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Abstract

Wireless communications have lately experienced substantial exploitation because they

provide a lot of flexibility for data delivery. It provides connection and mobility by using air as

a medium. Wireless sensor networks (WSN) are now the most popular wireless technolo-

gies. They need a communication infrastructure that is both energy and computationally effi-

cient, which is made feasible by developing the best communication protocol algorithms.

The internet of things (IoT) paradigm is anticipated to be heavily reliant on a networking

architecture that is currently in development and dubbed software-defined WSN. Energy-

efficient routing design is a key objective for WSNs. Cluster routing is one of the most com-

monly used routing techniques for extending network life. This research proposes a novel

approach for increasing the energy effectiveness and longevity of software-defined WSNs.

The major goal is to reduce the energy consumption of the cluster routing protocol using the

firefly algorithm and high-efficiency entropy. According to the findings of the simulation, the

suggested method outperforms existing algorithms in terms of system performance under

various operating conditions. The number of alive nodes determined by the proposed algo-

rithm is about 42.06% higher than Distributed Energy-Efficient Clustering with firefly algo-

rithm (DEEC-FA) and 13.95% higher than Improved Firefly Clustering IFCEER and 12.05%

higher than another referenced algorithm.

1 Introduction

Fifth Generation (5G) technology represents a significant advancement over all prior mobile

generation networks and is a cornerstone of the digital transformation. Three new services,

including Extreme Mobile Broadband (eMBB), are available to end users using 5G. In addition

to many other features, it provides increased bandwidth, ultraHD streaming movies, virtual
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reality and augmented reality (AR/VR) media, high-speed internet access, and minimal

latency. Massive machine type communication, or eMTC, offers broadband and long-range

machine-type communication at a very low cost and with minimal power usage. For Internet

of Things applications, eMTC offers mobile carriers a high data rate service, low battery con-

sumption, and wider coverage with fewer complicated devices. With its exceptionally fast

speed, high throughput, low latency, improved reliability and scalability, and energy-efficient

mobile communication technology, 5G offers a limitless internet connection at your leisure,

anytime, anywhere [1,2].

Software-defined network (SDN) is a strategy to enable programmatically efficient network

design and to facilitate network administration, hence improving network performance and

monitoring [3]. It opens up a world of new creative applications, from traffic engineering to

data centre virtualization, fine-grained access control, and more, by separating the data and

control planes [4]. It is a strong option for 5G networks as well because it has a demonstrated

benefit in several commercial networks [5,6].

A wireless sensor network (WSN) typically uses a base station and multiple sensor nodes.

Due to its low deployment cost and great benefits, WSN has gained rapid development and

wide popularity [1–3]. However, WSN suffers from limited network resources, inflexible net-

work management, and partial efficiency of routing algorithms [4–6]. To solve the above prob-

lems, SDN based Wireless Sensor Networks (SDWSN) [7–10] apply software-defined

technology to WSNs by separating data and control planes. The SDWSN improves network

flexibility through centralized management and programmability, supports high-speed hetero-

geneous connectivity, flexible and efficient detection, dynamic and reliable routing, and

improves WSN utilization [11–13].

Network energy efficiency is still a major obstacle to WSN deployment in SDN [14–17].

Since the original routing method is no longer fully suitable for WSNs, it is important to

develop a routing strategy that considers the characteristics of SDWSNs [18–20]. Various rout-

ing algorithms such as Low Energy Adaptive Clustering Hierarchy (LEACH) [21], Distributed

Energy-Efficient Clustering (DEEC) for heterogeneous WSNs [22], Stable Election Protocol

(SEP) [23], and other clustering routing algorithms are deployed in SDWSN. The SDWSN

exhibits strong scalability and robustness because its cluster routing algorithm divides sensor

nodes into multiple clusters. Each cluster has a cluster head that collects information from its

members and sends it to the base station. LEACH randomly selects cluster heads to balance

network load. However, polling the cluster heads frequently consumes power [24]. When

choosing cluster heads, DEEC considers the remaining energy of the nodes, prolonging the

network lifecycle and increasing the data transmission delay.

The clustering step of the clustering routing method, an approach to solving difficult opti-

mization problems by modeling the behavior of groups, has recently been improved by apply-

ing some clever optimization algorithms. The Artificial Bee Colony Algorithm (ABC) [25], the

Firefly Algorithm (FA) [26], and the Genetic Algorithm (GA) [24] are examples of intelligent

optimization algorithms. The GA local search performance is poor despite its fast convergence

time. The FA has fewer parameters than GA. Global search and convergence speed are better

for the ABC method. Methods that are easy to integrate with clustered routing algorithms

include the FA and ABC algorithms. Intelligent optimization techniques suffer from poor

solution accuracy, convergence to locally optimal solutions, and limited search space.

The main contributions of this paper are as follows.

1. Establish the network model and energy consumption model of SDWSN.

2. A hybrid optimization algorithm (optimized algorithm based on the firefly algorithm,

gravity search algorithm, and biogeography optimization, FGB) was designed. To
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improve the capability of a worldwide search for the best solution, a location update

approach based on population diversity is first presented and is based on FA. Then, based

on the hybrid gravitational search algorithm (GSA) and biogeographic-based optimiza-

tion (BBO), the ability of local search to find the optimal solution is optimized. The algo-

rithm improves the performance of optimization procedures that find approximate global

solutions.

3. A distributed high-efficiency entropy energy-saving clustering routing algorithm for

SDWSN is designed (DHEEC). This algorithm considers energy entropy when selecting

cluster heads, which is more suitable for energy updates in SDWSN. At the same time, FGB

is used for cluster head selection to speed up the rotation of cluster heads.

4. Through experimental simulation and analysis, compare FGB with other algorithms to ver-

ify its performance on standard functions. Comparing DHEEC with other algorithms, it

prolongs the network lifetime and improves energy utilization.

The remaining of this this paper is organized as follows. In Section 2, the literature review is

discussed in detail. In Section 3, the proposed system model is described and the analytical for-

mulations are discussed. In Section 4, the hybrid optimization algorithms are explained. In

Section 5, the high entropy energy saving clustering routing algorithm is described. In Section

6, the simulation experimentations and comparative performance evaluation is discussed.

Finally, Section 7 concludes the paper.

2 Related work

This section mainly focuses on two aspects of the network clustering routing algorithm and

the intelligent optimization algorithm.

A three-stage heterogeneous network model for WSN is proposed in [27]. The model uses a

threshold function and weighted election probabilities to select cluster heads and capture net-

work heterogeneity. Based on the evolutionary approach for LEACH protocol optimization

(LEACH-O) [28], both WSN lifetime and energy efficiency are improved. The Enhanced

Adaptive Distributed Energy Saving Cluster (EADEEC) algorithm [29] based on DEEC

improves cluster stability, node survival time, and data transmission. The authors in [30] uses

particle swarm optimization (PSO) to estimate the relative positions of cluster heads and base

stations, developed mobile paths for base stations based on the ABC traversal path approach,

and reduced sensor node consumption power.

