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Abstract

In the field of soil mechanics, especially in transportation and environmental geotechnics,

the use of machine learning (ML) techniques has emerged as a powerful tool for predicting

and understanding the compressive strength behavior of soils especially graded ones. This

is to overcome the sophisticated equipment, laboratory space and cost needs utilized in

multiple experiments on the treatment of soils for environmental geotechnics systems. This

present study explores the application of machine learning (ML) techniques, namely Genetic

Programming (GP), Artificial Neural Networks (ANN), Evolutionary Polynomial Regression

(EPR), and the Response Surface Methodology in predicting the unconfined compressive

strength (UCS) of soil-lime mixtures. This was for purposes of subgrade and landfill liner

design and construction. By utilizing input variables such as Gravel, Sand, Silt, Clay, and

Lime contents (G, S, M, C, L), the models forecasted the strength values after 7 and 28 days

of curing. The accuracy of the developed models was compared, revealing that both ANN

and EPR achieved a similar level of accuracy for UCS after 7 days, while the GP model per-

formed slightly lower. The complexity of the formula required for predicting UCS after 28

days resulted in decreased accuracy. The ANN and EPR models achieved accuracies of

85% and 82%, with R2 of 0.947 and 0.923, and average error of 0.15 and 0.18, respectively,

while the GP model exhibited a lower accuracy of 66.0%. Conversely, the RSM produced

models for the UCS with predicted R2 of more than 98% and 99%, for the 7- and 28- day cur-

ing regimes, respectively. The RSM also produced adequate precision in modelling UCS of

more than 14% against the standard 7%. All input factors were found to have almost equal
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importance, except for the lime content (L), which had an average influence. This shows the

importance of soil gradation in the design and construction of subgrade and landfill liners.

This research further demonstrates the potential of ML techniques for predicting the strength

of lime reconstituted G-S-M-C graded soils and provides valuable insights for engineering

applications in exact and sustainable subgrade and liner designs, construction and perfor-

mance monitoring and rehabilitation of the constructed civil engineering infrastructure.

1. Introduction

Soil stabilization is the process of changing or maintaining one or more soil qualities to

improve a soil’s engineering features and performance [1]. This process is executed during the

construction of civil engineering infrastructures like pavement foundation (e.g., subgrade) and

landfill liners (compacted earth liners). The technique of adding a specific soil, chemical com-

ponents, or other cementing material to a natural soil to improve one or more of its attributes

is known as soil stabilization. Stabilization can be achieved by mechanically mixing natural soil

and stabilizing material together to form a homogeneous mixture, or by applying the stabiliz-

ing substance to an undisturbed soil deposit and allowing it to infiltrate through soil voids to

achieve interaction [2]. Stabilization is a 5000-year-old notion [3] stated that ancient Egypt

and Mesopotamia used stabilized earth roads and that the Greeks and Romans used lime as a

stabilizer. The addition of cement or lime to soil can help to stabilize it. Such stabilization pro-

cedures improve the stabilized soil’s varied engineering qualities, resulting in better construc-

tion material. The benefits of soil stabilization include increased soil strength, durability

stiffness, changes in permeability, density, porosity, and volume, waterproofing, reduced sur-

face abrasion, and reduced soil plasticity and swelling/shrinkage potential [4,5]. Lime is fre-

quently used as a soil stabilizing agent because it is readily accessible, inexpensive, and

effective at enhancing the soil’s strength and durability. The unconfined compressive strength,

abbreviated as UCS, is frequently used to determine the efficacy of different soil stabilization

techniques [6]. Apart from other qualities of stabilized soil, scientists generally agree that the

most important outcome of stabilization is unconfined compressive strength (UCS) [7]. The

stabilized soil’s unconfined compressive strength is determined by the water and the cement

amount in the mixture, the properties and types of the soil, and the curing and mixing condi-

tions [8–12]. The UCS determination of stabilized soil is critical in the construction and

improvement design. Some research has been done to forecast the UCS of stabilized soil using

input parameters including the binder concentration, water/binder ratio, and curing duration

[13–17].

Many researchers have used soft computation and other techniques to develop models for

estimating UCS values of stabilized soils [1,15,18–20]. In recent decades, computational intelli-

gence methods that are accomplished of estimating the input-output non-linear relationships

for many complicated issues have piqued interest [21]. As previously stated, the UCS is influ-

enced by several factors. Determining the UCS of soil samples requires time-consuming and

labor-intensive lab work. Developing predictive models to deal with this problem could be

advantageous. Many methods, such as traditional linear regressions, can be used to develop

such behavioral models [22,23]. However, regression techniques have several important prob-

lems, such as expecting a pre-specified nonlinear or linear relationship between the outputs

and inputs, which is not necessarily the case [24]. Machine learning (ML) techniques have

been more well-liked in recent years as a result of their capacity to assess and anticipate
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intricate relationships between output and input variables. This ability has helped the tech-

niques become more widely used. Three of the most popular machine learning methods used

for this are Gaussian processes (GP), evolutionary programming (EPR), and artificial neural

networks (ANN). GP is a method based on probability that employs a kernel function to

model the relationship between input variables and output variables. It has been effectively

implemented in a variety of applications, containing soil mechanics, to model the behavior of

soil and predict its engineering properties. EPR is a method for population-based optimization

that imitates the process of natural evolution in order to discover the optimum solution to a

problem. In the discipline of soil mechanics, it has been used to enhance the design of founda-

tions and to simulate the behavior of soil under a variety of loading conditions [25].

