, 25%(, [25%, 50%(, [50%, 75%(, [75%, 95%(,

[95%, 100%]. Hence, the rewards of these performed actions are defined via the mismatches

between past forecasts at time t − τi and their eventual price realisation at time t. These feed a

direct policy update with new action probabilities for the agent in such a state.

iii- Agent trading: The states of the trading algorithm T i
are as follows: (i) the trend of the

price forecast of the previous algorithm sT
0

(equal to 0 for decreasing, 1 for stable, 2 for increas-

ing), (ii) the price volatility sT
1

(equal to 0 for low, 1 for mid, 2 for high), (iii) the level of the

agent risk-free assets compared to its initial values sT
2

(equal to 0 for low, 1 for high), (iv) the

level of the agent stock holdings compared to its initial values sT
3

(equal to 0 for low, 1 for

high), and (v) the stock liquidity based on previous exchanged volumes sT
4

(equal to 0 for zero,

1 for low, 2 for high).

From this multi-modal state, the agent can chose the following actions: sending an order to

the order book aT
0

(equal to 0 for shorting, 1 for holding, 2 for longing), and at what price

above or below the agent’s own price estimate aT
1

(equal to 0 for indifference to lose on transac-

tion, 1 for neutral, 2 for willingness to gain on transaction) via the transaction gesture gi scaled

with the market spread Wj(t).
Considering the present stock price Pj(t), the algorithm T i

then computes the cashflow dif-

ference between the agent’s portfolio net asset value, and its present value if the former actions

taken τi time steps ago had not been taken: Qi;j
OBðt � tiÞ½PjðtÞ � Pi;j

OBðt � tiÞ�. Here Qi;j
OBðt � tiÞ

and Pi;j
OBðt � tiÞ are respectively the quantity and transaction price of stock j that was cleared

by the order book process at time t − τi for agent i and its transaction partner. Notice these

may not be those actually sent by agent i at that time, because the quantity of stocks to long or

short may not have been entirely cleared at this time (recall the agents send limit orders only),

and because the transaction price is set by the order book at mid-price with the transaction

partner’s order price.

Same as for the algorithm F i
, these values are then recorded at each time step in a time

series that is continually sorted in ascending order and truncated to keep a size corresponding

to agent memory interval hi. The associated percentile corresponding to this value at time step

t sets a discrete value of returns rT in the set {4, 2, 1, −1, −2, −4} if it respectively belongs to the

intervals [0%, 5%(, [5%, 25%(, [25%, 50%(, [50%, 75%(, [75%, 95%(, [95%, 100%].

The rewards of these performed actions are defined via the difference in cashflow at time t
between the profit or loss consequent to the agent’s past action at time t − τi, and the one had

this action not been taken. Again, these feed a direct policy update with new action probabili-

ties for the agent in such a state.

Our MAS model make a number of simplification over several aspects of real financial mar-

kets. First it assumes homogeneity among agents in terms of their learning algorithms and

market impact, which might not accurately represent the diverse investor profiles in actual

markets. Secodn, this study’s focus on learning rate, herding, and noise trading at the agent

level does not encompass other potentially influential factors such as regulatory changes, mac-

roeconomic indicators, or global events, which play a significant role in real-world financial

markets. In the section 8.2.5 of the Supplementary Material, we give more details on the limita-

tions of our model.
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4 Agent learning rate increase impacts on market crashes

We first focused on assessing how the reinforcement learning rate influences agent perfor-

mance and the broader market dynamics. This was in large part motivated by observations in

behavioral neuroscience that identified learning rate differences as a key factor in the heteroge-

neous performance on value-driven decision tasks in humans. We thus gauged how inserting

into the simulated agent population a progressively larger proportions of agents with a statisti-

cally larger learning rate would change the overall market quality. Changing the agents’ learn-

ing rate amounts to varying their sensitivity to their most recent observed outcomes. Here most
recent reflects a time range between one week up to six months worth of trading, given by the τ
range. We thus statistically doubled the learning rate β in a increasing fraction p of the total

agents (i.e. p = 0%, 20%, 40%, 60%, 80%). Recall each agent is initialised with a learning rate

modelled by the parameter b � Uð0:05; 0:20Þ for both reinforcement algorithms F i
and T i

.

Simulations of trading in our ABM under such variations in quantity p of the proportions of

agents with doubled learning rates, lead us to observe the following impacts at the market level:

• Price volatility: We see that price volatilities remain stable at different time-scales, for varia-

tions in quantity p (see Fig 2). A structural explanation for this is that agents with larger

learning rates send transaction orders with prices that more closely reflect recent microstruc-

ture variations, hence providing more liquidity to the market.

• Market crashes: We see that the number of market crashes increases strongly (see Fig 3a).

This is an expected result, as larger learning rates imply agents that will amplify the latest

market tendencies reflected in the microstructure. Notice the standard definition of a crash

is here applied, namely a decrease in 20% of the asset price at time t + 1.

Fig 2. Means of various price volatilities for percentages of agents with a doubled learning rate. Means of volatilities, defined as the standard

deviations of price normalized to the price itself s

PðtÞ, computed over different time lags: one week (blue), one month (red), and six months (yellow)

intervals. These are calculated for varying percentages p of agents, corresponding to p = 0%, 20%, 40%, 60%, 80% of the total agent population.

Agents in these percentages have their learning rate doubled, while the remaining 100 − p% of agents maintain the usual learning rate, with

b � Uð0:05; 0:20Þ. Results are derived from S = 20 simulation runs, involving I = 500 agents, J = 1 stock, over a period of T = 2875 time steps.

https://doi.org/10.1371/journal.pone.0301141.g002
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• Agent bankruptcy: We find that percentages of agent bankruptcies barely increase (see Fig

3b). This should be here understood in the light of the two previous conflicting factors wrt.

market stability, namely that the price volatilities remain stable for such agents, and at the

same time that the market experiences a larger amount of crashes due to amplified market

tendencies, and we posit the latter to cause the slight increase on the plot of Fig 3b.

It is thus interesting to note that such variations in agent proportions with doubled learning

rates in our model do not affect general market volatility, except in tail events with statistically

much greater numbers of market crashes,. We also note that that the mean numbers of agent

bankruptcies are mildly affected. It is interesting to put these results in the context of the

hypothesis on the adaptability of marketsAccording to the Adaptive Market Hypothesis [75]

(AMH), stock markets can exhibit both efficiencies and inefficiencies concurrently because

market participants do not operate solely on irrational or rational behavior, but will potentially

adapt and make decisions informed by their past experiences. The AMH hence suggests that

market participants adapt their strategies based on changing market conditions. Rapid learners

(i.e. agents with larger learning rates) might adapt quickly to new trends, while slow learners

may stick to traditional strategies. We posit that exploring further the interplay between our

results and the proposed factors in the context of the AMH in traditional economics will be a

fruitful direction to pursue in the future.

5 Impact of agent herding

We next considered the impact of agent herding on the market dynamic. Notably, we hypothe-

sized that agent herding may have a crucial impact on market stability as it is related to market

reflexivity [57] (i.e. market endogeneity). As we pointed out in Section 1, an intuitive way to

model agent herding is to set populations of agents that follow the trading or investment advice

of another “modal” agent, based on investment information (recommendations or reviews)

broadcast to the agent population.

In our framework, we model the impact of such agent herding on the market as a whole by

introducing increasing percentages p of agents sending (when possible) the same transaction

order to the order book at time t + Δ (for D 2 Nþ) that was sent by the agent with best trading

performance or track record at time t. For the sake of simplicity, we here consider this “best”

Fig 3. Means of crashes and bankruptcy rates for percentages of agents with a doubled learning rate. For both

plots (a) and (b), varying percentages p = 0%, 20%, 40%, 60%, 80% of the total agent population were analyzed, where

agents had their learning rate scaled by a factor of 2 and the remaining 100 − p% had a learning rate β drawn from

Uð0:05; 0:20Þ. These analyses come from S = 20 simulation runs with I = 500 agents, J = 1 stock, over T = 2875 time

steps. (a) Examines the mean number of market crashes, defined as a 20% decrease in asset price at time t + 1, across

different p values. (b) Calculates the mean percentages of bankrupt agents, with bankruptcy defined as an agent’s

drawdown reaching its limit li, for varying p values.

https://doi.org/10.1371/journal.pone.0301141.g003
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agent as the one with the largest net asset value at time t. Hence, the rest of the herding agents

may follow and emulate different agents over time, just as in real markets. Also, because of the

different trading horizons ti � UfTw; 6Tmg of the agents, we narrow our study here below to

the simplest case and set Δ = 1.

In order to gauge the results of our study, we compare the resulting market dynamics with

simulations where increasing percentages of the agents follow the agent with the worst trading

performance at time t. Again, we consider this “worst” agent as the one with the lowest, non-

bankrupt, net asset value at time t. These two approaches (that we will call “best agent herding”

and “worst agent herding” respectively) taken together allow us to qualitatively gauge the mar-

ket impact from the agents herding a best agent in a statistically robust manner. Results are

shown on Figs 4 to 5c, and allow us to make the following conclusions:

• Both herding scenarios increase the market price volatility. The “best agent herding” leads to

a strong increase in price volatilities. This effect especially clear for larger herding percent-

ages (see Fig 4a). At the same time, a market with “worst agent herding” displays an increase

in price volatilities that is even stronger than the previous case, especially for larger percent-

ages of herding agents (see Fig 4b). This market also shows a significant skewness of the

return distribution in favour of larger negative returns. We note this volatility increase for

both distributions is almost imperceptible for cases where the percentage of herding agents

stays below half of the total agent population (p< 50), and also that the average returns are

negative for p> 50. One could understand this result by the fact that in both scenarios for

p> 50, more agents will send orders to the order book that will rarely find a matching order

for a transaction to be validated. Together with the results shown in the plots of Fig 5a–5c

below, we posit this can produce a number of transaction fails and illiquidity issues in the

agents’ portfolio that yield negative market returns at the mesoscale.