The clustering phase of the clustering routing method uses a population optimization algo-

rithm. In [31], an energy-efficient heterogeneous WSN routing technique based on Improved

Firefly Clustering (IFCEER) was developed. However, it has poor solution accuracy and slow

convergence are also problems. The WSN routing method based on FA for optimizing fuzzy

C-means (FFACM) is a good reference to prevent the algorithm from tuning to local optima

[32]. This is due to incorrect initial placement of the clustering centers. The authors in [33]

considered the Bayesian PSO algorithm that is based on the Bayesian principle probability

strength function for parameter tuning. However, especially complex multi-minimal problems

face local optima. The Hybrid Firefly and Particle Swarm Optimization Algorithm (HFPSO)

[34] checks the current global best fit value and decides to start the search process. In [35], a

hybrid firefly algorithm with particle swarm optimization (HFAPSO) is proposed. This algo-

rithm uses the HFPSO for optimal cluster head selection on LEACH-C and improves the FA’s

global search ability. Reference [36] applied FA to a mixed-state logic model with an energy

parameter to detect distributed denial-of-service (DDoS) attacks. Reference [37] used FA and

BBO for feature selection in software product lines. In [38], the Gray-Wolf optimization
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(GWO) algorithm was combined with PSO to significantly reduce the computational time

required to implement the algorithm.

The LEACH-G protocol was proposed in [39], where the calculation of the ideal cluster

head size is based on area and number of nodes. The enhanced LEACH protocol should the-

oretically outperform the original LEACH in terms of network robustness and power con-

sumption. The R-LEACH is a clustering strategy designed based on the remaining energy of

nodes and the maximum number of cluster heads [40]. The probability threshold is rede-

fined by the ideal number of cluster heads to improve the network speed and reduce the

average power consumption. To achieve network load balancing, reference [41] provides a

power-aware routing algorithm that creates timeouts according to the remaining power of a

node and controls how often a node is elected as cluster leader. Each node determines its

own attribute value based on the distance from the base station and the amount of energy

left over, and based on this, it competes with neighboring nodes to obtain the best cluster

head selection. Reference [42] suggested a distributed energy-saving clustering routing

method. In [43], the authors found that if each cluster region remains fixed after establish-

ment, the cluster head election is performed in each cluster region based on the residual

energy factor, and if the cluster reaches the head energy, proposed an improved low-energy

fixed clustering algorithm. If the threshold is below, a node from the cluster her members is

randomly selected for the next voting round. This algorithm is efficient and prolongs net-

work life. Reference [44] proposes a modified DEEC (MDEEC) algorithm that extends the

network lifecycle but increases the amount of data received by the base stations. Additionally,

a low-power communication mechanism was established within the cluster to allow nodes

with residual power above a threshold to compete as cluster head candidates. Reference [45]

proposed an improved protocol called LEACH-LOMUC, which selects candidate cluster

heads based on remaining energy, size of cluster heads and distance between clusters, cluster

head and base station transmission line, which effectively saving network energy. This proto-

col overcomes the shortcomings of the LEACH algorithm, which does not take into account

the residual energy, the distribution of the cluster head, and the direct communication

between the cluster head and the base station. Reference [46] proposed a distributed cluster-

ing routing protocol based on dynamic partition load balancing to solve the “hot zone” prob-

lem caused by uneven load on the nodes. Distributed clustering routing protocol determines

different cluster radius based on the distance between the cluster head and base station, thus

prolonging the life of the network. Reference [47] suggested that a highly efficient relay and

relay node selection scheme designed for farmland environments to solve the problem of

high power consumption caused by direct communication between the cluster head node is

located far away from the base station and the receiver node. The node’s residual energy, the

density of the network architecture, and the distance are carefully considered when choosing

a cluster leader. The forwarding methods in different communication models are described

one by one, starting with the distance between the candidate forward node and the sink node

during the relay node selection process. The energy efficiency of the network is increased

when energy balance is achieved. By setting the fit function to remaining energy and the dis-

tance from the base station, references [48,49] improved the weights of the first three wolves

in the original GWO based on price suitable treatment. They also designed an improved

algorithm based on the Physical Interest-Based Advanced GWO (FIGWO), which allows for

optimal election of cluster leaders. Reference [50] has improved the particle swarm optimiza-

tion algorithm based on adaptive learning factors, determined the adaptive function based

on the node energy factor and the position equilibrium factor, and proposed two transmis-

sion methods. The throughput (single-hop and multi-hop) is optimized according to the dis-

tance between the cluster head and base station, while balancing the energy consumption of
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the nodes. Reference [51] proposed a heterogeneous clustering technique based on ant col-

ony optimization to solve the problem of heterogeneity. This algorithm used the concept of

pheromone update primacy to optimize the path quality and significantly improve the net-

work quality. The optimal cluster head is selected by evaluating the relationship between the

random number and the attribute and the weight parameters are optimized based on the GA

and the simulated incubation algorithm. Reference [52] proposed a low-power routing pro-

tocol, where the node attribute is defined around the distance between the node and the base

station and the remaining power factor. Reference [53] proposed a hybrid heterogeneous

clustering routing protocol based on fuzzy logic theory and ant colony optimization. Based

on the ant colony optimization method, the heterogeneous cluster regions are created, allow-

ing efficient transmission of monitoring data from the cluster head to the base station,

thereby effectively reducing the power consumption of the network. For the purpose of bal-

ancing the energy consumption of the network, showing the relationship between the cluster

head ratio and the network size, and designing the suitable function for the particles of the

swarm optimization algorithm on the energy remaining and node density, the improved fil-

tering based on the PSO algorithm is proposed in [54], which greatly prolongs the life of the

network. Using a GWO and a unique fit function, reference [55] proposed a new clustering

protocol to predict the actual power consumption of multiple clustering schemes, giving

allows reuse of a particular clustering method. A two-way communication network is estab-

lished between the peripheral cluster leader and the receiving node to prevent premature

death of nodes far from the base station. This network effectively balances the power con-

sumption between the cluster head and the relay node, while reducing the overall network

cost.

Reference [56] proposed a centralized clustering technique (LEACH-C), which would

improve the existing LEACH protocol. The base station selects the best cluster head in the clus-

ter head election step using a simulated annealing process. To solve the problem of random

selection of cluster leaders using the LEACH protocol, the LEACH-C takes into account the

node’s position and remaining energy when selecting the cluster leader. However, due to one-

hop communication between the cluster heads and base stations, the energy consumption of

cluster heads far from the base station will increase, eventually leading to their premature col-

lapse and network lifetime. Reference [57] proposed a centralized cluster routing protocol in

which the base station groups the nodes for each round of cluster leader election using averag-

ing technique and the GWO selects the best cluster leader for each cluster. By improving the

cluster structure, it effectively increases the lifetime of the network. However, because this pro-

tocol does not take into account the routing between clusters, the cluster head located far from

the base station will die prematurely due to high power consumption, reducing the lifetime of

the network. References [58] proposed a centralized clustering routing system based on

K-Means. The base stations use K-Means clustering to create the network clusters during net-

work startup. The nodes disperse the cluster heads and remaining energy in each cluster. The

K-Means clustering technique is sensitive to the starting point and simple to converge to the

local optimal point, which has an impact on the clustering effect. However, it prolongs the life

of the network to some extent. Furthermore, the protocol does not take routing between clus-

ters into account, and the single-hop technique increases the energy consumption of the clus-

ter head when it is far from the base station. This places constraints on the system. The