An Artificial Neural Network (ANN) is a computational model made up of various proce-

dures modules in which neurons generate output values depending on the input values. ANN

is getting popular in a variety of geotechnical engineering applications [26,27]. Some

researches, such as reported, [14,15,28–31] have used ANN models to estimate the UCS value

in chemical soil stabilization. The behavior of soil and its engineering properties can be pre-

dicted using ANN, which has found applications in a variety of fields, including soil mechan-

ics. Analytical formulas depend on ANN models are more precise than multivariable

nonlinear regression or high-performance multiple regression analysis. ANN, on the other

hand, is regarded as a "black box" application. Complex transfer functions, such as logistic sig-

moid and hyperbolic tangent sigmoid functions, are used to create prediction equations. As an

outcome, the use of ANN-based prediction purposes is limited because they cannot easily cal-

culate the output using the input values [32]. As a result, in this study, the ANN approach is

used to estimate a UCS prediction model. Despite the ANN models’ reasonable performance,

they need practical equations for calculating the results. Pharm et al. [27] used the ANN

approach to develop the UCS prediction model concerning the specified parameters. A statisti-

cal analysis reveals that the suggested model created in this work is dependable and accurate,

with a high relationship coefficient and minimal root mean squared errors. The most impor-

tant variables impacting the UCS value, according to the ANN-based model, are and cement

content the soil particles percentage passing filter 0.5 mm. Jahed Armaghoni et al. [33] devel-

oped three models to forecast UCS of granite: multiple regression analysis (MRA), adaptive

neuro-fuzzy inference system (ANFIS), and artificial neural network (ANN). ANFIS is more

precise than the other two models, they discovered. According to the test data, it is also proven

that ANN outperforms MRA. Sharma et al [34] established four numerous and simple linear

regression models to forecast UCS of structured artificial soil. All of their models have an R2 of

greater than 0.9, indicating that they are accurate. More sophisticated models with more input

variables, on the other hand, showed greater accuracy.

Genetic programming (GP) is a type of managed machine learning approach based on Dar-

win’s theory of evolution [35]. It’s a different way of looking at behavior modeling. Gene-

expression programming (GEP) is a division of GP that uses a computer program to generate

a solution to a problem [36], and it is the method most typically employed in geotechnical

engineering [37]. GEP also selects populations, depending on fitness purpose and presents

them with a gene via numerous operators [38]. Without making any expectations about the

likely functional connections structure, GEP can construct strong prediction functions [39].

The GEP model is a reliable, strong, and precise forecasting method. Furthermore, GEP-based

equations are more practical and transparent than ANN-based formulas. As a result, the pre-

dictive proposed equations derived from the GEP model may be ready for use.

Cement, asphalt, and lime were combined with weak soil in this study to rise the strength of

the soil specimens. The impacts of additive contents (i.e. cement, asphalt, and lime) on the

UCS value were investigated using UCS tests on stabilized specimens. The effective majors are
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also used to estimate the UCS value using MLR and NLR methods. The prediction formulas

among variables and the relative relevance of input parameters were measured using ANNs

and GAs analysis. The UCS data obtained from soaked and unsoaked mixtures were combined

in this study. This means that the UCS values obtained from the soil-lime mixture after it had

been soaked were combined with the UCS values obtained from the mixture before it had

been soaked. This method is frequently utilized in soil mechanics research in order to provide

a more in-depth investigation of the efficiency of various soil stabilization strategies. In order

to assess the stocked UCS’s contribution to the improvement of the lime reconstituted mix-

ture, the ML techniques of GP, EPR, and ANN were utilized. The behavior of soil is highly

complex and nonlinear, and traditional analytical and empirical approaches may not be able to

capture all of the underlying relationships between output and input variables. Because of this,

the usage of ML techniques is particularly useful in soil mechanics [40].