• Trading volumes decrease drastically in both herding scenarios, albeit much more so for the

“best agent herding” case (see Fig 5a, blue curves). As said previously, the a straightforward

explanation for this loss of market liquidity with larger populations of both “best” and

“worst” herding agents is that increasingly more agents send transaction orders finding no

match within the order book. This order book hence becomes filled with one-sided short

orders mostly, or long orders mostly, depending on the “best” or “worst” agent’s own trading

order at time t − 1, with little to no orders matching them for actual transactions, thus reduc-

ing the whole market trading volumes.

Fig 4. Distributions of price log-returns for different percentages of agents imitating the best agent, worst agent,

and engaging in random trading. We analyze the distribution of logarithmic returns of real and simulated prices,

denoted as log[P(t)/P(t − 1)]. The real price data is represented by a dashed black curve, while the simulated data is

depicted by continuous curves. The simulations correspond to different percentages p of agents, where p = 0%, 20%,

40%, 60%, and 80% of the total agent population at time t. These percentages are represented by different colors: red

(p = 0%), yellow (p = 20%), green (p = 40%), brown (p = 60%), and light blue (p = 80%). The agent behaviors are

categorized into three types: (a) following the best agent, (b) following the worst agent, (c) trading randomly, while the

remaining 100 − p% of agents engage in proprietary trading strategies. These results are derived from S = 20 simulation

runs, involving I = 500 agents, J = 1 stock, and spanning T = 2875 time steps.

https://doi.org/10.1371/journal.pone.0301141.g004
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• Market crashes increase exponentially in both scenarios, but even more so for the “worst

agent herding” case (see Fig 5b, red curves). This can be explained from the decrease in trad-

ing volumes for larger values of p in both scenarios, since stock illiquidity prevents agents to

obtain transactions matching their orders, and hence manage their portfolio accordingly.

• Market bid-ask spreads decrease steadily, until p> 60%, after which they slightly increase

again for the “best agent herding” scenario, and nearly double for the “worst agent herding”

scenario (see Fig 5c). This may seem contradictory with the previous results about illiquidity

and exploding numbers of crashes. Indeed, it is known that the more disagreement on stock

pricing between agents, the more trading activity and volumes, as well as price volatility [76].

Apart from the “worst agent herding” scenario with p = 80%, one should notice this steady

decrease in spreads is quite mild, and hence cannot account by itself for the aforementioned

effects on the market.

• Remarkably, the rates of agent bankruptcy remain stable regardless of these varying percent-

ages for the “best agent herding” scenario, with average means of 22.76 ± 3.25% for all values

of p. As for the “worst agent herding” scenario, the rates of agent bankruptcy greatly increase

with these varying percentages, staying above 70% of agent bankruptcy for p> 20%, as one

could expect.

These results may be counter-intuitive at first, however, we see that passively following a

renowed investor (defined as the agent with the largest net asset value at time t) according to

this “best agent herding” scenario (defined by p agents emulating such an investor transaction

order at time t + 1) is extremely averse to market stability, notably in terms of negative price

returns, increased illiquidity and numbers of crashes.

We would like to note that from the traditional economics point-of-view, herd behavior

may not be necessarily irrational, and may actually be compatible with optimizing behavior

[77]. A greater trust in collective, rather private, information may be a rational choice in case

of information asymmetries or imperfect information, where the trader leverages collective

information processing. While this approach may be seen as rational from the individual point

of view, it may be detrimental at market level (on the lines of the tragedy of the commons),

breaking the resilience of this strategy exploiting collective intelligence. Herding can otherwise

be seen as group pressure [78, 79], social conformity or a heuristic based on self-amplifying

noisy information. In the past, herding behaviour has been studied as “information cascades”

Fig 5. Means of volumes, numbers of crashes, and spreads for different percentages of agents imitating the best

agent, worst agent, and engaging in random trading. Figures (a), (b), and (c) present aggregated results from S = 20

simulations with I = 500 agents and J = 1 stock over T = 2875 steps. In (a), we calculate the mean trading volumes for

agents partitioned into percentages p = {0%, 20%, 40%, 60%, 80%} of the total, divided by strategy: best-following

(blue), worst-following (red), random (grey), and proprietary strategies for the remaining 100 − p%. In (b), we depict

the mean number of market crashes—defined as price drops greater than 20% at t + 1—for the same distributions of p,

categorized by the same strategies. (c) showcases the mean bid-ask spreads, as a percentage of price, for varying p, with

agent behaviors similarly categorized.

https://doi.org/10.1371/journal.pone.0301141.g005
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[78], though in these models individual decisions occurred sequentially. Subsequent models

dropped this unrealistic assumption, while focusing on the different sources of information to

consider. In terms of heterogeneity of imitation, our study stands between [80], where all

agents imitate each other at the same extent while mixing private information, and [81], where

imitation occurs in random independent groups, from a random communication structure

between agents. In line with the latter study, where imitation gives rise to heavy tails, in our

model, extreme events (market crashes) increase as herding behaviour increases.

6 Impact of noise traders

Our next objective was to explore the mesoscale effects of a rising proportion of ‘noise traders,’

here defined as agents engaging in random trading [59], so as to check on the role played by

agent information on market price formation [58]. Following the efficient-market hypothesis

[65, 66]), we hypothesised that an increasing number of noise agents should bring a certain

financial stability to the whole market, by providing more liquidity and higher trading volumes

in both bid and offer. This is predicted since an efficient market of sufficient size would ensure

market prices at their fair value, and no profit consistently earned over time by investors buy-

ing undervalued stocks and selling overvalued ones, or exploiting historical data patterns so as

to forecast future data. With increasing percentages of “noise agents” p, we observe the follow-

ing results:

• A strong decrease in the absolute value of logarithmic price returns (see Fig 4c). This is con-

gruent with what we see also on Fig 6, which displays a general decrease in means of price

volatilities computed over several time scales (namely, lags of one week, one month, and six

months), for a percentage p of agents corresponding to p = 0%, 20%, 40%, 60%, 80% of the

Fig 6. Means of various volatilities for different percentages of agents engaging in random trading. Means of volatilities, defined as the

standard deviations of price normalized to the price itself s

PðtÞ, were computed over various lags: one week (green), one month (red), and six months

(blue). These computations were carried out for different percentages of agents, p, corresponding to p = 0%, 20%, 40%, 60%, 80% of the total agent

population engaged in random trading. The remainder of the population, 100 − p, participated in proprietary trading strategies. These results were

derived from S = 20 simulation runs, generated with I = 500 agents, J = 1 stock, and conducted over T = 2875 time steps.

https://doi.org/10.1371/journal.pone.0301141.g006
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total agent population trading randomly (the remainder 100 − p engaging in proprietary

trading strategies). This decrease in price returns and volatilities with larger values of p can

be explained by the larger diversity of orders sent by the agents to the order book, and hence

the greater opportunity for these orders to find matching orders. This is confirmed by the

following result about trading volumes.

• A very strong increase in trading volumes for increasing proportions of noise agents (see Fig

5a). One could explain this strong decrease by the same reasons as previously.

• A sharp decrease in market crashes, which virtually almost vanish for p> 50% (see Fig 5b).

As previously, this can be explained by the greater number of both short and long orders due

to the random trading of the agents: sharp increase or decrease in prices (i.e. crashes) are

hence less likely for larger values of p.

• A steady increase in bid-ask spreads (see Fig 5c). A reason for this would again be that more

diverse orders are sent to the order book with larger proportions of noise traders, and hence

that the spread less likely shrinks because of a lack of matching orders, as both sides (i.e.

short and sell order types) of the order book are more likely populated with increasing values

of p.

• A steady increase in length of both bull and bear market regimes (see Fig 7), resp. defined as

the number of consecutive days of rising prices (positive values) and dropping prices (nega-

tive values). We see especially strong effects on the bull market regime lengths. This is an

interesting result, as one could have expected the larger amount of liquidity provided on

Fig 7. Distributions of the consecutive days of bull and bear market regimes, for different percentages of agents engaging in random trading.

The distribution of the number of consecutive days of rising prices (positive values) and dropping prices (negative values) is analyzed. This analysis

includes both real data (represented by a dashed black curve) and simulated data (represented by continuous curves). The simulated data

corresponds to varying percentages of agents, p, engaging in random trading, while the remainder (100 − p%) employ proprietary trading

strategies. Specifically, the distributions for p = 0% (red curve), p = 20% (yellow curve), p = 40% (green curve), p = 60% (brown curve), and p = 80%

(light blue curve) are shown. These results are derived from S = 20 simulation runs, involving I = 500 agents and J = 1 stock, conducted over

T = 2875 time steps.

https://doi.org/10.1371/journal.pone.0301141.g007
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both sides of the order book for increasing values of p would imply a more versatile market

microstructure, despite the associated decreasing volatility.