ABC-SD protocol, which uses the artificial swarm method to solve the clustering and routing

problems, has been presented in [59]. By taking into account the remaining energy of the

nodes and neighboring data, this protocol creates an efficient matching function that is used to

evaluate the results of the artificial swarm method. The clustering problem can be solved

depending on the quality of the solution. The protocol builds routing between clusters based
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on the loss function after considering the energy efficiency and the number of hops in the

routing hop between the clusters. The ABC-SD effectively extends the network lifetime and

increases the network throughput by implementing centralized clustering and distributed

route mix generation techniques. However, the load balancing between cluster heads, which

affects network performance, is not taken into account by this protocol. A technical improve-

ment based on the clustering routing protocol of the PSO algorithm has been proposed in

[60]. A new matching function is designed by considering the redundant energy and the geo-

graphical location of the node in the grouping step to select the group leader who is near the

base station and has a high level of excess energy. This fitness function is then used to evaluate

the quality of the solution generated by the swarm algorithm. Each cluster head is paired with

a relay node in the routing step between the clusters to balance the network energy consump-

tion. The network lifetime is effectively extended by this protocol. However, there is no guar-

antee that the selected forward and cluster leaders are the current optimal option due to some

features of the swarm optimization process itself. Reference [61] suggested a software-defined

network routing method based on fuzzy logic. It was used as the basis for implementing the

Fuzzy Topology Discovery Protocol (FTDP). It prolongs the life of the network and reduces

the packet loss rate. To increase the lifetime of the network and reduce the latency, reference

[62] developed an intelligent routing method based on the ABC algorithm that maps potential

routing links as food sources and takes into account energy and delay variables. The Fuzzy Ant

Colony Optimization Routing (FACOR) was developed by [63] by incorporating the ant col-

ony algorithm into the routing protocol, evaluating the link viability by using fuzzy calcula-

tions based on energy, distance and connectivity, then choose the optimal link. A

metaheuristic search routing protocol based on GA and mutation operator is presented in

[64]. To develop effective routing and load balancing strategies, reference [65] introduced the

load balancing and routing strategies using the Glowworm swarm optimization approach

(LBR-GSO). Using the properties of a dynamic network, reference [66] suggested an improved

ant colony algorithm (IACO), which can be used to generate sensor and rule node propagation

functions. The network is clustered heterogeneously in [67], and the smaller the distance from

the sink node, the smaller the cluster size. This reduces communication power loss in the clus-

ter and provides the cluster main node with more power to transfer data between clusters, bal-

ancing the network power consumption and successfully avoiding the main problem.

Reference [68] proposed a WSN hierarchical routing technique based on fuzzy cluster C-

means and swarm intelligence (FCM-SI). The optimal cluster leader is selected using an artifi-

cial swarm algorithm, and then establishes a multi-hop path to the base station using the ant

colony method. Although the power consumption and load balancing of the network are

taken into account, the effect of the random starting cluster center of the fuzzy C-means algo-

rithm is not taken into account. This can easily lead to locally optimal clustering, which will

affect the entire network. An energy-aware multi-hop routing (EAMR) method is proposed in

[69]. During the setup phase, a permanent cluster is created by selecting the initial cluster

leader, selecting the first relay nodes, and determining the cluster membership of the remain-

ing sensor nodes. The data is passed through the relay node during this phase, thus balancing

the load on the cluster. However, the power consumption of the fixed burst far away from the

base station is significantly higher than that of the fixed burst near the base station as the

amount of data transmission increases. The clusters cannot evenly distribute network load.

Reference [70] proposed effective and reliable routing algorithm based on dempster-shafer

proof theory (DS-EERA) in which the attribute index is established as proof, using weighted

method and the number of entropy to determine the weight of the index. Then, apply the

merge rule of the theoretical DS proving to the underlying probability distribution function of

each merged index value and the next hop chosen to propagate the data. Using the fuzzy C-
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means algorithm for clustering and the particle swarm optimization algorithm to optimize the

initial center of the cluster, reference [71] proposed a clustering routing algorithm that ignores

the fuzzy C-means and sensitivity to the center of the original cluster.

Table 1 summarizes the performance of various state-of-the-algorithms and the proposed

method in terms of important metrics.

2.1 Problem statement

In summary, the improved algorithm based on the traditional clustering routing protocol usu-

ally selects the cluster heads based on variables such as residual energy and distance, but it has

the disadvantage of alternately selecting the clusters based on the probability and determine

the number of key clusters spontaneously. The impact of cluster head position on node power

consumption is often overlooked, despite the fact that some researchers try to delay the cluster

head rotation as much as possible by setting a threshold.

Table 1. Performance comparison of algorithms.

Reference Target detection Feature selection Dataset Machine learning technique SDN IoT UDP

[51] DoS, R2L, Probe, U2R Information gain NSL-KDD Support vector machine X X ✓

[52] DoS, R2L, Probe, U2R Mutual information NSL-KDD Support vector machine X X ✓

[53] DDoS - NSL-KDD99 Support vector machine X ✓ X

[54] DoS, R2L, Probe, U2R Information gain NSL-KDD99 XGBoot X X ✓

[55] DoS, R2L, Probe, U2R Regularized random forest NSL-KDD99 Naïve Bayes X X ✓

[56] Normal and attack Stacked based feature

selection

NSL-KDDCup99 Gated Recurrent Unit X X ✓

[57] DDoS - GSB, IBRL Random Forest X X ✓

[58] DDoS Principal component analysis PDG, LUCE Q-Learning X X ✓

[59] DDoS Information gain KDD99 Online Naïve Bayes X ✓ ✓

[60] DoS, R2L, Probe, U2R Stacked based feature

selection

KDD99 Random Forest X X ✓

[61] Spike, drift, constant,

noise

- NSKL-DD Linear Weighted Projection

Regression

X X ✓

[62] Spike, drift, constant,

noise

Information gain Simulated data Ensemble Learning X X ✓

[63] Normal and attack Chi-square information gain KDD99 Passive Aggressive Algorithm X X ✓

[64] DDoS Mutual information NAMOS, GSB Stack Ensemble Learning X ✓ ✓

[65] DoS Information gain KDD99 Leat-Square SVM X X ✓

[66] DoS Regularized random forest UNSW-NB15 Random Forest ✓ X ✓

[67] DoS Mutual information KDD99 Q-Learning ✓ X X

[68] DoS - Simulated data Ensemble Learning ✓ X ✓

[74] DoS Information gain NSL-KDD Naïve Bayes X ✓ ✓

[75] Spike, drift, constant,

noise

- KDD99 Support Vector Machine X X ✓

[76] DDoS Mutual information KDD99 FCM ✓ ✓ X

[77] Spike, drift, constant,

noise

- NSL-KDD Random Forest X X ✓

[78] DoS, R2L, Probe, U2R - KDD99 ANN X ✓ ✓

[79] DDoS Regularized random forest KDD99 SVM X ✓ ✓

[80] DoS - GSB, PDG Reinforcement learning X ✓ X

[81] Normal and attack - KDD99 Q-Learning X ✓ X

Proposed DDoS Population diversity GSB, LUCE, IBRL, PDG,

NAMOS

FA, GSA ✓ ✓ ✓

https://doi.org/10.1371/journal.pone.0301078.t001
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Aiming at the above problems, in order to improve the efficiency of the optimization pro-

cess for identifying an approximative global solution, a hybrid optimization algorithm that

combines the global optimization powers of FA with the local optimization capabilities of

BBOGSA is created. A distributed high-efficiency entropy energy-saving clustering routing

system is created to speed up the rotation of the cluster heads. In order to show how well the

hybrid optimization approach performs, it is compared to similar algorithms in terms of con-

vergence accuracy, running time, and stability through experimental simulation and analysis.