GP, EPR, and ANN can all model complex relationships and make predictions based on the

input data. GP is a non-parametric method that suppose no functional particular form for the

correlation between output and input variables. Therefore, it is capable of capturing nonlinear

relationships and managing chaotic data. EPR is a population-based optimization method that

can seek a vast search space for the optimal solution. This capability makes EPR a useful

modeling tool for complex systems [41]. Due to its adaptability, ANN has been widely

employed to model intricate relationships in numerous fields, including soil mechanics. The

stored UCS data for the soil-lime mélange served as input data for machine learning tech-

niques, and ML models were trained using the input data to predict the UCS values. The ML

methodologies utilized the accumulated UCS data for the soil-lime mixture as input data.

After instructing the models, they were used to determine if the addition of calcium to the soil

increased UCS values [42].

The use of both unsoaked and soaked UCS data in the study allows for a more comprehen-

sive evaluation of the soil-lime mixture’s efficacy, as the soaked UCS values are more indicative

of the mixture’s performance in moist conditions. This is due to the fact that the unsoaked

UCS values reflect the mixture’s performance in dry conditions [43].

ML methods can also be employed to optimize soil stabilization systems by identifying the

optimal combination of stabilizing compounds, soil varieties, and other variables. This can be

accomplished by identifying the optimal combination of factors. Engineers can use this infor-

mation to design systems that are more effective, efficient, and cost-effective, while still meet-

ing specific performance requirements [44]. However, there are some limitations to the

application of ML methods in soil mechanics. To train machine learning models, high-quality

data is required, which can be considered a drawback of the technology. In the field of soil

mechanics, where data acquisition can be time-consuming and costly, this can be challenging.

Moreover, ML models can be challenging to interpret, making it difficult to comprehend the

underlying mechanisms that regulate soil behavior [45]. This can make understanding the

mechanisms underlying soil behavior more difficult. Overall, ML techniques provide a robust

and adaptable method for evaluating the effectiveness of soil stabilization techniques, and they

can be combined with other techniques to provide a more complete understanding of soil

behavior. Additionally, these methodologies can be used to evaluate the effectiveness of soil

stabilization techniques [46].

The application of ML techniques in this study provides an essential tool for evaluating the

effectiveness of soil stabilization techniques and can aid engineers in designing more efficient

and effective soil stabilization systems. In addition to the previously mentioned ML tech-

niques, additional methods exist for evaluating the effectiveness of soil stabilization techniques

[47]. Techniques that fall into this category contain empirical, analytical, and numerical

approaches [48]. Empirical methods are frequently used in the field of soil mechanics to
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develop correlations between the engineering properties of soil and other factors such as soil

type, moisture content, and confining pressure [49]. Statistical analysis of experimental data

forms the basis for these empirical methodologies [12]. Despite providing estimates of soil

behavior in a fast and straightforward manner, it is possible that these techniques are limited

in their ability to capture complex relationships [41,50].

Analytical methods are founded on mathematical models that characterize the behavior of

soil using equations derived from fundamental principles of soil mechanics [51]. These mathe-

matical models provide the foundation for analytical methods [52]. These methodologies can

enhance the design of soil stabilization systems by providing a deeper understanding of soil

behavior. However, in order to simplify them, it may be necessary to make assumptions that

reduce their precision [53]. The foundation of numerical methods is the use of numerical

models, such as finite element analysis (FEA) and discrete element method (DEM), in com-

puter simulations of soil behavior [54]. These methods are supported by computer simulations

[48]. Nevertheless, these methods can be computationally intensive and require a substantial

amount of knowledge to be utilized effectively [55]. In contrast, they can provide precise and

exhaustive predictions of soil behavior. When making a decision regarding soil stabilization

techniques, it is essential to consider the specific application, the available data, the desired

level of precision and complexity, and the evaluation method [56]. The implementation of ML

techniques offers a method that is both robust and adaptable, and it can be combined with

other techniques to provide a more comprehensive analysis of the behavior of soil.

In the discipline of soil mechanics, techniques based on machine learning have several

advantages over more conventional methods. In the field of soil mechanics, where data can be

chaotic and highly variable, their ability to manage large and complex datasets is especially

advantageous [57–59]. Traditional methods may not be able to identify nonlinear relationships

between input and output variables, whereas ML techniques can [58]. The ability of machine

learning techniques to learn from data and adapt to changing conditions is an additional

advantage of using these methods [57]. This is particularly useful in the field of soil mechanics,

which is significant because the behavior of soil is highly dependent on a number of variables,

including its moisture content, confining pressure, and loading rates. Machine learning tech-

niques can learn from data collected under diverse conditions and predict future conditions

[47].

In this research paper, the strengths at 7- and 28-days curing period have been forecasted

by using four intelligent techniques for a reconstituted soil treated with lime at different dos-

ages. This is for the purpose of subgrade (as a transportation geotechnic structure) and landfill

liner (as an environmental geotechnic infrastructure) design and construction. These struc-

tures have special benefits they offer to the overall life of humanity according to the UNSDGs.