• Finally, agent bankruptcy rates steadily decrease with higher proportion of noise traders,

from means of 23.22% for p = 0%, to 18.84% for p = 80%. This is remarkable, as one could

have posited that agent survival rates would decrease because of such random trading. One

should link this result to other related studies probing the performance of random asset

management [82].

In line with other recent studies [83], we hence conclude that counter-intuitively, larger

numbers of agents trading randomly is beneficial to market stability and even to agent perfor-

mance. Under larger proportions of such noise trading agents, we see that market price volatili-

ties decrease, trading volumes strongly increase, market crashes virtually vanish, and agents

bankruptcy slowly decrease. While random trading would be the only meaningful trading in a

fully efficient market, the emergence of “inefficiencies” in a market of traders employing well-

informed trading strategies is in line with the reasoning that noise traders are the ones provid-

ing other traders the profit opportunities necessary to have a market [75]. Quoting Black [84]:

“Noise makes financial markets possible, but also makes them imperfect.” Our results therefore

contrast with others of classical economics such as [85], who instead argue that the market

structure is sufficient to establish full efficiency even when traders behave randomly, leading the

authors to conclude that “imposing market discipline on random, unintelligent behavior is suffi-
cient to raise the efficiency from the baseline level to almost hundred percent in a double auction.
The effect of human motivations and cognitive abilities has a second-order magnitude at best”.

7 Discussion

In this work we presented a bottom up exploration of the mesoscale impacts of trader learning

behaviors in financial markets by using a multi-agent reinforcement learning model. This

approach provides for a better understanding of how individual trader characteristics, such as

learning rate amplification, herding behavior, and noise trading, collectively influence market

dynamics. This also allowed us to explore how individual trader decisions interplay with

broader market phenomena, with a different angle than other classical top-down economic

models. By bridging the gap between micro-level trader behavior and macro-level market out-

comes, both regulatory bodies and financial practitioners can leverage these insights for more

robust market predictions and strategies in an increasingly complex financial landscape.

The “SYMBA” MAS stock market simulator we used for this work [53, 54], was calibrated

to the London Stock Exchange data between the years 2007 and 2018. In this model, the agents

autonomously manage their portfolio via a long-only strategy based on two reinforcement

learning algorithms: one performing price forecasting and another one performing stock trad-

ing. In SYMBA, each agent is also endowed with specific and relevant reinforcement learning

parameters that allow us to quantitatively study the impact of agent learning on financial stock

markets at the mesoscale.

Table 1 gives an overview and general sum up of the results of our experiments. We first

studied the impact on the market of increasing proportions of agents with doubled learning

rates. We found that market price volatilities at all time-scales did not vary much. A structural

explanation for this is that agents with larger learning rates send transaction orders with prices

more closely reflecting recent microstructure variations, hence providing more liquidity to the

market. We further found average numbers of crashes to greatly increase. This is an expected

result, since larger learning rates imply agents that will amplify the latest market tendencies

PLOS ONE Mesoscale effects of trader learning behaviors in financial markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0301141 April 1, 2024 15 / 40

https://doi.org/10.1371/journal.pone.0301141


reflected in the microstructure. We also found that agent bankruptcy rates were not much

impacted by variations in agent populations with doubled learning rates. This underscores the

influence of learning rates on market stability, and highlights the balance between rapid adap-

tation and potential market volatility.

We then studied the effect of agent herding, when increasing percentages of agents followed

and emulated at time t + 1 the investments of the best performing agent at time t, and found

that, as expected, such a herding behaviour greatly increases market instability, with an

increase in negative market price returns, illiquidity and numbers of crashes. Yet, remarkably,

bankruptcy rates of simulations with greater amounts of agents imitating a top-performer

remain quite stable, regardless of the percentages of such agents, and regardless of these

increasing market volatilities and numbers of crashes. The study of herding behavior thus

revealed its profound impact on market stability. Markets where a significant percentage of

traders emulate the investment choices of top-performing agents exhibit increased negative

price returns, illiquidity, and frequency of crashes.

Finally, keeping in mind the ever-increasing amount of information and big data available

to practitioners, and its role in price formation, we sought to explore the impact of agent infor-

mation and rationalityon the price formation process and so-called market memory, with

larger proportions of “noise traders” (i. e. agents trading randomly). We found a much greater

market stability with increasing percentages of such agents, with strongly decreasing price vol-

atilities at all time scales, and a number of crashes virtually vanishing. Economically, this can

Table 1. General sum up of the key results of the study.

Cognitive Trait SYMBA Implementation Market Impact

Larger agent

learning rate

Larger percentages p of agents with a

doubled agent learning rate

1. Stable price volatilities (Fig 2);

2. Increase of market crashes (Fig 3a);

3. Stable rates of agent bankruptcies (Fig 3b).

Impact of agent

herding

Larger percentages p of agents imitating

the best performing agents at time t
1. Increased price volatilities & larger negative

returns (Fig 4a), esp. for p> 50%;

2. Much larger trading volumes (Fig 5a);

3. Drastic increase in market crashes (Fig 5b);

4. Bid-ask spreads decrease for p< 60% and

increase for p� 60% (Fig 5c);

5. Stable rates of agent bankruptcies.

Impact of agent

herding

Larger percentages p of agents imitating

the worst performing agents at time t
1. Greatly increased price volatilities & larger

negative returns (Fig 4b), especially for p> 50%;

2. Much smaller trading volumes (Fig 5a);

3. Exponential increase in market crashes (Fig 5b);

4. Bid-ask spreads decrease for p< 60% and

strongly increase for p� 60% (Fig 5c);

5. Strong increase in agent bankruptcy rates.

Impact of noise

traders

Larger percentages p of agents trading

randomly

1. Strong decrease in absolute log-price returns &

steady decrease in price volatilities (Figs 4c and

6);

2. Explosion of trading volumes (Fig 5a);

3. Sharp decrease in market crashes (Fig 5b) which

almost vanish for p> 50%;

4. Bid-ask spreads steadily increase (Fig 5c);

5. Longer bear and esp. bull market regimes (Fig

7);

6. Steady decrease in agent bankruptcy rates.

https://doi.org/10.1371/journal.pone.0301141.t001
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be explained by the larger diversity of orders sent by the agents to the order book, and hence

the greater opportunity for these orders to find matching orders, thereby avoiding illiquidity

issues. We also found such markets to be more prone to display bull regimes, and that agents

bankruptcy rates slightly diminished. The result that market stability is enhanced by random

trading and agent irrationality may be a challenge to traditional views on market dynamics

and rational trading behavior such as the Efficient Market Hypothesis.

The implications of these findings may be significant for both regulatory policies and

investment strategies. By understanding the nuanced effects of individual trader behaviors and

collective dynamics, regulatory bodies can develop more effective oversight mechanisms, and

financial practitioners can refine their market strategies to better adapt to an increasingly com-

plex financial landscape. The mesoscale perspective adopted in this study also bridges the gap

between micro-level behaviors and macro-level outcomes, providing a comprehensive view of

market dynamics. Future research could extend these findings by exploring the influence of

other trader characteristics and market conditions, in order to enrich our understanding of

financial markets in the modern economy. Another natural extension of this research would

be to study the mesoscale impact of the order book parameters, and see how this would change

the policies learned by the agents.

With a broader view, the relevance of the MAS approach is also reinforced by the fact that

financial markets today are a rapidly evolving technological landscape. By studying human

traits of behavior in a quantitative way, the MAS approach can help better understand the

potential impacts of automated trading systems wrt. risk management and systemic risk, and

how these systems behave under different market conditions influenced by rapid technological

advancements.

8 Supplementary material

8.1 Primer on reinforcement learning

Overview: We here briefly review the basics of reinforcement learning theory that pertain to

this study. Together with supervised and unsupervised learning, reinforcement learning has

been termed one of the three paradigm shifts of machine learning [68], and is today at the fore-

front of almost all breakthroughs in machine learning research. Like many other machine

learning methods, reinforcement learning has its roots in behavioural psychology and decision

theory [69]. In reinforcement learning, we consider an agent in a given state of its environment

that must learn the best way to consistently receive a preset reward from its environment

through a selection of its possible actions. The whole reinforcement learning problem and

solution is thus how the agent selects these actions in a dynamic environment so as to maxi-

mise this reward. In the beginning of the task, the agent is completely agnostic as to which

actions are best to use: it will have to learn this on its own.

Parameters: The reinforcement learning problem is thus defined with three main parame-

ters: the states of the environment s 2 S, the agents actions a 2 A, and the agent reward

r 2 R. The basic iteration procedure of reinforcement learning is shown on Fig 8. The states

and actions can be defined as more or less complex concepts, and notice the rewards can be

positive or negative. The goal of reinforcement learning for the agent is to find its policy π(s, a)

= Pr(a|s), which is the set of probabilities associated to each of the agent’s action selection

within each possible state of its environment, so as to maximise its rewards. In order to do this,

three major types of reinforcement learning algorithms are used: i- model-based methods rely

on the agent estimating two functions called the transition probability Pa
ss0 ¼ Prfstþ1 ¼ s0jst ¼

s; at ¼ ag and the expected value Ra
ss0 ¼ E½rtþ1jst ¼ s; at ¼ a; stþ1 ¼ s0�, where 0< γ< 1 is a

discount parameter related to the concept of delayed reward, and out of these derive the so-
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called state-value function: VðsÞ ¼ E½
P1

k¼0
gkrtþkþ1jst ¼ s�. ii- Model-free methods rely more

simply on the estimation of the so-called action-value function
Qðs; aÞ ¼ E½

P1

k¼0
gkrtþkþ1jst ¼ s; at ¼ a�. These functions V(s) and Q(s, a) in model-based and

model-free methods thus allow the agent to update its policy π(s, a), which in turn shall be

used at the next time step of the task to select a relevant action a, and iteratively proceed in a

same manner so as to hopefully converge to an optimal policy denoted π*(s, a). iii- Policy-

based methods directly update the policy π(s, a) = Pr(a|s) according to the returns received

from the environment, following the agent action selection. This update is performed accord-

ing to Eqs 1 and 2.