It is compared to competing techniques to show how the distributed high-efficiency entropy

energy-saving clustering routing algorithm may lengthen network life and reduce data trans-

mission energy usage.

3 System model

3.1 Network model

In the architecture of SDWSN, the base station is located at the control layer, including the

controller module that calculates the route of the entire network. The sensor nodes are located

in the data layer and realize the function of forwarding data according to the flow table

[72–74]. According to the SDWSN architecture, the SDWSN model is shown in Fig 1, and the

control layer has the following functions: to obtain information such as network topology, the

remaining energy of sensor nodes, and location. Calculate the cluster head rotation table

according to the energy, the optimal path to meet the demand, and load the DHEEC and clus-

ter head rotation table into flow table information. The cluster head located in the data layer

only completes receiving, merging, and forwarding data [75,76].

The network model is based on the following assumptions:

1. The base station is situated in the middle of the M × M area, and the sensor nodes si (i = 1,2,

. . ., N) are dispersed at random [77–79];

Fig 1. Proposed network model of SDWSN.

https://doi.org/10.1371/journal.pone.0301078.g001
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2. Data communication between the cluster head and base station using the OpenFlow proto-

col [80–82];

3. Node software and hardware configurations are the same, each has a unique ID, and the

location is fixed;

4. The links of the network are symmetrical;

5. The base station’s data transmission and calculation speeds are faster than those of the sen-

sor nodes.

3.2 Energy consumption model

The radio network energy consumption model is shown in Fig 2.

According to the energy consumption model, the energy EnTx of transmitting a l bit packet is:

EnTx ¼
lEnelec þ dis2lεfs; dis < disbreak

lEnelec þ dis4lεmp; dis � disbreak

(

ð1Þ

Among them, Enelec is the unit energy consumption, εfs and εmp are the power amplifica-

tion loss, dis is the distance [83,84], and disbreak is the threshold distance.

The energy EnRx required to receive a l bit data packet is:

EnRx ¼ lEnelec ð2Þ

Therefore, the total energy consumed in one iteration is:

EnRound ¼ EnTx þ EnRx ¼ lD 2NEnelec þ NEnDA þ kεmpdis4

HB þ kεfsdis2

MH

� �
ð3Þ

Among them, k is the number of clusters [85,86], disHB is the average distance between the

cluster head and the base station, and disMH is the average distance between the cluster mem-

ber node and the cluster head node:

disHB ¼
0:765

2
M

disMH ¼
M
ffiffiffiffiffiffiffiffi
2pk
p

8
>><

>>:

ð4Þ

Fig 2. Energy consumption model.

https://doi.org/10.1371/journal.pone.0301078.g002
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4 Hybrid optimization algorithm

4.1 Improved firefly algorithm

FA is an algorithm inspired by the flickering behavior of fireflies, which iterate their positions

according to the brightness to find the optimal solution. The following rules are used:

1. Fireflies attract one-way according to the brightness;

2. The attraction of fireflies is proportional to the brightness;

3. Fireflies with low brightness are attracted to fireflies with high brightness;

4. The firefly with the highest brightness moves randomly.

Definition 1: The relative fluorescence brightness I of fireflies i and j is:

I ¼ I0e
� brij ð5Þ

Among them, I0 is the maximum fluorescence brightness of fireflies, β is the light intensity

absorption coefficient [87,88], rij is the Euclidean distance, and the calculation formula is:

rij ¼ kci � cjk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XD

w¼1
ciw � cjw
� �2

r

ð6Þ

Among them, ci and cj represent the spatial positions of fireflies i and j, and ciw and cjw are

the w-th dimension coordinates of fireflies i and j.
Definition 2: Mutual attraction γ between fireflies. γ corresponds to the relative fluores-

cence brightness between fireflies:

g ¼ g0e
� br2ij ð7Þ

Among them, γ0 is the maximum attractiveness.

However, the convergence speed of FA is slow, and the global search lacks randomness,

which may lead to convergence to a locally optimal solution [89,90]. The average distance

between firefly individuals and ideal firefly individuals is used in this study to quantify popula-

tion diversity and to suggest a location update technique based on population diversity.

Definition 3: Diversity index βn. Reflects the diversity of the n-th generation population:

b
n
¼

1

jsj

Xjsj

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j¼1
Cij �

�CY

� �2

r

ð8Þ

where s stands for population size, and �CY denote the population’s mean center.

Further adjust the position update strategy of fireflies, as shown in formula (9):

cnþ1
i ¼ cni þ g0e

� br2ij cj � ci
� �

þ a� rand

¼ cni þ g0e
� br2ij cj � ci
� �

þ r cni � Cn
best

� �
þ a� rand

ð9Þ

Among them, cni represents the spatial position of firefly i; α 2 [0,1] represents the step fac-

tor; random parameter rand 2 [0, 1]. Cn
best represents the position of the brightest firefly indi-

vidual in the current iteration n rounds [91–93]; ρ is a weight that changes according to βn and
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the number of iterations, and its calculation formula is:

r ¼
� ks; bn

� sb
0

0; b > sb
0

(

ð10Þ

Among them, β0 is the initial population diversity index, k is the current iteration number,

σ is a linear decreasing function, and its calculation formula is:

s ¼
maxiterate � k

maxiterate
ð11Þ

Among them, maxiterate is the maximum number of iterations.

According to formula (11), the initial value of σ is 1, and when k = 1 in the first iteration,

the value of ρ obtained by formula (10) is negative. Move in random directions away from the

optimal solution, thus enabling a wider search [94]. Fireflies will do local random searches

near the ideal solution to provide a more accurate local search as the number of iterations rises

and the diversity index falls. In order to prevent the algorithm from converging to the local

optimal solution, such a dynamic adjustment mechanism can balance the issues of global opti-

mization in the early stages of the algorithm and local optimization in the later stages.

The fixed step size may make it difficult to reliably converge to the optimal point as the

number of iterations rises since most fireflies would do local optimal searches in the vicinity of

the optimal point. As a result, the step size factor is dynamically modified in the manner

shown below:

a ¼ a0s ð12Þ

where α is a constant value in FA. α0 represents the initial step size factor.

The specific steps of firefly algorithm are shown in Algorithm 1, and its steps are described

as follows.
Algorithm 1. Improved firefly algorithm.
Input: population size N, initial step factor α, initial population
diversity index β0, maximum number of iterations maxiterate
Output: optimal solution Cbest
1: Determine objective function f(x)
2: Create initial population C0
3: Generate light intensity
4: while k < maxiterate do
5: Determine attraction γ
6: for i 2 [1, N] do
7: for j 2 [1, N] do
8: Determine σ, β
9: if Ij > Ii then
10: Move firefly i towards j

11: cnþ1i ¼ cn
i þ γ0e

� βr2ij cj � ci
� �

þ ρ cn
i � C

n
best

� �
þ α � rand

12: end if
13: Change attraction
14: Search again and modify light intensity
15: end for
16: end for
17: Determine the best solution Cbest
18: end while

Algorithm 1 is explained below stepwise.