Transportation geotechnics and environmental geotechnics are two specialized branches of

geotechnical engineering that focus on the application of soil mechanics, rock mechanics, and

other geotechnical principles to the design, construction, and maintenance of transportation

infrastructure and environmental projects [15]. Transportation geotechnics involves the appli-

cation of geotechnical engineering principles to the design and construction of transportation

infrastructure such as highways, railways, airports, and ports. Subgrade and pavement design:

This involves evaluating the properties of the underlying soil or rock to ensure that it can sup-

port the loads imposed by traffic and environmental conditions, and designing suitable pave-

ment structures. Slope stability and embankment design: Assessing the stability of natural and

man-made slopes, as well as designing and constructing embankments that can support trans-

portation infrastructure [17]. Foundation design for transportation structures: Ensuring that

transportation structures such as bridges, tunnels, and retaining walls have stable foundations

in a variety of soil and rock conditions. Ground improvement techniques: Implementing
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methods to strengthen or stabilize the ground, such as soil compaction, reinforcement, grout-

ing, or soil replacement, to improve the performance of transportation infrastructure [35]. On

the other hand, environmental geotechnics focuses on the application of geotechnical engi-

neering principles to address environmental challenges, such as waste management, contami-

nated site remediation, and sustainable infrastructure development [23]. Landfill design and

management: Evaluating the geotechnical properties of the site for landfill construction,

designing liners and leachate collection systems to prevent environmental contamination, and

managing the stability and settlement of waste fills. Contaminated site remediation: Applying

geotechnical techniques to remediate sites contaminated with pollutants, such as heavy metals,

hydrocarbons, or hazardous chemicals, by using methods like soil stabilization, containment,

and in-situ treatment. Geotechnical aspects of sustainable infrastructure: Incorporating geo-

technical considerations into the design and construction of sustainable infrastructure, such as

green roofs, permeable pavements, and engineered natural systems for stormwater manage-

ment [42]. Both transportation geotechnics and environmental geotechnics require a thorough

understanding of soil behavior, groundwater conditions, and the interaction between soil and

man-made structures [26]. Many more references have been made that studied the use lime in

single and or combination of other cementitious materials such as the application of cement/

lime combination with pozzolans accompanied with crushed stone waste to improve the

strength of soil [60], the application of lime-nano-silica combination [61], the treatment of

silty soil with lime considering the strength improvement comparison between UCS and split-

ting tensile strength [62], and the application of bagasse-lime combination, where ANN was

also utilized to model the behavior of this material combination in soil [63]. Yet, none tried the

use of the novel response surface methodology (RSM) in the combination of other regression

techniques to model these problems. Also, the application of lime has continued to come in

the combination of other materials. But, in the present work, lime has been applied as the only

cementitious material and a combination of four machine learning techniques have been used

to predict the strength development of the treated soil considering its gradation pattern. Geo-

technical engineers working in these fields play a crucial role in ensuring the safe, cost-effec-

tive, and sustainable development of transportation and environmental infrastructure. For the

need to solve most environmental geotechnics problems, the more pronounced of which are

those related to landfills and pavement foundations across the world, this work has been

undertaken to propose more reliable and robust mathematical models based on advanced

machine learning techniques. These techniques are flexible because of the advantage of utiliz-

ing proposed closed-form equations to apply the models manually as well as smartly. Landfills

and pavement subgrade systems require immediate attention from design to construction and

to usage over the period to monitor the optimized utilization of the sustainable materials used

in their construction. So, this research project presents a potential for use in this area. Many

other research works are stated above have been carried but none presents a combination of

the four techniques applied in this paper. Meanwhile, the flowchart of the present research

project is illustrated in Fig 1.

2. Data collection and statistical analysis

The complete database constitutes of an open database of 136 records, which were collected

from experimentally tested samples of soil stabilized with lime deposited at the US soil stabili-

zation database, which can be found in the cited literature [64]. These soils were collected

across the world especially the United States in the East central Iowa, North central Florida,

Illinois, Kansas, etc. and classified as dune sand, kaolinite clay, illinite clay, montmorillonite

clay, alluvial, sand loess, friable loess, plastic loess, leached Kansas till, unleached Kansas till,
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etc. [64]. The lime reconstituted graded soil samples were collected at different locations

within US soil and other points within the upper greater Europe giving a global representation

of soils. Each record contains the following data:

• Gravel content, G = 100.G/ (G+S+M+C)

• Sand content, S = 100.S/ (G+S+M+C)

• Silt content, M = 100.M/ (G+S+M+C)

• Clay content, C = 100.C/ (G+S+M+C)

• Lime dose, L = 100.L/ (G+S+M+C)

• Unconfined compressive strength after 7 days (kPa), UCS7

• Unconfined compressive strength after 28 days (kPa), UCS28

The collected records were partitioned into a training set of� 75% (100 records) and vali-

dation set of� 25% (36 records) observing the conditions of the k-fold cross-validation to

overcome under-fitting issues in the model. Tables 1 and 2 include the complete dataset for

the training and validation respectively, while Tables 3 and 4 summarize their statistical

Fig 1. The flowchart of the research project.

https://doi.org/10.1371/journal.pone.0301075.g001
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Table 1. Training dataset.