Features: Three major features appear here, and are at the centre of most if not all reinforce-

ment learning research: i- a curse of dimensionality arises from the number of state-action

pairs, since if these are two numerous, the problem of convergence to a policy may be intracta-

ble. ii- A temporal credit assignment is another issue pertaining to how rewards are practically

defined for the task at hand, and how the temporal discounting of these rewards is set. iii- An

exploration vs. exploitation dilemma is another important feature of reinforcement learning,

which pertains to whether it is profitable for the agent to exploit the rewards linked to a good

policy it found in its environment, or whether it is better to continue exploring and (perhaps)

attain to a better policy and hence rewards.

8.2 Model architecture

We here outline the structure of our stock market Multi-Agent System (MAS) simulator and

the design principles behind its autonomous agents, in more details.

8.2.1 Architecture overview. As already said in Section 3, the key parameters defining

our simulation include: the total number of agents, denoted as I; the quantity of stocks traded,

indicated as J; and the duration of the simulation in time steps, represented as T. Here, a single

time step equates to one trading day. Accordingly, a year is equivalent to Ty = 286 trading

Fig 8. Schematic of the reinforcement learning procedure. Classical algorithmic procedure of a reinforcement

learning agent at time step t in the context of SYMBA described below. In a given state st of its environment (i.e. the

market), a given agent i selects one of its actions at (from its forecasting or trading algorithm) with respect to the

market order book of a given stock stock j, thus yielding an associated given reward rt+1 and new state of the

environment st+1.

https://doi.org/10.1371/journal.pone.0301141.g008
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days, a month to Tm = 21 trading days, and a week to Tw = 5 trading days. Our analysis typi-

cally involves examining statistical properties derived from a series of S simulations. Further-

more, we incorporate transaction costs through brokerage fees b for each trade, an annual

risk-free interest rate R for the agents’ risk-free assets, and an annual dividend yield D for the

agents’ stock investments. These financial parameters, observed during the period from 2007

to 2018 for model calibration, are assumed to be constant for simplification, with the broker-

age fees at b = 0.1%, the risk-free rate at R = 1%, and the dividend yield at D = 2%. These values

are based on average figures from the London Stock Exchange, UK bond yields, and the FTSE

250 stock dividends, respectively. Each simulation cycle at time t comprises four primary

steps, as outlined below:

i- Initialization of Agent Parameters: At the commencement of the simulation (t = 0), I agents

are initialized with their individual parameters. Each agent, representing either an individ-

ual or institutional investor, manages a portfolio of stocks (equity) and risk-free assets

(bonds) over time t. The specifics of these parameters are detailed in Section 8.2.2.

ii- Establishment of Market Fundamentals: Following the approach of other models, we set all

market prices to £100 at the start (Pj(t = 0)) and create J price time series T j
ðtÞ as jump

processes, reflecting fundamental stock values. These values are derived from the enter-

prise value of companies, divided by the total number of outstanding stocks. This infor-

mation is not fully accessible to the I agents. Instead, each agent i estimates the value T j
ðtÞ

for stock j using their own cointegration rule ki;j½T j
ðtÞ� ¼ Bi;j

ðtÞ. The series Bi;j
ðtÞ thus

represent the perceived fundamental values of stock j over time t by agent i. We include in

Fig 9 examples of such calculated enterprise values for various companies listed on the

London Stock Exchange between 2006 and 2016. Additionally, Fig 10 illustrates the con-

cept of cointegration by comparing the modelled fundamental values T j
ðtÞ with their

approximations Bi;j
ðtÞ by certain agents. From a set of S = 20 simulations, we calculate the

average annual number of jumps in T j
ðtÞ to be 12.70 ± 1.85, the average jump amplitude

ðT j
ðtÞ � T j

ðt � 1ÞÞ=T j
ðtÞ to be 5.90 ± 1.84%, and the average disparity between the

biased and actual values ðT j
ðtÞ � Bi;j

ðtÞÞ=T j
ðtÞ to be 2.37±1.36%. Agents employ these

two sources of information—chartist and fundamental—for their stock pricing strategies.

Fig 9. Enterprise values per number of stocks outstanding vs. their associated prices for several LSE stocks.

Illustration of key metrics for select entities on the London Stock Exchange (abbreviated as follows: Bodycote plc

—“body”, Vodafone Group plc—“vod”, Boeing co.—“ba.”, QinetiQ Group plc—“qq”) from the period 2006 to 2016.

This figure shows the enterprise value per outstanding share (depicted as solid lines) and J = 4 non-scaled temporal

series T j
ðtÞ (shown as dotted lines) produced by our simulation at the initial time point t = 0.

https://doi.org/10.1371/journal.pone.0301141.g009

PLOS ONE Mesoscale effects of trader learning behaviors in financial markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0301141 April 1, 2024 19 / 40

https://doi.org/10.1371/journal.pone.0301141.g009
https://doi.org/10.1371/journal.pone.0301141


iii- Independent Forecasting and Trading by Agents: In this model, each agent independently

employs two reinforcement learning algorithms for market interaction. The specifics of

these algorithms are elaborated in Section 8.2.3. The first algorithm, denoted as F i
, is tasked

with devising the ideal econometric forecasting function. This function takes into account

the unique aspects of the market’s microstructure and the agent’s own fundamental valua-

tion, represented as Bi;j
ðtÞ. The forecast generated by F i

is then fed into the second rein-

forcement learning algorithm, T i
. Algorithm T i

is responsible for generating the optimal

limit order for a double auction order book (as discussed in [86]) at that time step, integrat-

ing the forecast and various indicators related to market microstructure and the agent’s

portfolio. An essential feature of this process is the filter function Gi
, which determines the

most advantageous time step for the agent to place a transaction order.

iv- Populating and Processing the Order Book: At each time step t, a set of J order books are

populated with limit orders from agents for a particular stock j. These orders are organized

such that buy orders are ranked in descending order of bid prices, and sell orders in ascend-

ing order of ask prices, each accompanied by the quantity of stocks offered for trade. The

clearing of the order book occurs at this same time step t. It involves pairing buy and sell

orders starting from the highest bid and lowest ask prices, progressing to the point where

bid prices no longer exceed ask prices. The market price Pj(t + 1) for stock j in the subse-

quent time step t is determined by the mid-price at this final matching point. Likewise, the

trading volume Vj(t + 1) is defined as the total quantity of stock j exchanged at time t. Addi-

tionally, the spread Wj(t + 1) for stock j at time step t is calculated as the absolute difference

between the mean of all bids and asks. It’s noteworthy that this spread, Wj(t), is utilized in

the agents’ stock pricing mechanism, rather than the conventional bid-ask spread, which is

typically defined by the gap between the highest bid and the lowest ask.

The pseudo-code of SYMBA’s iteration procedure is found in Fig 11.

Fig 10. Fundamental values vs. agents’ biased values. Depiction of fundamental value trajectories modelled by T j
ðtÞ (represented as a dashed black line)

and their perceived estimates Bi;j
ðtÞ by four different agents (shown as solid lines in blue, red, green, and gray), across a simulated duration of 200 time

steps.

https://doi.org/10.1371/journal.pone.0301141.g010

PLOS ONE Mesoscale effects of trader learning behaviors in financial markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0301141 April 1, 2024 20 / 40

https://doi.org/10.1371/journal.pone.0301141.g010
https://doi.org/10.1371/journal.pone.0301141


8.2.2 Initialization parameters for agents. Our model integrates a variety of parameters

at both individual agent and overall framework levels. As already stated in Section 3, the con-

tinuous and discrete uniform distributions are denoted by UðÞ;Ufg, while continuous and dis-

crete normal distributions are represented by N ðÞ;N fg. At step 1, each agent i is assigned the

following initial parameters:

• A trading window wi, determined by a uniform distribution UfTw; t
ig. This parameter influ-

ences the Gi
function, which calculates the optimal timing for purchasing stocks.

And as already mentioned in Section 3:

• An initial value of risk-free assets Ai
bondsðt ¼ 0Þ, following a normal distribution N ð0; 104Þ.

This represents the agent’s bonds or bank account balance, which increases when the agent

shorts its stocks or longs equity.

• A quantity of stocks Qi,j(t = 0) for each stock j, derived from a discrete positive half-

normal distribution N þ
f0; 100g. The total value of these stocks is given by

Ai
equityðt ¼ 0Þ ¼

PJ
j¼0

Qi;jðt ¼ 0ÞPjðt ¼ 0Þ, which the agent may decide to short sell in the

market.

• An investment duration τi, chosen from a uniform distribution UfTw; 6Tmg. This parameter

dictates the time frame after which the agent will liquidate its position, ranging from one

week to six months in trading days.