PLOS ONE SDN 5G wireless sensor network optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0301078 June 20, 2024 11 / 36

https://doi.org/10.1371/journal.pone.0301078


Step 1: Initialize parameters, population size N, initial step factor α, initial population diversity

index β0, maximum iteration number maxiterate, etc.

Step 2: Construct the initial population C0, and calculate the brightness [95], sort according to

the brightness, calculate the fitness I and the current global optimal solution Cbest according

to the maximum fluorescence brightness I0.

Step 3: Update the distance between fireflies according to formula (9), update the attraction

between fireflies according to formula (7), and update the global optimal solution Cbest at

the same time.

Step 4: Add 1 to the number of iterations, and update the step factor according to formula

(12).

Step 5: If the number of iterations reaches maxiterate, the algorithm stops and outputs the cur-

rent global optimal solution Cbest, otherwise, execute steps 2 to 4 in a loop.

4.2 Gravity search and biogeography hybrid algorithm

BBO regards the solutions in the population as habitats, assigns a habitat suitability index

(HSI) to each habitat to reflect the overall suitability, and updates the optimal solution through

the population migration operation. Habitats are similar to firefly individual locations in FA

[96], and the general rules used by BBO are as follows:

1. Brightness is proportional to the HSI value of the habitat;

2. Individuals in habitats with high HSI values migrate to habitats with low HSI values;

3. Habitats with low HSI values attract individuals from habitats with high HSI values;

4. Habitats face random variation among individuals.

Definition 4: Habitat H. Habitat provides a solution within the search space of a numerical

optimization problem.

Definition 5: Habitat Suitability Index HSI. Reflect the overall suitability of the habitat.

Definition 6: Suitability index variable (SIV). The HSI is influenced by additional coeffi-

cients, such as rainfall, vegetation diversity, and temperature.

Definition 7: Emigration index μ. Controlling habitat migration, the probability of a species

leaving a habitat is proportional to the number of species in the habitat.

Definition 8: Immigrant index λ. Controlling for habitat migration, the migration index is

maximized when the habitat is free of species.

The BBO starts from a random population with population size N and dimension D, and

each individual Hij is generated according to formula (13).

Hij ¼ aj þ rand� bj � aj

� �
ð13Þ

Among them, i = {1, 2, . . ., N}, j = {1, 2, . . . D}, aj and bj are the upper and lower bounds of

the jth dimension of the solution vector respectively.

To calculate HSI, sort population individuals Hk in order from good to bad, and calculate

emigration index μk and immigrant index λk according to formula (14).

mk ¼ E� Sk=Smax

lk ¼ 1 � Sk=Smaxð ÞI

(

ð14Þ
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Among them, Sk denotes the number of individuals in the current population, Smax repre-

sents the number of individuals in the largest population, E represents the maximum immi-

grant emigration rate, and I represents the maximum immigrant immigrant rate. The larger μk
is, the smaller λk is, and the higher the HSI is. The smaller μk is, the larger λk is, and the lower

the HSI. In each iteration, the better solution is propagated to the worse solution. The poorer

solution has a high probability of learning from the better solution. Overall, as the number of

iterations increases, all solutions approach the optimal solution.

Habitats with higher and lower HSIs are prone to mutation, while solutions in the middle

are left untouched. The rate of variation is:

mi ¼ M �
1 � Pi

Pmax

� �

ð15Þ

Among them, M is the maximum mutation rate, Pi is the species probability, and Pmax is

the maximum species probability, where Pmax = N.

Variation is caused by unexpected events that lead to changes in the number of species and

HSI in the habitat, and the variation rate of species depends on the probability of species.

When the number of species is large or small, the species probability is low and the variation

rate is high; when the number of species is moderate, the species probability is high and the

variation rate is low. The purpose of the mutation is to increase the diversity of the population

so that the habitats with low HSI values are improved, the habitats with high HSI values are

improved, and the habitats with high HSI values may change to low HSI values. The mutation

is conducive to expanding the search space and jumping out of local optimum.

The gravitational force F between objects and the acceleration a of the individual are

respectively:

F ¼ GM1M2

R2

a ¼ F
M

(

ð16Þ

Among them, M1 and M2 are the mass of the object, G is the gravitational constant, R is the

Euclidean distance, and M is the mass.

According to GSA, the gravitational force fij between population individuals i and j and the

acceleration ai of individuals are respectively:

ai ¼
Fij

Mii
ð17Þ

Among them, Maj and Mpi represent the active gravitational mass of population individual i
and the passive gravitational mass of population individual j respectively, and Mii is the inertial

mass of population individual i.
The inertial mass of population individuals is related to fitness. The larger the inertial mass,

the greater the probability of producing an optimal solution. The mass Mi(t) of the population

at time t is calculated as follows:

Mai ¼ Mpi ¼ Mii ¼ Mi; i ¼ 1; 2; . . . ;N

mi tð Þ ¼ fiti tð Þ � worst tð Þ=best tð Þ � worst tð Þ

Mi tð Þ ¼ mi tð Þ=
Pn

j¼1
mj tð Þ

8
>><

>>:

ð18Þ
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Among them, fiti(t) is the fitness value, best(t) is the optimal solution, worst(t) is the worst

solution, and the calculation formula is:

best tð Þ ¼ max
i2 1;2;...;Nf g

fiti tð Þ

worst tð Þ ¼ min
i2 1;2;...;Nf g

fiti tð Þ

8
<

:

The solution set of the BBO algorithm is:

mti ¼ Ii1 þ Ei1ð Þ; Ii2 þ Ei2ð Þ; . . . ; IiD þ EiDð Þ½ � ð19Þ

BBO avoids falling into the local optimal solution and premature algorithm through migra-

tion and mutation operations, and improves the overall stability of the population; that is, it

improves the value of HSI. According to HSI, the fitness function is created as follows:

fiti tð Þ ¼ HSI ¼ SIVi þ N þ lk � mk

¼ SIVi þ N þ
1 � Sk
Smax

� �

I �
ESk
Smax

¼ SIVi þ N þ
1 � Sk I þ Eð Þ

Smax

� �

¼ SIVi þ N þ
1 � SkMt

Smax

� �

ð20Þ

Update formula (18) to get:

mi tð Þ ¼
Smax SIVi þ N þ I � SkMt � worst tð Þ½ �

Smax best tð Þ � worst tð Þ½ �
ð21Þ

Update the speed and position of the individual according to formula (17):

vdi t þ 1ð Þ ¼ randi � vdi tð Þ þ ad
i tð Þ ð22Þ

xdi t þ 1ð Þ ¼ vdi tð Þ þ vdi t þ 1ð Þ ð23Þ

The pseudocode of BBOGSA is shown in Algorithm 2, and its steps are described as

follows.
Algorithm 2. BBOGSA algorithm.
Input: population size N, dimension D, maximum immigrant emigration
rate E, maximum immigrant immigrant rate I, maximum mutation rate M,
maximum number of iterations rmax
Output: Optimal solution Gbest
1: Determine objective function f(x) = Cbest
2: Generate initial population C0
3: while k < rmax do
4: Determine HIS
5: for i 2 [1, N] do
6: for j 2 [1, N] do
7: Calculate μk, λk, M
8: if Mj > Mi
9: Move ith habitat toward jth

10: HSI ¼ SIVi þ
I� SkMt
Smax

h i

11: end if
12: Change HIS
13: Search and modify again gravitational
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14: end for
15: end for
16: Determine the optimal solution Gbest by sorting HIS
17: end while

The steps of the Algorithm 2 are explained below.