G S M C L UCS7 UCS28 G S M C L UCS7 UCS28

% % % % % kPa kPa % % % % % kPa kPa

Training set

0 11 39 48 2 272 217 0 10 38 52 8 1116 1707

10 41 30 18 4 1760 3461 1 29 33 35 8 892 1387

1 0 57 42 8 1028 1843 1 29 33 35 4 952 914

0 0 60 39 12 948 1667 0 31 30 38 6 1200 1818

0 3 36 61 4 778 925 10 11 37 42 4 372 411

0 6 18 75 4 729 1079 0 31 30 38 12 1264 2283

10 11 37 42 8 545 840 0 1 56 41 2 157 164

1 0 70 29 4 890 1756 0 0 60 39 10 866 1566

0 31 30 38 10 1318 2013 1 0 60 39 4 754 1332

1 21 15 62 12 1166 1593 8 26 33 32 8 1313 2834

0 0 81 19 6 1392 2758 0 2 28 68 2 174 195

10 41 30 18 12 1409 2842 0 0 60 39 14 913 1729

0 11 39 48 12 906 1533 0 38 47 12 4 233 302

0 2 28 68 8 1170 2095 10 11 37 42 12 600 1251

0 31 30 38 4 1127 1901 9 29 31 30 12 1696 2941

1 29 33 35 12 832 1305 1 0 60 39 12 1061 2536

0 3 36 61 10 1250 2217 0 0 60 39 4 309 873

0 6 18 75 6 923 1427 0 0 52 46 8 894 1643

0 38 47 12 8 277 375 0 0 60 39 8 755 1445

0 1 56 41 8 341 484 0 37 38 23 2 175 147

0 1 61 36 12 372 501 0 16 13 70 8 917 1379

1 0 60 39 10 1037 2313 10 11 37 42 10 581 1054

0 20 40 38 12 1910 3038 0 0 81 19 2 802 417

0 2 69 28 4 152 145 3 33 30 33 8 902 1059

0 1 69 29 8 420 683 1 45 18 36 12 1085 2248

0 0 81 19 12 1628 2924 0 38 47 12 12 405 566

0 20 40 38 4 1745 2839 0 7 36 57 4 952 1611

0 16 13 70 10 1108 1493 0 0 52 46 4 534 882

0 3 36 61 12 1344 2536 0 0 68 31 12 700 1224

0 7 36 57 8 893 1557 0 0 60 39 2 140 91

0 7 36 57 6 964 1564 0 18 42 39 2 127 120

0 2 69 28 8 284 277 10 11 37 42 6 458 609

0 10 38 52 6 1187 1864 0 31 30 38 2 397 230

1 45 18 36 6 1026 2231 0 38 47 12 2 182 237

3 33 30 33 2 488 712 1 0 60 39 8 990 2185

1 21 15 62 8 882 1286 0 1 69 29 2 235 163

0 11 39 48 8 792 1398 0 16 13 70 12 1231 1923

9 29 31 30 8 1843 4219 0 1 61 36 8 303 439

3 33 30 33 12 895 1163 0 6 18 75 12 876 1339

8 26 33 32 12 1298 2036 10 41 30 18 8 1663 3207

0 2 28 68 12 1201 2208 9 29 31 30 4 2141 3883

0 1 61 36 2 177 170 1 0 60 39 6 967 2034

1 21 15 62 4 329 329 0 20 40 38 6 2193 3757

1 0 57 42 4 861 1398 0 3 36 61 8 1155 1875

0 20 40 38 10 2335 3557 1 0 70 29 2 393 150

0 0 60 39 6 527 1538 0 16 13 70 12 1232 1693

1 45 18 36 10 1082 2406 0 37 38 23 12 278 313

1 29 33 35 2 656 858 0 31 30 38 8 1283 2175

(Continued)
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Table 1. (Continued)

G S M C L UCS7 UCS28 G S M C L UCS7 UCS28

% % % % % kPa kPa % % % % % kPa kPa

0 0 68 31 8 714 1047 0 37 38 23 8 248 304

0 0 81 19 4 1184 2691 0 0 68 31 4 573 941

https://doi.org/10.1371/journal.pone.0301075.t001

Table 2. Validation dataset.