• A memory span hi, obtained from a uniform distribution UfTw;Tg. This interval represents

the duration of historical data the agent considers for its learning process.

• A transaction gesture threshold gi, derived from a uniform distribution Uð0:2; 0:8Þ. This

parameter determines the agent’s willingness to transact at prices above or below its own

stock valuation. The range of this parameter is influenced by the model’s gesture scalar zi, as

discussed in Table 2 below.

• A reflexivity amplitude parameter ρi, assigned from a uniform distribution Uð0; 100%Þ. This

parameter influences the agent’s approach to price valuation, balancing between technical

Fig 11. Pseudo-code of SYMBA’s iteration procedure.

https://doi.org/10.1371/journal.pone.0301141.g011
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market forecasts and fundamental pricing. It affects the first reinforcement learning algo-

rithm’s action amplitude F .

• A reinforcement learning rate parameter βi, set from a uniform distribution Uð0:05; 0:20Þ.

This rate, applicable to both reinforcement algorithms F i and T i
, is based on findings from

neuroscience literature [17, 18, 74].

• A drawdown threshold li, defined as the year-to-date peak-to-bottom loss in net asset value.

This parameter is drawn from a uniform distribution Uð40%; 50%Þ. If the agent’s portfolio

value drops below this threshold in any given time step t, the agent is considered bankrupt

and is excluded from further market interactions. This threshold is higher than typical

industry standards due to our model’s requirement for maintaining a constant number of

agents, even in bankruptcy scenarios.

In the forthcoming Section 8.2.5, we explore various parameters within our model. Some of

these parameters are fine-tuned as hyperparameters of the model, such as the drawdown limit

li, adjusted via a threshold L 2 Nþ, and the transaction gesture gi, modified through zi. Others

derive from existing literature, like the reinforcement learning rate βi. Parameters like the

reflexivity amplitude parameter ρi are incorporated as learned variables in the agent’s rein-

forcement learning process. Additionally, certain parameters are preset, including the values

of agents’ bond portfolios Ai
bonds, equity portfolios Ai

equity, the investment horizon τi, and time

intervals wi and hi. These elements contribute to the foundational structure of our model’s

architecture.

8.2.3 Agent reinforcement learning: Initial algorithm. Here, we delve into step 3 above,

highlighting the two core reinforcement learning algorithms: F i
, responsible for accurate

price prediction, and T i
, focused on effective trading based on those predictions. As already

said in Section 3, each agent i runs these algorithms independently, applied to each stock j at

every time step t. The agents employ a direct policy search approach, where the probability of

each action is determined directly from the policy, bypassing any action-value function as in

the Generalized Policy Iteration theorem [87]. The action-state pairs for these algorithms are

729 and 972 respectively. We establish the states S, actions A, and returns R for both algo-

rithms as follows.

The first algorithm, F i
, allows the agent to track long-term stock price volatility (sF

0
), short-

term volatility (sF
1

), and the difference between its fundamental valuation and the current mar-

ket price (sF
2

). Based on this information, the agent optimizes its price forecasting over its

investment horizon τi by testing three actions through direct policy search: adopting a basic

econometric forecasting method focused on mean-reverting, averaging, or trend-following

(aF
0

), selecting the duration of the past interval for forecasting (aF
1

), and determining the influ-

ence of its own fundamental stock pricing in the combined future price estimate, which

includes both fundamentalist and chartist perspectives (aF
2

).

Table 2. Model hyperparameters and ranges for training: Lower bound (Low), upper bound (High), and increment

step (Step).

Hyperparameter Low High Step

Number of Agents (I) 500 5500 1000

Gesture Scalar (zi) 1.0 3.0 0.5

Fundamental Amplitude (ν) 0.1 1.5 0.2

Drawdown Threshold (L) 10 90 20

https://doi.org/10.1371/journal.pone.0301141.t002
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States SF
: The algorithm F i

operates within a state space SF
¼ fsF

0
; sF

1
; sF

2
g, comprising 27

dimensions. Each state component can take on values of 0, 1, or 2. Agents calculate the vari-

ances s2
L and s2

S of stock prices Pj(t) over specific time frames.

• s2
L, representing long-term volatility, is evaluated and stored in a time series, sorted ascend-

ingly and truncated to match the agent’s memory span hi. Its percentile ranking at time t
determines sF

0
, classifying it into three categories: the percentile of its present value at time

step t sets sF
0
¼ 0 if it is below 25%, sF

0
¼ 2 if it is above 75%, and sF

0
¼ 1 otherwise.

• Similarly, s2
S, indicating short-term volatility, is processed and categorized in the same way,

providing insight into the short-term market dynamics of stock j.

• The discrepancy between the market price and the agent’s fundamental valuation is mea-

sured by averaging the relative difference jPjðtÞ � Bi;j
ðtÞj=PjðtÞ over a set interval [t − 3τi, t],

and sets sF
2
¼ 0 if it is below 10%, sF

2
¼ 2 if it is above 30%, and sF

2
¼ 1 otherwise.

Actions AF
: In the context of the reinforcement learning framework F i

, we consider an

action aF that is part of a set AF
¼ faF

0
; aF

1
; aF

2
g, which spans 27 possible states. Here, each

action aF
0
; aF

1
; aF

2
can independently assume one of the values 0, 1, or 2. The selection of these

actions is governed by a direct policy search, as detailed further, and depends on whether the

agent is in a state of exploration or exploitation. Initially, each agent calculates two separate

mean values hPj
½t� 2T;t� T�ðtÞi and hPj

½t� T;t�ðtÞi of historical stock prices, where T is defined as

T ¼ ð1þ aF
1
Þti=2. Subsequently, the econometric mechanism calculates:

P̂i;jðtÞ ¼ P jðtÞ þ hP j
½t� 2T;t� T�ðtÞi � hP

j
½t� T;t�ðtÞi ð3Þ

P̂i;jðtÞ ¼
1

2
hPj
½t� 2T;t� T�ðtÞi þ

1

2
hP j
½t� T;t�ðtÞi ð4Þ

P̂i;jðtÞ ¼ PjðtÞ � hP j
½t� 2T;t� T�ðtÞi þ hP

j
½t� T;t�ðtÞi ð5Þ

applicable for aF
0
¼ 0; 1; 2 respectively. These correspond to strategies of mean-reversion, use

of moving averages, and trend tracking. Therefore, actions aF
0

and aF
1

are related to technical

analysis, with aF
0

dictating the choice of econometric forecasting approach and aF
1

defining the

interval length for these forecasts. The third action, aF
2

, influences the blend of the selected

technical forecast P̂i;jðtÞ with the agent’s fundamental valuation Bi;j
ðtÞ, generating the agent’s

projection:

Hi;jðtÞ ¼ aP̂i;jðtÞ þ ð1 � aÞBi;j
ðtÞ ð6Þ

where a 2 R is chosen based on the agent’s reflexivity ρi. If ρi� 50%, then α is set to 0, ρi, 2ρi

for aF
2
¼ 0; 1; 2 respectively. Conversely, if ρi> 50%, α takes the values 2ρi − 1, ρi, 1 for

aF
2
¼ 0; 1; 2. Thus, with aF

2
¼ 2, the agent adjusts the weight assigned to its chartist versus fun-

damentalist valuation methods.

Returns RF
: The reinforcement learning scheme F i

then determines the percentage dis-

crepancy between the agent’s prior stock price forecast Hi,j(t − τi) made τi time steps earlier,

and the current actual price Pj(t):

jHi;jðt � tiÞ � PjðtÞj
PjðtÞ

ð7Þ
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This value is recorded at each time step, organized in ascending order, and maintained at a

length matching the memory interval hi of the agent. The percentile rank of this value at time

step t is used to assign a discrete return value rF from the set RF ¼ f4; 2; 1; � 1; � 2; � 4g, cor-

responding to the intervals [0%, 5%(, [5%, 25%(, [25%, 50%(, [50%, 75%(, [75%, 95%(, [95%,

100%] respectively.

Policy pF : The reinforcement learning mechanism periodically refines its policy

pF
t ðs

F
t� ti ; a

F
t� tiÞ at each interval t. This refinement is influenced by the agent’s learning rate,

denoted by β. The following equations are employed, iteratively run jrF j times, to enhance the

likelihood of selecting an optimal action aF? in the given state sF . The process aims to incre-

ment the policy’s probability for this optimal action relative to other possible actions,

8aF 6¼ aF?:

pF
tþ1
ðsF ; aF?Þ ¼ pF

t ðs
F ; aF?Þ þ b½1 � pF

t ðs
F ; aF?Þ� ð8Þ

pF
tþ1
ðsF ; aFÞ ¼ pF

t ðs
F ; aF Þ � bpF

t ðs
F ; aFÞ ð9Þ

Moreover, the algorithm incorporates an off-policy approach at intervals of τi/Tm + 2. This

method calculates the action that should have ideally been taken by F i τi steps prior, now

informed by current price and forecast accuracy. Subsequently, it updates the policy pF using

the agent’s learning rate β, applied jrF j ¼ 4 times, to recognize and adjust for the action now

identified as optimal.