Step 1: Set parameters such as the initial population size N, dimension D, maximum immi-

grant emigration rate E, maximum immigrant immigration rate I, maximum mutation rate

M, and maximum number of iterations rmax.

Step 2: Construct the initial population C0, calculate the suitability index HSI, sort and update

the current global optimal solution Gbest.

Step 3: Calculate the migration index μk and the immigration index λk of the habitat according

to the formula (14), and perform the migration operation, and perform the mutation opera-

tion according to the formula (15).

Step 4: Calculate the inertial mass of each population according to formula (21), and update

the individual position according to formula (23).

Step 5: If the number of iterations reaches rmax, the algorithm stops and outputs Gbest, other-

wise, execute steps 2 to 4 in a loop.

4.3 Hybrid optimization algorithm design

FA tends to converge to the local optimal solution in the final iteration, which makes it unable

to perform a proper local search. The local search ability of BBOGSA makes up for the defect

of FA. Therefore, FGB is designed to combine the global search ability of FA and the local

search ability of BBOGSA to improve the performance of the optimization process for finding

approximate global solutions.

FGB has two phases. In the first stage, the improved FA performs preliminary optimization

to search the design search space by performing a limited number of iterations, and the opti-

mal solution found in this stage is Cbest. In the second stage, a more refined search of Cbest is

performed using BBOGSA algorithm for a limited number of iterations.

The initial population constructed by the improved FA is randomly distributed in the

whole space, while in BBOGSA, Cbest is directly transformed into the optimal initial

population.

The FGB process is shown in Fig 3.

The pseudocode of FGB is shown in Algorithm 3.
Algorithm 3. FGB algorithm.
Input: L, N, α, β0, maxiterate, D, E, I, rmax
Output: Optimal solution Gbest
1: Determine objective function f(x)
2: Create initial population C0
3: Generate light intensity
4: while k < maxiterate do
5: Determine γ
6: for i 2 [1, N] do
7: for j 2 [1, N] do
8: Determine β, σ
9: if Ij > Ii then
10: Move ith firefly towards jth

11: cnþ1i ¼ cn
i þ γ0e

� βr2ij � cj � ci
� �

þ ρ� cni � c
n
best

� �
þ α � rand

PLOS ONE SDN 5G wireless sensor network optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0301078 June 20, 2024 15 / 36

https://doi.org/10.1371/journal.pone.0301078


12: end if
13: Change γ
14: Determine light intensity again and modify it
15: end for
16: end for
17: Determine the optimal solution Cbest
18: end while
19: Determine objective function f(x) = Cbest
20: Create initial population C0
21: while k < rmax do
22: Determine HIS
23: for i 2 [1, L] do
24: for j 2 [1, L] do
25: Determine μk, λk, M
26: if Mj > Mi
27: Move ith habitat towards jth

28: Calculate HSI ¼ SIVi þ N þ
I� SkMt
Smax

h i

29: end if
30: Change the variable HIS
31: Modify gravitational by searching again
32: end for
33: end for
34: Determine the optimal solution Gbest by sorting HIS
35: end while

5 High entropy energy saving clustering routing algorithm

The running time sequence of DHEEC is shown in Fig 4, with rounds as the execution cycle,

including the start-up state and steady state. Before the first round of iteration, the base station

sends flow table information and forwards it to all sensor nodes, while at the same time indi-

cating the start. In the initial stage of a startup, SDWSN has two important functions: (1)

selecting the cluster head; (2) establishing a cluster. In (1), the temporary cluster head is

selected based on the threshold calculation formula, and the node information is sent to the

base station through the cluster head. Then, based on the FGB, the temporary cluster head is

exchanged with the members of the cluster, so that the node with the highest energy becomes

the cluster head. The cluster head sends a message to the adjacent nodes; the common node

selects the cluster head to join the cluster and becomes a member node in the cluster; and the

cluster is formally established. The SDWSN enters the stable stage and transmits data accord-

ing to inter-cluster routing.

In DHEEC, entropy is used to describe the probability of a node predicting to become a

cluster head, the information uncertainty of the node’s initial energy and residual energy, the

smaller the entropy, the greater the residual energy of the node. Each sensor node automati-

cally completes its own entropy selection by obtaining the initial energy and remaining energy

levels.

5.1 Threshold formula

Based on the assumption of the system model, the initial energy of the sensor node is randomly

distributed in the interval [En0, (1 + amax)En0], so the sensor node si(i = 1, 2,. . ., N) has (1 + ai)
En0 initial energy, where ai 2 [0, amax]. The initial total energy Entotal of the network is shown
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in formula (24):

Entotal ¼
XN

i¼1
1þ aið ÞEn0 ¼ En0 N þ

XN

i¼1
ai

h i
¼ En0 N þ Að Þ ð24Þ

Definition 14: The relative energy entropy H(Eni) of the node is:

H Enið Þ ¼ �
Xn

i¼1
k� Eni rð Þln �E rð Þ ð25Þ

Among them, Eni(r) is the remaining energy of the sensor node si in k rounds, and �E rð Þ
represents the average energy of the r round network:

�E rð Þ ¼
1

N

XN

i¼1
Eni rð Þ ð26Þ

The relative energy entropy consists of three parts: the predictable number of cluster heads,

the remaining energy, and the average energy, and oscillates around in the direction of the two

Fig 3. Flowchart of FGB mechanism.

https://doi.org/10.1371/journal.pone.0301078.g003
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relative energies so that a single node can automatically manage its entropy. In each round of

selecting a temporary cluster head, each node evaluates the probability of becoming a cluster

head and extracts a random number between 0 and 1 as the conditional probability. If it is less

than the conditional probability, the node will choose itself as a temporary cluster head.

The formula for cluster head selection threshold is:

T nð Þ ¼
H Enið Þ= 1 � H Enið Þ½ � rmod 1

H Enið Þ

h ih i
; si 2 C

0; other

8
<

:
ð27Þ

Among them, C represents the node group that has not become the cluster head, and partic-

ipates in the selection of the r-th round of cluster head according to the threshold T(n). In the

last round of algorithm iteration, if si does not become the cluster head, then si 2 C. In this

way, the conditional operation based on the relative energy entropy of node energy and initial

energy is more suitable for energy update in SDWSN.

5.2 Cluster head election using FGB

FGB is used to identify the relative energy entropy in (23), using the following rules:

1. Fireflies attract one-way according to brightness, that is, node energy;

2. The attraction of fireflies is proportional to the node energy;

3. Fireflies with low energy are attracted to fireflies with high energy;

4. The firefly with the highest energy moves randomly.

In DHEEC, fireflies with low entropy, high attractiveness, and good location will attract a

large number of fireflies and the attractiveness of fireflies can be predicted by the objective

Fig 4. Running time sequence of DHEEC.

https://doi.org/10.1371/journal.pone.0301078.g004
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function, namely relative energy entropy. If the attractive forces are balanced, the fireflies will

move arbitrarily.