G S M C L UCS7 UCS28

% % % % % kPa kPa

Validation set

0 7 36 57 10 919 1591

0 1 61 36 4 291 413

1 45 18 36 8 1029 2328

9 29 31 30 2 1217 1285

0 16 13 70 6 572 457

0 20 40 38 8 2217 3764

0 2 69 28 12 286 365

0 10 38 52 10 1100 1618

0 3 36 61 6 1014 1555

8 26 33 32 2 1380 2320

0 2 28 68 4 739 852

0 18 42 39 8 215 377

0 7 36 57 12 930 1598

10 41 30 18 2 1406 1696

0 18 42 39 12 302 443

1 45 18 36 4 1007 1696

0 1 56 41 4 252 345

0 0 52 46 12 1010 1428

0 1 56 41 12 438 582

0 37 38 23 4 232 232

0 10 38 52 4 1119 1762

0 6 18 75 10 878 1400

0 11 39 48 4 734 943

1 0 57 42 12 1230 1733

8 26 33 32 4 1417 3386

0 0 81 19 8 1319 2842

0 1 69 29 4 334 462

0 6 18 75 8 851 1461

3 33 30 33 4 708 1200

1 0 70 29 12 1005 1994

0 10 38 52 12 1056 1407

1 0 70 29 8 1069 2282

0 18 42 39 4 136 234

0 0 52 46 2 206 258

0 0 68 31 2 222 215

0 1 69 29 12 334 427

https://doi.org/10.1371/journal.pone.0301075.t002
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characteristics and the Pearson correlation matrix respectively. Lastly, Fig 2 shows the histo-

grams for both inputs and outputs.

3. Research program

Three different Artificial Intelligent (AI) techniques and one symbolic machine learning

trained technique were used to predict the unconfined compressive strengths after 7 and 28

days (UCS7, UCS28) of open-air curing of the lime reconstituted soil using the collected,

sorted and organized database. These AI techniques are the Genetic Programming (GP), three

models trained differently of Artificial Neural Network (ANN) and polynomial regression

optimized using genetic algorithm which is known as the Evolutionary Polynomial Regression

(EPR) [49–51]. The symbolic machine learning trained technique is known as the response

surface methodology due to its simple interface of proposing a closed-form equation that

allows researchers to apply its model automatically and manually [52–59]. All the four (4)

developed models were deployed to predict (UCS7, UCS28) in (kPa) using the soil grading

proportions from Gravel, Sand, Silt, and Clay and additive; Lime contents (G, S, M, C & L).

Each of the four developed models was based on a different approach: an evolutionary

approach for GP, mimicking biological neurons for ANN, an optimized mathematical regres-

sion technique for EPR and symbolic regression interface algorithm for the RSM. However, all

the models were assessed for prediction accuracy based on the Sum of Squared Errors (SSE)

and the determination coefficient known as the R-squared value (R2). In the data partitioning,

the k-fold cross-validation has been applied to solve problems of under-fitting due to the size

Table 3. Statistical analysis of collected database.

Description G S M C L UCS7 UCS28

% % % % % kPa kPa

Training set

Min. 0.00 0.00 13.00 12.00 2.00 127 91

Max. 10.00 45.00 81.00 75.00 14.00 2335 4219

Avg. 1.51 14.62 42.51 40.34 7.34 880 1489

SD 3.14 14.72 17.71 15.28 3.52 495 978

VAR 2.08 1.01 0.42 0.38 0.48 0.56 0.66

Validation set

Min. 0.08 0.06 0.00 1.79 139.00 0.79

Max. 0.93 0.92 0.05 2.10 205.00 69.70

Avg. 0.30 0.69 0.00 1.89 157.00 24.81

SD 0.27 0.28 0.01 0.09 22.96 24.44

VAR 0.91 0.41 2.60 0.05 0.15 0.99

https://doi.org/10.1371/journal.pone.0301075.t003

Table 4. Pearson correlation matrix of the dataset.

G S M C L UCS7 UCS28

G 1.00

S 0.35 1.00

M -0.23 -0.61 1.00

C -0.26 -0.33 -0.53 1.00

L -0.03 -0.03 -0.08 0.14 1.00

UCS7 0.28 0.22 -0.26 0.05 0.30 1.00

UCS28 0.31 0.19 -0.18 -0.02 0.32 0.95 1.00

https://doi.org/10.1371/journal.pone.0301075.t004
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of the data points [58,59]. The accuracies of the developed models were evaluated by compar-

ing the SSE between predicted and calculated shear strength parameter values based on the

results of each model.