8.2.4 Implementation of the secondary agent-based reinforcement learning algo-

rithm. This secondary approach enables the agent to dynamically assess the progression of

stock prices, as initially determined by the primary algorithm (sT
0

). It also evaluates market vol-

atility (sT
1

), the status of risk-averse assets (sT
2

), the current amount of stocks held (sT
3

), and vol-

ume of trades executed (sT
4

). Using this gathered information, the agent refines its investment

strategies. It does so by employing a direct policy search method, where it decides whether to

hold, buy, or sell stocks in particular quantities (aT
0

), and determines the transaction price in

response to market supply and demand dynamics (aT
1

).

States ST
: The agent’s decision-making process in the algorithm T i

relies on a state sT

within the set ST
¼ fsT

0
; sT

1
; sT

2
; sT

3
; sT

4
g. This set encompasses a 108-dimensional space, where

sT
0

, sT
1

, and sT
4

can take on values from the set {0, 1, 2}, and sT
2

, sT
3

from {0, 1}.

• The agent calculates the ratio μ = (Hi,j(t) − Pj(t))/Pj(t) and logs it in either μ− or μ+ time

series, based on its being negative or positive, respectively. These series are sorted in ascend-

ing order and capped to match the agent’s memory span hi. The agent’s current percentile

value �m � in μ− at time t assigns sT
0
¼ 0 if it’s under 95%, and sT

0
¼ 1 if not. Likewise, �mþ in μ+

determines sT
0

to be 1 if under 5%, and sT
0
¼ 2 otherwise. The state sT

0
thus reflects the econo-

metric prediction μ from the prior algorithm F i, indicating a decrease, stability, or increase

in stock j prices in future τi time steps.

• The agent documents the previously computed variance s2
L of stock prices Pj(t) in a time

series for the interval [t − 3τi, t]. This series is sorted and truncated to align with the agent’s

memory span hi. The agent’s current percentile value at time t sets sT
1
¼ 0 if below 33%, sT

1
¼

2 if above 67%, and sT
1
¼ 1 in other cases, thus guiding the agent in understanding longer-

term stock price volatility.
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• The agent assigns sT
2
¼ 0 if its risk-free asset value Ai

bondsðtÞ falls below 60% of its initial value

Ai
bondsðt ¼ 0Þ, and sT

2
¼ 1 otherwise. This assists the agent in monitoring its risk-free asset

size for adopting suitable investment strategies.

• The agent sets sT
3
¼ 0 if the current value of its stock holdings Ai

equityðtÞ is less than 60% of

the starting value Ai
equityðt ¼ 0Þ, and sT

3
¼ 1 otherwise. This process aids the agent in tracking

the value of its stock holdings for strategic decision-making.

• The agent logs the trading volumes Vj(t) at each time step in a series, sorted in ascending

order and truncated as per the agent’s memory period hi. The current percentile value at

time t determines sT
4
¼ 0 if Vj(t) = 0, sT

4
¼ 1 if below 33%, and sT

4
¼ 2 in other cases. This

informs the agent about market activity levels, aiding in setting appropriate bid or ask prices

for transactions.

ActionsAT
: In the context of the reinforcement learning model T i

, we introduce a set of

actions, denoted by AT
¼ faT

0
; aT

1
g, where each action aT is a part of this set. This action set is

characterized by a dimensionality of 9. Actions aT
0

and aT
1

are capable of adopting discrete val-

ues from the set {0, 1, 2}, determined via a process of direct policy search (referenced in the

subsequent section). Action aT
0

is twofold in its representation: it signifies both the amount of

stocks and the type of transaction order (sell, hold, or buy) that the agent decides to place in

the order book. In this framework, each agent adheres to a long-only trading strategy, involv-

ing the purchase of stocks at a specific price, holding them for a predetermined duration, and

ultimately selling them, ideally at a higher price. The role of action aT
1

is to indicate the agent’s

willingness to be flexible about the trading price. These actions are contingent upon the agent’s

assessment of stock j’s price, as evaluated through the initial algorithm F i
. The agent’s bid

price Pi;j
bidðtÞ is formulated as follows:

Pi;j
bidðtÞ ¼ min½Hi;jðtÞ; PjðtÞ� þ giWjðt � 1Þ ð10Þ

Pi;j
bidðtÞ ¼ min½Hi;jðtÞ; PjðtÞ� ð11Þ

Pi;j
bidðtÞ ¼ min½Hi;jðtÞ; PjðtÞ� � giWjðt � 1Þ ð12Þ

corresponding to aT
1

values of 0, 1, 2, respectively. It’s important to note that gi represents the

agent’s trading gesture and Wj(t − 1) denotes the market spread of stock j at the previous time

step. Thus, the term ±giWj(t − 1) reflects the agent’s more lenient or stringent approach to the

trading conditions, influenced by market factors such as Wj(t − 1) and the trading volumes

represented by sT
4

. The agent’s ask price Pi;j
askðtÞ is established as:

Pi;j
askðtÞ ¼ max½Hi;jðtÞ; PjðtÞ� � giWjðt � 1Þ ð13Þ

Pi;j
askðtÞ ¼ max½Hi;jðtÞ; PjðtÞ� ð14Þ

Pi;j
askðtÞ ¼ max½Hi;jðtÞ; PjðtÞ� þ giWjðt � 1Þ ð15Þ

Consider the case when aT
1

takes on the values of {0, 1, 2}. In this context, Qi,j(t) represents the

number of shares of stock j held by investor i at time t. Here, the action aT
0
¼ 0 is equivalent to

investor i placing a sell order for their entire holding of stock j at the asking price Pi;j
askðtÞ. Con-

versely, aT
0
¼ 1 implies that investor i does not make any transaction, maintaining their
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current position. Lastly, aT
0
¼ 2 denotes a buy order, where the investor purchases an amount

of stock j determined by the formula Ai
bondsðtÞ=½P

i;j
askðtÞJ�, at the bid price Pi;j

bidðtÞ. It is important

to note that in this formula, J is included in the denominator to facilitate effective management

of a diversified portfolio.

Filter function Gi
: The decision of investor i to send an order for stock j at time step t to the

order book is governed by the output of the function Gi
. This function is designed to delay the

sending of a transaction order until the most advantageous time step. To achieve this, Gi
main-

tains a time series, recording at each time step the maximum value of the action-value function

arg maxaQtðs; aÞ, which is then organized in ascending order. The decision to execute a trade

is based on comparing the current percentile pQðtÞ of this series with the ratio of time elapsed

since the last transaction ki,j(t) to the investor’s individual trading window wi. An order is sent

to the order book only if the condition pQðtÞ < ki;jðtÞ=wi is satisfied. Note that while Gi
filters

the initiation of trades, it does not apply to exit strategies, which are executed at the investor’s

predetermined investment horizon τi.
Returns RT : The algorithm T i

calculates the difference in cash flow between the current net

asset value of investor i’s portfolio and its value had the previous actions taken τi time steps

earlier not occurred. This is given by:

Qi;j
OBðt � tiÞ½PjðtÞ � Pi;j

OBðt � tiÞ� ð16Þ

In this equation, Qi;j
OBðt � tiÞ and Pi;j

OBðt � tiÞ represent the quantity and price of stock j cleared

in the order book at time t − τi for investor i and their trading counterpart. These values might

differ from those initially sent by investor i, due to partial order fulfillment and the setting of

the transaction price by the order book at the mid-price with the counterparty’s order price.

These values are logged in a time series at each time step, sorted in ascending order, and trun-

cated to maintain a length corresponding to the memory interval hi of the investor. The per-

centile of this value at time t determines the discrete return value rT in the set

RT ¼ 4; 2; 1; � 1; � 2; � 4, corresponding to the intervals [0%, 5%, [5%, 25%(, [25%, 50%(,

[50%, 75%(, [75%, 95%(, [95%, 100%].

Policy pT : In the final step, the reinforcement learning algorithm adjusts its policy

pT
t ðs

T
t� ti ; a

T
t� tiÞ after every τi time steps following each transaction carried out by the agent. This

adjustment is made based on the agent’s learning rate β, and the following equations are iter-

ated jrT j times. The aim is to prioritize an action, denoted as aT ?, in state sT by increasing the

policy probability associated with this action over other actions, denoted as 8aT 6¼ aT ?:

pT
tþ1
ðsT ; aT ?Þ ¼ pT

t ðs
T ; aT ?Þ þ b½1 � pT

t ðs
T ; aT ?Þ� ð17Þ

pT
tþ1
ðsT ; aT Þ ¼ pT

t ðs
T ; aT Þ � bpT

t ðs
T ; aT Þ ð18Þ

Additionally, the algorithm employs an off-policy method every τi/Tm + 2 time steps. This

method calculates the optimal action that T i
should have taken τi time steps ago, considering

the realized price and forecast accuracy, and updates the policy pT using the agent’s learning

rate β. This update process is repeated jrT j ¼ 4 times since the associated action is considered

optimal.

Furthermore, it is important to note that both algorithms F and T utilize discretized and

handcrafted action-state spaces. This choice is motivated by the need to conserve computa-

tional resources and address a key limitation in applying Multi-Agent Systems (MAS) to finan-

cial research, which is the requirement for substantial computational power. Furthermore, the

general intuition behind our definition of such state and action spaces has been the
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Fundamental Theorem of Asset Pricing [88], where present asset prices are estimated from

time-discounted future prices expectations. In a similar vein, our reinforcement learning

framework for the agent is structured around a forecasting component F i
and a trading com-

ponent T i
, a design approach reminiscent of recent models such as [49] (see Section 8.2.3 for

more details).