In the algorithm, FGB is used for cluster head selection and is divided into two stages. In

the first stage, the improved FA performs preliminary optimization, and the optimal solution

found in this stage is Cbest;

In the second stage, a more refined search of Cbest was performed using BBOGSA to find

the optimal solution of is Gbest. The optimal solution is the node with the largest energy in the

current iteration times.

5.3 Inter-cluster routing

Sensor nodes send node location information, remaining energy information, and topology

information to the base station. The node data transmission mode is shown in Table 2, where

d is the distance between the node and the base station and ‘dis’ is the distance threshold, that

is, the distance from the node to the cluster head. The base station calculates the network route

and controls the sensor nodes. This approach reduces energy consumption and computational

overhead. The flow chart of the DHEEC algorithm is shown in Fig 5.

Table 2. Node data transmission method.

Data transfer method Condition

Direct d< dis

Cluster head d� dis

https://doi.org/10.1371/journal.pone.0301078.t002

Fig 5. Flowchart of the proposed DHEEC algorithm.

https://doi.org/10.1371/journal.pone.0301078.g005
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6 Simulation results

The software used in this section is MATLAB 2018a. First, verify the convergence performance

of FGB by comparing the performance of PSOGWO [22], HFPSO [17] and FGB on different

test functions; Secondly, by comparing the network lifetime and data transmission volume of

IFCEER [15], DEEC-FA [20] and DHEEC, the network performance of DHEEC is verified.

PSO is a swarm-based meta-heuristic optimization technique that moves particles in a desig-

nated exploration area in an attempt to find the optimum solution to a given issue. Conversely,

Grey Wolf Optimization (GWO) is a meta-heuristic optimization approach that draws inspira-

tion from wolves. This article aims to enhance the GWO’s advancement by hybridizing it with

a PSO approach. A metaheuristic optimization approach called Hybrid Firefly and Particle

Swarm Optimization (HFPSO) combines the best aspects of particle swarm and firefly optimi-

zation. By examining the prior global best fitness values, HFPSO attempts to accurately estab-

lish when the local search process began.

6.1 Standard function test experiment

The standard functions used for testing are shown in Table 3, and f1 is a unimodal function to

examine the convergence speed and precision of the optimization algorithm. f2, f3, and f14 are

multimodal functions, and examine the global search ability of the optimization algorithm. f5
is a discontinuous step function to examine the effectiveness of the optimization algorithm.

The problem dimension is 30, and their optimal values are all 0.

6.1.1 Parameter settings. Some parameters of the test standard function experiment are

set as follows: N = 30, α = 0.2, β0 = 1, D = 3, E = 1, I = 1.

The fitness changes of FGB under different maximum mutation rates and population diver-

sity indices are shown in Fig 6. Fig 6(a) shows the fitness change of FGB when the maximum

number of iterations is 20 rounds and the maximum mutation rate M is 0.05, 0.1, 0.2, 0.5 and

1 respectively. The mutation rate increases the diversity of individuals in the population, and a

moderate mutation rate promotes the algorithm to quickly converge to the optimal value.

Here, the maximum mutation rate is 0.1. Fig 6(b) shows the fitness changes of FGB when the

population diversity index β is 0.1, 0.2 and 0.5 respectively. When the population diversity is

Table 3. Standard functions to test.

Function name Expression Range

Sphere
f1 xð Þ ¼

Xn

i¼1

x2
i

[-100, 100]

Schwefel
f2 xð Þ ¼

Xn

i¼1

jxij þ
Yn

i¼1

jxij
[-10, 10]

Rastrigin
f3 xð Þ ¼

Xn

i¼1

x2
i � 10 cos 2pxið Þ þ 10

� � [-5.12, 5.12]

f4 xð Þ

¼ � 20 e
� 0:2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
x2

i

r

� e

1

n

Xn

i¼1
cos 2pxið Þ

� �

þ20þe

[-32, 32]

Step
f5 xð Þ ¼

Xn

i¼1

xi þ 0:5ð Þ
2 [-100, 100]

https://doi.org/10.1371/journal.pone.0301078.t003
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Fig 6. Changes in the fitness of FGB under different maximum mutation rates and population diversity indices. (a)

Variation with M; (b) Variation with β.

https://doi.org/10.1371/journal.pone.0301078.g006
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moderate, the species probability is higher and the algorithm is more stable. At this time, the

population diversity index is taken as 0.2.

6.1.2 Results. The results of the three algorithms under the five standard functions are

compared in Table 4. It can be seen from the results that FGB is slightly worse than PSOGWO

on f1, but the convergence speed is faster than PSOGWO. The performance of FGB on f2
shows that its search solution range is large. FGB performs well on f3, f4 and f5, which shows its

practicability, convergence speed and search ability are stronger than the other two

algorithms.

6.2 Network simulation experiment

6.2.1 Simulation parameter settings. Some parameters of the network simulation experi-

ment are shown in Table 5.

6.2.2 Network life cycle. The energy of network nodes decreases as the number of itera-

tions of the algorithm increases, and is exhausted after a certain number of iterations, resulting

in the death of the node. The number of dead nodes in the network represents the life cycle of

the network.

The comparison of the network node life cycle of IFCEER, DEEC-FA and DHEEC is

shown in Fig 7, which shows the impact of the three algorithms of IFCEER, DEEC-FA and

DHEEC on the network life cycle. Fig 7(a) shows the changes in the number of dead nodes in

the three algorithms of IFCEER, DEEC-FA and DHEEC when the maximum number of itera-

tions is 5000 rounds. It can be seen that the number of death rounds of all nodes of the three

Table 4. Comparison of results of algorithms under five standard functions.

Function FGB PSOGWO HFPSO

Optimal value Running time (s) Optimal value Running time (s) Optimal value Running time (s)

f1 9.0824×10−17 1.94 1.4335×10−26 2.21 4.7795×10−9 2.39

f2 3.715×10−8 1.97 9.465×10−9 2.05 5.6329×10−5 2.30

f3 20.8941 1.91 23.6247×10−7 1.98 36.813×10−5 2.11

f4 7.8769×10−9 2.27 374.867 1.85 2.8522×10−5 1.86

f5 0 2.08 1.19 0 1.47

https://doi.org/10.1371/journal.pone.0301078.t004

Table 5. Network simulation parameters.

Parameter Value

Network area 100 m×100 m,

250 m × 250 m

Number of sensor nodes 100 ~ 300

Base station location (50, 50)

Transmission packet 4000 bits

Packet rate 4 packets/s

Number of nodes per cluster 6

Max battery level of node 3 J

E0 0.5 J

Eelec 50 nJ/bit

εfs 10 nJ/bit.m2

εmp 0.0013 pJ/bit.m4

EDA 5 nJ/bit.signal

https://doi.org/10.1371/journal.pone.0301078.t005
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Fig 7. Comparison of network node life cycle of algorithms. (a) Number of node deaths. (b) Node death time.

https://doi.org/10.1371/journal.pone.0301078.g007
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algorithms of IFCEER, DEEC-FA and DHEEC is 2000, 3754 and 3568 respectively. The first

node of the network dies, and the information collected by the base station is no longer com-

prehensive. With the operation of the algorithm, the number of dead nodes increases, and a

small number of nodes that survive in the later stage have low remaining energy and lose com-

munication capabilities. Therefore, in order to measure the life cycle of the network more

comprehensively, Fig 7(b) compares the number of rounds of the first node death (first node

died, FND), 10% node died rounds (10% node died, TND) and all nodes died rounds (last

node died, LND). It can be seen that IFCEER only allows high-energy nodes to participate in

the election of cluster heads, resulting in very close FND and LND. The FND of DEEC-FA is

much smaller than the other two algorithms, and the network performance drops seriously in

the early stage of the algorithm. Considering the balance of the overall energy consumption of

the network, and defining TND as the network life cycle, the TND of DHEEC is about 41.05%

higher than IFCEER, and about 13.89% higher than that of DEEC-FA.