3.1 Genetic Programming (GP)

Genetic programming (GP), the framework of which is illustrated in Fig 3 is a type of evolu-

tionary algorithm that is used to automatically generate computer programs to solve problems

or perform tasks [52]. It is a machine learning technique that draws inspiration from the pro-

cess of natural selection and genetic evolution [53]. The basic idea behind genetic program-

ming is to create a population of candidate computer programs, represented as trees or graphs,

Fig 2. Distribution histograms for inputs (in blue) and outputs (in green).

https://doi.org/10.1371/journal.pone.0301075.g002
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and then use evolutionary principles such as selection, crossover, and mutation to evolve and

improve these programs over successive generations until a desired level of performance is

achieved. Representation: In genetic programming, computer programs are typically repre-

sented as trees or graphs, with nodes representing operations or functions, and edges repre-

senting the flow of data or control between operations. Initialization: The process starts by

creating an initial population of random programs [54]. Each program is evaluated based on

its ability to solve the given problem or perform the desired task. Selection: Programs from the

current population are selected for reproduction based on their fitness, which is a measure of

how well they perform the task. This is typically done using a fitness function that quantifies

the performance of each program. Crossover: Selected programs are combined through cross-

over, a process that mimics genetic recombination in nature [55]. During crossover, sub-trees

or sub-graphs from two parent programs are exchanged to create new offspring programs.

Mutation: Random changes are introduced to the offspring programs through mutation, simu-

lating genetic variation. This helps in exploring new regions of the search space and preventing

premature convergence to suboptimal solutions. Evaluation: The newly created programs

are evaluated using the fitness function to determine their performance on the given task. Ter-

mination: The evolutionary process continues for a certain number of generations or until a

termination condition is met, such as reaching a satisfactory level of performance or running

out of computational resources [54]. Genetic programming has been successfully applied to

a wide range of problems, including symbolic regression, automatic program synthesis,

control system design, and pattern recognition [52–56]. It is a powerful approach for automat-

ically discovering solutions to complex problems without the need for human-designed

algorithms.

Fig 3. Typical illustrative framework for the genetic programming model.

https://doi.org/10.1371/journal.pone.0301075.g003
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3.2 Artificial Neural Network (ANN)

An artificial neural network (ANN), the typical framework if which is illustrated in Fig 4 is a

computational model inspired by the structure and function of biological neural networks,

such as the human brain [49]. It is a powerful machine learning technique used for solving

complex problems such as pattern recognition, classification, regression, and more [50]. Struc-

ture: ANN consists of interconnected nodes, called neurons or units, organized in layers. Typi-

cally, there are three types of layers: input layer, hidden layers, and output layer [51]. The

connections between neurons are associated with weights that are adjusted during the training

process. Learning: ANNs learn from data through a process called training. During training,

the network is presented with input data, and the weights of the connections are adjusted

based on the network’s output and the expected output [50]. This process is often performed

using optimization algorithms such as gradient descent and its variants. Activation Function:

Each neuron in a neural network typically applies an activation function to the weighted sum

of its inputs. Common activation functions include sigmoid, tanh, ReLU (Rectified Linear

Unit), and their variants [49]. Types of Neural Networks: There are various architectures of

neural networks, such as feedforward neural networks (the most basic type), convolutional

neural networks (CNNs) for image processing, recurrent neural networks (RNNs) for sequen-

tial data, and more advanced architectures like deep neural networks (DNNs) and generative

adversarial networks (GANs) [50]. Applications: ANNs are used in a wide range of applica-

tions, including image and speech recognition, natural language processing, recommendation

systems, financial forecasting, medical diagnosis, and many other fields where complex pattern

recognition and prediction tasks are required [51]. Challenges: Training a neural network can

be computationally intensive and requires a large amount of labeled data. Overfitting, where a

model performs well on training data but poorly on unseen data, is a common challenge that

needs to be addressed through techniques like regularization and cross-validation. Overall,

artificial neural networks have proven to be highly effective in solving complex problems, and

their capabilities continue to expand with ongoing research and advancements in the field of

deep learning.

3.3 Evolutionary Polynomial Regression (EPR)

Evolutionary Polynomial Regression (EPR) is a non-linear regression technique that uses a

genetic programming approach to evolve mathematical models [49]. It was proposed by Dr.

Nordin Zakaria in the early 1990s. EPR combines the concepts of genetic algorithms and poly-

nomial regression to automatically evolve a mathematical model that best fits a given dataset.

The algorithm starts with a population of random mathematical expressions (polynomials)

Fig 4. Typical illustrative framework for the ANN.

https://doi.org/10.1371/journal.pone.0301075.g004
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and uses genetic operators such as selection, crossover, and mutation to evolve these expres-

sions over several generations [51]. During the evolutionary process, the algorithm evaluates

the fitness of each mathematical expression by comparing its performance in fitting the dataset

[50]. The fittest expressions are then selected to produce offspring through genetic operators,

and this process is repeated for multiple generations until a satisfactory mathematical model is

obtained [49]. EPR has been used in various fields, including engineering, economics, and

environmental science, to model complex relationships between input variables and output

data [50]. It has the advantage of being able to automatically discover the structure of the

mathematical model, making it particularly useful when the underlying relationship between

variables is not well understood or when traditional regression techniques may not be suitable

[49]. However, it’s worth noting that EPR, like other evolutionary algorithms, can be computa-

tionally intensive and may require careful parameter tuning to achieve optimal results. Addi-

tionally, the interpretability of the evolved models can be a challenge, as the resulting

mathematical expressions may be complex and difficult to understand.