8.2.5 Alignment with real data. Model assumptions. The SYMBA model is based on two

fundamental assumptions: i) that the behavior of the simulated agents accurately mirrors that

of real-world investors, and ii) that the transaction limit orders simulated in the order book

faithfully represent the dynamics and characteristics of actual stock market orders. Regarding

the former, our approach simplifies the interaction of any agent, regardless of its behavior or

strategy, into three distinct possibilities: buying, selling, or holding stocks (a long-only strat-

egy). Concerning the latter, it is worth noting that the dynamics of order books have been

extensively documented in the literature [89], allowing for a rigorous design.

Model limitations. In addition to these core hypotheses, we also acknowledge several limita-

tions and consistency issues inherent to all financial Multi-Agent Systems (MAS): i) reliance

on the generation of virtual fundamentals T j
ðtÞ, ii) absence of portfolio diversification across

different asset classes, iii) lack of various trading strategies (e.g., short-selling, leveraging, deriv-

atives, metaorders, market orders, etc.), iv) omission of intraday and seasonal market effects,

and v) absence of legal and regulatory constraints. While some of these limitations may appear

challenging, their impact and significance are inherent in nearly all other econometric and

modeling approaches within quantitative finance. Additionally, modeling market activity

through a market microstructure derived from a centralized order book that processes transac-

tion orders from multiple trading agents aligns closely with real stock markets, making it

empirically relevant.

Training and testing data. We fine-tuned the MAS stock market simulator using real stock

market data. The computations were performed on a Mac Pro equipped with a 3.5 GHz 6-Core

Intel Xeon E5 processor and 16 GB of 1866 MHz DDR memory. To accomplish this, we uti-

lized high-quality, industry-grade daily closing prices and trading volumes for a total of 4,313

stocks listed on the London Stock Exchange (LSE), covering the period from January 15th,

2007, to January 19th, 2018. As said in Section 3, these quotes include the date, opening price,

highest price, lowest price, closing price, and trading volume for each day. Importantly, these

figures are directly sourced from the London Stock Exchange (LSE) and are not a compilation

of data from smaller exchanges (i.e. consolidated data). For our market microstructure analysis,

we applied the following data filtering steps: i) removal of stock-split effects, and ii) inclusion of

only those stocks that were continuously traded throughout this time frame. As a result of this

data curation, our initial stock universe was reduced to 640 stocks. We calibrated the MAS

hyperparameters using a random sample of half of these stocks as a training set. Remarkably,

we observed a high degree of statistical stability in the training set compared to the other half.

We attribute this stability to the unique characteristics of stock market data, particularly the

absence of market arbitrage, which is closely related to the stylized facts previously mentioned.

Optimization of hyperparameters. The hyperparameters subject to calibration include the

number of agents (I), the agent transaction gesture factor (z
i
2 N, which scales the gesture

parameter gi initialized for each agent at t = 0), the parameter governing the generation of fun-

damental values (ν, representing the amplitude of the fundamental time series T j
), and the

drawdown threshold (the upper limit of the drawdown, initialized at t = 0 for each agent). We

evaluated various combinations of hyperparameters against the training dataset, and the

details are presented in Table 2. The optimization process involved a total of 1200 simulations,

each comprising 20 runs for statistical reliability.
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Sensitivity analysis. During the optimization process, we conducted a sensitivity analysis to

assess how the model responds to different hyperparameter ranges. This analysis aimed to

identify regions of non-linearity in terms of calibration against real data. Specifically, we

observed that increasing the number of agents (I) had a linear effect on reducing short-term

price volatilities. Larger values of gesture scalar (zi) and fundamental amplitude (ν) led to a lin-

ear increase in absolute daily price returns. Notably, the model exhibited minimal sensitivity

to large drawdown thresholds (L > 30%), as these values had a limited impact on agent sur-

vivability rates.

Dataset variability. One potential concern regarding the significance of calibrating SYMBA

for replicating real financial market behaviors is the dependence of the calibration process on

the specific market (e.g., different stock exchanges) and the chosen trading periods (e.g., mar-

ket conditions and financial crises). To gain insight into the performance of SYMBA, we focus

on the London Stock Exchange (LSE) as a case study.

Fig 12 presents the distributions of logarithmic price returns for SYMBA (depicted by the

red curve) in comparison to those of the LSE across various time intervals. These intervals

span from 2007 to 2018 (shown as a dashed black curve), 2007 to 2009 (depicted by the darker

blue curve), 2009 to 2011 (illustrated by the green curve), 2011 to 2013 (represented by the yel-

low curve), 2013 to 2015 (displayed as the lighter blue curve), and 2015 to 2017 (shown as the

grey curve). It is important to note that: i- the bin count for each curve has been normalized to

facilitate a more effective comparison; ii- only the stocks that were continuously traded during

these respective time spans were included for the statistics (cf. survivorship bias mentioned at

the beginning of Section 3).

Remarkably, the observed variations among these curves are relatively modest, with minor

fluctuations evident during specific periods. Notably, a slight shift towards negative skewness

Fig 12. Distributions of the price log-returns for simulation data vs. LSE data for different time intervals. Comparative Distribution of

Logarithmic Price Returns: The dashed black curve represents real data from the LSE between years 2007 and 2018, while the continuous red curve

represents simulated data. These simulations were generated using parameters I = 500, J = 1, T = 2875, and S = 20. This is compared with two-years

batches of real data from the LSE, between years 2007 and 2009 (darker blue curve), 2009 and 2011 (green curve), 2011 and 2013 (yellow curve),

2013 and 2015 (lighter blue curve), and 2015 and 2017 (grey curve). Notice the bin count of each curve is normalized for better comparison.

https://doi.org/10.1371/journal.pone.0301141.g012
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is observable in the curves corresponding with the 2007–2008 Global Financial Crisis and the

2012 European Debt Crisis.

This analysis demonstrates that, despite variations in market conditions and crises, SYM-

BA’s performance in emulating the LSE’s price return distributions remains consistent. These

findings lend support to the robustness and applicability of SYMBA in modeling real financial

market dynamics.

Model comparison. Existing literature, such as [85], extensively discusses the substitution of

markets for individual rationality, exploring whether markets eliminate irrational individuals

or whether individuals adapt and learn market rules. Fig 13 presents agent learning curves that

can be utilized for model comparison, particularly when compared to recent order book mod-

els combined with reinforcement learning [49] and the earlier generation of MAS featuring

zero-intelligence agents [85] as baseline references.

8.2.6 Calibration statistics. Here we present a list of crucial market microstructure indi-

cators related to the calibration of the MAS simulator on Table 3. Figs 14 to 20 showcase the

qualitative agreement in shape between the curves generated by our simulator and those

derived from actual stock market data. When compared to stock market emulation [90, 91],

our model underlines the effectiveness of reinforcement learning as a framework for describ-

ing agent learning and trading processes in stock markets. Unless explicitly mentioned, the fol-

lowing results are obtained from simulations conducted with I = 500 agents, J = 1 traded stock,

T = 2875 time steps per simulation (equivalent to approximately a decade of trading days), and

a total of S = 20 simulation runs.

• Fig 14 and Table 4 give the distribution of logarithmic returns of prices log[P(t)/P(t − 1)] for

real (dashed black curve) and simulated (continuous red curve) data. It is evident that there

is a close match between the simulated and real logarithmic price returns. However, one

should note the limited variability of extreme events in the tails of the distribution, as

revealed by the logarithmic y-axis.

Fig 13. Comparison of SYMBA agents vs. random trading agents’ performance. At the conclusion of 90% of the

total simulation time, we aim to contrast the top 10% performers among our multi-agent system (MAS) stock market

simulator (represented by blue curves) with the top 10% performers in a market simulated with randomly trading

noise agents (illustrated by red curves). To achieve this, we evaluate their performance during the remaining 10% of

our overall simulation duration, utilizing averaged equity curves as their year-to-date returns across 20 simulations

(left), and the averaged, sorted annual returns from each of these 20 simulations (right). These simulations are

generated using the following parameters: I = 500, J = 1, and T = 2875.

https://doi.org/10.1371/journal.pone.0301141.g013

Table 3. Sum up of stylised facts in literature.

Stylised fact Empirical studies

Non-gaussian price returns [64, 92–95]

Volatility/volume clustering [94, 96–100]

Price returns autocorrelation decay [93, 94, 101–103]

https://doi.org/10.1371/journal.pone.0301141.t003
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• In Fig 15 and Tables 5–7, we examine the distributions of price volatilities over different

time intervals: two weeks (black), three months (red), and one year (blue), for both real

(dashed curves) and simulated (continuous curves) data. These volatilities are computed as

standard deviations of prices normalized by the price itself, σ/P(t). We observe that

Fig 14. Comparative distribution of logarithmic price returns. The dashed black curve represents real data, while the continuous red curve

represents simulated data. These simulations were generated using parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g014

Fig 15. Volatility distribution for different time intervals. This figure illustrates the distribution of volatilities, computed at two weeks (black),

three months (red), and one year (blue) intervals for both real (dashed curves) and simulated (continuous curves) data. The simulations were

generated using parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g015
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emulating real volatilities at longer time scales is more challenging, likely due to our real data

sample covering a unique and exceptional market period during the years 2008–2009,

namely the Global Financial Crisis.