6.2.3 Network data transfer volume. During the operation of the algorithm, the surviving

member nodes transmit the collected data to the cluster head, and then the cluster head trans-

mits it to the base station. After the transmission of all nodes is completed, the base station

counts the number of data packets received in this round. Therefore, the total number of data

packets received by the base station is used to evaluate the energy utilization rate. The more

data packets received by the base station, the more balanced the energy distribution will be.

The total number of data packets received by the base station is shown in Fig 8, which

shows the change of the total number of data packets received by the base station after 5,000

iterations of the three algorithms of IFCEER, DEEC-FA and DHEEC. It can be concluded that

the energy utilization rate of DHEEC is about 31.58% higher than that of IFCEER and about

31.06% higher than that of DEEC-FA.

Fig 8. The total number of packets received by the base station.

https://doi.org/10.1371/journal.pone.0301078.g008
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Fig 9 compared the average remaining energy of nodes of the algorithms. As can be seen

that the average remaining energy of the proposed algorithm is higher than the existing algo-

rithms which makes it superior and has longer lifetime.

6.3 Statistical evaluation

Fig 10 compares the control overhead of algorithms under different topology size. As can be

seen from the results, the control overhead of the algorithms increases with increasing topol-

ogy size. However, the overhead of the proposed method is lower than existing algorithms

which validates its effectiveness.

Fig 11 compares the end-to-end delay of the algorithms under increasing number of nodes.

It can be seen from Fig 11, the delay increases with increasing number of nodes. However, the

proposed method has lower delay than existing algorithms, which further validates its superior

performance.

6.4 Scalability and performance in larger networks

Fig 12 evaluates the energy consumption of the network with dimension of 250 m×250 m and

the number of nodes is 300. As can be seen from Fig 12, the energy consumption of the algo-

rithms increases with increasing number of nodes. However, the proposed method consumes

less energy as compared with existing algorithms which makes is energy-efficient.

Fig 9. Comparison of average remaining energy of nodes of the algorithms.

https://doi.org/10.1371/journal.pone.0301078.g009
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Fig 10. Control overhead comparison of algorithms under different topology size.

https://doi.org/10.1371/journal.pone.0301078.g010

Fig 11. End-to-end delay comparison of algorithms under different number of nodes.

https://doi.org/10.1371/journal.pone.0301078.g011
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6.5 Energy efficiency analysis under different network scenario

Fig 13 evaluates the energy efficiency of the algorithms under different network scenario. As

can be seen from Fig 13, the energy efficiency of each component reduces with increasing data

rate. However, its within the required range of operation.

6.6 Impact on running time and computational resources

Fig 14 compares the running time of network of algorithms under increasing number of itera-

tions. As can be seen from Fig 14, the network lifetime of the algorithms decreases with

increasing number of iterations. However, the running time of the proposed algorithm is lon-

ger than existing methods which makes is reliable and require less computational resources.

6.7 Robustness to network dynamics

Fig 15 compares the robustness of the algorithms when the mobile nodes move at different

speed. As can be seen from Fig 15a, when the number of nodes increases, the communication

delay increases. The communication delay of the proposed algorithm is lower than existing

methods. From Fig 15b, the mobile node speed is 5.5 m/s and as the number of nodes

increases, the communication delay at this speed is larger than at speed of 1.8 m/s. In both sce-

narios, the proposed method has lower communication delay which proved its effectiveness.

This proves that, the proposed method is robust to dynamic network environment and with

varying data traffic.

6.8 Convergence of algorithm

Fig 16 illustrates the convergence of the proposed FGB algorithm under increasing number of

iterations. As can be seen from Fig 16, the algorithm converges to local minimum that indi-

cates its effectiveness.

Fig 12. Scalability evaluation under large network.

https://doi.org/10.1371/journal.pone.0301078.g012
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Fig 14. Network running time comparison of algorithms.

https://doi.org/10.1371/journal.pone.0301078.g014

Fig 13. Energy efficiency analysis of each component.

https://doi.org/10.1371/journal.pone.0301078.g013
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Fig 15. Communication delay evaluation at different node mobility. (a) 1.8 m/s. (b) 5.5 m/s.

https://doi.org/10.1371/journal.pone.0301078.g015
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6.9 Complexity analysis

Fig 17 compares the computational complexity in terms of computing time of the proposed

and existing algorithms with increasing number of iterations. As can be seen from Fig 17, the

complexity of the proposed algorithm is lower than existing algorithms which makes is com-

putationally efficient and easy to implement.

7 Conclusion and future work

The clustering routing technique for SDWSN is examined in this work. A hybrid optimiza-

tion algorithm that combines the global optimization capabilities of FA with the local optimi-

zation capabilities of BBOGSA is developed with the goal of enhancing the performance of

the optimization process for locating an approximate global solution. To hasten the rotation

of cluster heads, a distributed high-efficiency entropy energy-saving clustering routing

method is developed. The hybrid optimization method is compared with comparable algo-

rithms in terms of convergence accuracy, running time, and stability through experimental

simulation and analysis to demonstrate its optimization performance. To demonstrate how

the distributed high-efficiency entropy energy-saving clustering routing algorithm may

increase network longevity and decrease data transmission energy consumption, it is com-

pared with comparable methods. The limitations of the proposed study are as follows that

will be considered as next research. To increase the security of SDWSN, the following phase

of development will look at creating a DDoS assault detection and defense system. It will

employ an architecture that carries out multi-level DDoS mitigation in the data forwarding

layer, first-level DDoS detection in the edge layer, second-level DDoS detection in the con-

trol layer, and clustering in the device layer. This approach will be more scalable, energy-effi-

cient and improved.

Fig 16. Convergence of algorithm.

https://doi.org/10.1371/journal.pone.0301078.g016
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tions for Sustainable Living. SpringerBriefs in Applied Sciences and Technology. Springer, Cham.

95. Bassam W. and Al-qurabat A. A comprehensive review of clustering approaches for energy efficiency in

wireless sensor networks. International Journal of Computer Applications in Technology, 72(2), 139–

160, 2023.

96. Bassam W. and Al-qurabat A. A review of current prediction techniques for extending the lifetime of

wireless sensor networks. International Journal of Computer Applications in Technology, 71(4), 352–

362, 2023.

PLOS ONE SDN 5G wireless sensor network optimization algorithm

PLOS ONE | https://doi.org/10.1371/journal.pone.0301078 June 20, 2024 36 / 36

https://doi.org/10.1371/journal.pone.0301078