• Fig 16a and Tables 8–10 illustrate the distributions of correlations in the price logarithmic

returns between distinct intervals [t − Δ, t] and [t − 2Δ, t − Δ] at each time step t, considering

values of Δ corresponding to two weeks (black), three months (red), and one year (blue).

This analysis is conducted for both real (dashed curves) and simulated (continuous curves)

data. Despite the overall good fit, especially concerning the general shape of the distribu-

tions, the presence of numerous zero autocorrelations in real data raises questions. We

Fig 16. Autocorrelation distributions of the log-price returns and volumes for different time intervals. Figures (a)

and (b) depict the autocorrelation distributions for (a) logarithmic price returns and (b) trading volumes, respectively,

at each time step t across intervals [t − Δ, t] and [t − 2Δ, t − Δ]. Lags Δ of two weeks (black), three months (red), and

one year (blue) are examined for both real (dashed curves) and simulated (continuous curves) data. Simulations had

parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g016

Fig 17. Autocorrelation distribution of two weeks-interval volatilities. This figure illustrates the distribution of autocorrelations of two weeks-

interval volatilities at each time step t between intervals [t − Δ, t] and [t − 2Δ, t − Δ] for Δ = 2Tw, for both real (dashed black curve) and simulated

(continuous red curve) data. The simulations were generated using parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g017
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suggest that this could be attributed to specific intraday market activity or the absence of

trading volumes over extended periods for stocks of smaller capitalization companies.

• Similarly, Fig 17 and Table 11 show the simulated data (continuous curves) emulating real

data (dashed curves) in terms of the asymmetric shape of the distribution of price volatility

correlations between separated intervals [t − Δ, t] and [t − 2Δ, t − Δ] for Δ = 2Tw at each time

step t. Additionally, Fig 16b showcases the resemblances in the shapes of the distributions of

trading volume correlations between these same separated intervals, considering values of Δ
corresponding to two weeks (black), three months (red), and one year (blue), albeit with

some differences in zero values.

Fig 18. Autocorrelation distributions of log-price returns with various time-shift intervals. This figure shows the means of autocorrelations of

logarithmic returns of prices at each time step t between intervals [t − Tw, t] and [t − Tw − δ, t − δ], for shifts δ of one day (black), two days (red),

three days (blue), four days (green), and five days (yellow). These calculations are based on both real (dashed curves) and simulated (continuous

curves) data. The simulations were generated using parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g018

Fig 19. Mean autocorrelations of log-price returns for various time-shifts intervals. (a) Autocorrelation Means of

Logarithmic Price Returns for Shifts @ 2 {1, 2, 3, 4, 5}: These figures depict autocorrelation means of logarithmic

returns at time t over intervals [t − Tw, t] and [t − Tw − @, t − @]. (b) Shows similar means for intervals [t − 2Tw, t] and

[t − 2Tw − 2@, t − 2@]. Both plots feature real (blue) and simulated (red) data, using parameters I = 500, J = 1, T = 2875,

and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g019
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Table 5. Statistics of the 2Tw price volatilities of Fig 15.

Moment real simulated

mean 0.0372 0.0271

standard deviation 0.0334 0.0215

skewness -24.6570 10.0955

excess kurtosis 474.9102 86.7021

https://doi.org/10.1371/journal.pone.0301141.t005

Fig 20. Distribution of consecutive days of price trends. This figure depicts the distribution of the number of consecutive days of increasing

prices (positive values) and decreasing prices (negative values). The data is presented for both real (dashed black curve) and simulated (continuous

red curve) scenarios. The simulations were generated using parameters I = 500, J = 1, T = 2875, and S = 20.

https://doi.org/10.1371/journal.pone.0301141.g020

Table 4. Statistics of the logarithmic price returns of Fig 14.

Moment real simulated

mean -0.0048 -0.0117

standard deviation 0.0050 0.0347

skewness -0.7505 0.0932

excess kurtosis -1.3108 21.4473

https://doi.org/10.1371/journal.pone.0301141.t004

Table 6. Statistics of the 3Tm price volatilities of Fig 15.

Moment real simulated

mean 0.0654 0.0632

standard deviation 0.0621 0.0429

skewness 13.4716 3.8499

excess kurtosis 152.3164 17.5890

https://doi.org/10.1371/journal.pone.0301141.t006
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• Fig 18 presents the distributions of correlations in price logarithmic returns at each time step

t for simulated data (continuous curves) and real data (dashed curves) between blended

intervals [t − Tw, t] and [t − Tw − δ, t − δ] for shifts δ of one day (black), two days (red), three

days (blue), four days (green), and five days (yellow). Again, some differences in zero values

are noticeable.

Table 7. Statistics of the Ty price volatilities of Fig 15.

Moment real simulated

mean 0.1311 0.1349

standard deviation 0.1171 0.0792

skewness 7.9590 2.7938

excess kurtosis 58.1109 10.3387

https://doi.org/10.1371/journal.pone.0301141.t007

Table 8. Statistics of 2Tw autocorrelations of logarithmic price returns of Fig 16a.

Moment real simulated

mean -0.0190 -0.0085

standard deviation 0.3101 0.3158

skewness 0.0108 0.0011

excess kurtosis -0.2620 -0.3646

https://doi.org/10.1371/journal.pone.0301141.t008

Table 10. Statistics of Ty autocorrelations of logarithmic price returns of Fig 16a.

Moment real simulated

mean -0.0116 -0.0061

standard deviation 0.0610 0.0600

skewness -0.0194 -0.1751

excess kurtosis 0.5164 0.2897

https://doi.org/10.1371/journal.pone.0301141.t010

Table 9. Statistics of 3Tm autocorrelations of logarithmic price returns of Fig 16a.

Moment real simulated

mean -0.0160 -0.0170

standard deviation 0.1225 0.1314

skewness 0.0384 0.0127

excess kurtosis 0.4026 -0.0588

https://doi.org/10.1371/journal.pone.0301141.t009

Table 11. Statistics of 2Tw autocorrelations of price volatilities of Fig 17.

Moment real simulated

mean -0.2088 -0.1981

standard deviation 0.5743 0.5538

skewness 0.4280 0.3943

excess kurtosis -1.1023 -1.0964

https://doi.org/10.1371/journal.pone.0301141.t011

PLOS ONE Mesoscale effects of trader learning behaviors in financial markets

PLOS ONE | https://doi.org/10.1371/journal.pone.0301141 April 1, 2024 34 / 40

https://doi.org/10.1371/journal.pone.0301141.t007
https://doi.org/10.1371/journal.pone.0301141.t008
https://doi.org/10.1371/journal.pone.0301141.t010
https://doi.org/10.1371/journal.pone.0301141.t009
https://doi.org/10.1371/journal.pone.0301141.t011
https://doi.org/10.1371/journal.pone.0301141


• In Fig 19a, we examine the means of blended correlations of logarithmic returns of prices at

each time step t between intervals [t − Tw, t] and [t − Tw − δ, t − δ] for shifts δ = 1, 2, 3, 4, 5,

comparing the real (blue) and simulated (red) data. Similarly, Fig 19b demonstrates close fits

for larger intervals of 2Tw instead of Tw. These statistics are vital in understanding that the

MAS generates a price microstructure that eliminates arbitrage opportunities and exhibits

market memory through agent learning. In other words, agents learn to exploit short-term

causal structures in historical prices.

• Fig 20 and Table 12 display the distribution of the number of consecutive days with increas-

ing (positive values) and decreasing (negative values) prices at each time step t, for both sim-

ulated (continuous curve) and real (dashed curve) data. The count of consecutive days with

increasing or decreasing prices serves as an insightful indicator of market sentiment, signal-

ing whether the market is “bearish” or “bullish.” Apart from a few extreme bullish events,

our MAS simulation effectively replicates the general dynamics of stock market prices

observed in real data.

In summary, the calibration procedure demonstrates that SYMBA reproduces the distri-

bution of logarithmic price returns, as depicted in Fig 14, and the autocorrelations at various

time scales, illustrated in Figs 16a, 18, 19a and 19b. These autocorrelation measures are cru-

cial in the calibration process, as they relate to the absence of arbitrage opportunities and

market memory, which are fundamental characteristics of financial markets. In other

words, beyond the stylized facts, the simulated data should not exhibit price patterns that

are more easily discernible and exploitable for trading than those observed in real data, if

any. Furthermore, we can emphasize that the MAS simulator faithfully replicates real stock

market dynamics, including periods of recession and growth, as depicted in Fig 20. With

that said, several avenues can be thought of for enhancing the model’s performance and

properties:

• The extreme tail distribution of long-term price volatilities in Fig 15: These are the most

challenging microstructure effects to capture, as they are related to jump diffusion processes

inherent to volatile events in the life of a company, industry sector, or the overall market (it’s

worth noting that the LSE data includes the financial crisis of 2008–2009).

• The peak in zero autocorrelations for real price returns and volatility in Figs 16a and 17: We

attribute this phenomenon to the fact that the simulator does not account for intraday mar-

ket activity, or it may be attributed to thinly traded small-cap companies.

• Heavier tails in the distributions of autocorrelation of trading volumes in Fig 16b: This is

likely a result of seasonal and calendar effects specific to real stock markets.

Table 12. Statistics of the consecutive days of price trends of Fig 20.

Moment real simulated

mean -1.1909 -0.8787

standard deviation 10.2580 11.9272

skewness -0.000099 -0.0889

excess kurtosis 3.8487 5.5386

https://doi.org/10.1371/journal.pone.0301141.t012
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