3.4 Models’ evaluation indices

Machine learning model performance evaluation is a critical step in the development and

deployment of machine learning models. It involves assessing how well a trained model per-

forms on new, unseen data. There are several methods for evaluating the performance of

machine learning models, and the choice of method depends on the type of problem and the

nature of the data [49]. Here are some commonly used techniques for evaluating machine

learning model performance: Train/Test Split: The simplest method for evaluating model per-

formance is to split the available data into a training set and a testing set [50]. The model is

trained on the training set and then evaluated on the testing set to assess its performance on

unseen data. Cross-Validation: Cross-validation is a technique used to assess how well a model

generalizes to new data [51]. It involves splitting the data into multiple subsets, training the

model on a combination of these subsets, and then evaluating it on the remaining subset. This

process is repeated multiple times, and the results are averaged to obtain a more reliable esti-

mate of the model’s performance. Performance Metrics: Various performance metrics can be

used to evaluate the performance of machine learning models, depending on the nature of the

problem [49]. Common metrics include accuracy, precision, recall, F1 score, area under the

receiver operating characteristic (ROC) curve (AUC-ROC), and mean squared error (MSE),

among others. Confusion Matrix: For classification problems, a confusion matrix can be used

to visualize the performance of a model by showing the number of true positive, false positive,

true negative, and false negative predictions [51]. ROC Curve and Precision-Recall Curve:

These curves are used to evaluate the performance of binary classification models and visualize

the trade-off between true positive rate and false positive rate, or precision and recall, respec-

tively [50]. Bias-Variance Trade-off: Understanding the bias-variance trade-off is crucial for

evaluating model performance. A model with high bias may underfit the data, while a model

with high variance may overfit the data. Balancing bias and variance are important for creating

a model that generalizes well to new data [49]. Hyperparameter Tuning: Evaluating model per-

formance often involves hyperparameter tuning, which involves adjusting the settings of a

model to optimize its performance. Techniques such as grid search and random search can be

used to find the best hyperparameters for a given model. It’s important to note that the choice

of evaluation method and performance metric depends on the specific machine learning prob-

lem at hand, and there is no one-size-fits-all approach. Additionally, it’s important to consider

the implications of the chosen evaluation method on the overall goals of the machine learning

project [50]. Meanwhile, data partitioning and k-fold cross-validation are both techniques
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used in machine learning for model evaluation and selection. Each approach has its own effects

and considerations, and they can be complementary in addressing various challenges in model

training and assessment. In data partitioning, the dataset is typically divided into two subsets:

a training set and a test set. The training set is used to train the model, while the test set is used

to evaluate the model’s performance on unseen data [51]. Commonly, data partitioning

involves a 70/30 or 80/20 split, where the larger portion of the data is used for training and the

smaller portion for testing. This approach is simple and easy to implement. K-fold cross-vali-

dation involves dividing the dataset into K subsets (folds) [50]. The model is trained and evalu-

ated K times, each time using a different fold as the validation set and the remaining folds as

the training set. Performance metrics are averaged across the K iterations to obtain a final per-

formance estimate. K-fold cross-validation provides a more comprehensive assessment of the

model’s performance, as it uses the entire dataset for both training and validation. Data parti-

tioning can lead to variability in model performance estimates, especially when the test set is

small [49]. The performance of the model may heavily depend on which data points end up in

the test set. K-fold cross-validation provides a more reliable estimate of model performance, as

it averages performance across multiple validation sets, reducing the impact of variability in

the test set [50]. With data partitioning, a portion of the data is reserved solely for testing,

which means that less data is available for model training K-fold cross-validation makes more

efficient use of the available data, as each data point is used for both training and validation at

some point during the K iterations [50]. Data partitioning may lead to a risk of overfitting to

the test set, especially when the test set is relatively small [49]. K-fold cross-validation can help

mitigate the risk of overfitting to a single test set, as the model is evaluated on multiple valida-

tion sets, providing a more robust assessment of its generalization performance [49]. In prac-

tice, both techniques can be used in combination. For example, a dataset can be partitioned

into a training set and a holdout test set, and K-fold cross-validation can be applied to the

training set for model selection and hyperparameter tuning [49]. This combined approach

allows for robust model evaluation while still reserving a separate test set for final model assess-

ment. K-fold cross-validation is a powerful technique for assessing and mitigating overfitting

in machine learning models. Overfitting occurs when a model learns to perform well on the

training data but does not generalize well to unseen data [51]. K-fold cross-validation helps to

address overfitting in the following ways: By using K-fold cross-validation, the model is evalu-

ated multiple times on different subsets of the data. This process allows for a more comprehen-

sive understanding of how well the model generalizes to unseen data [50]. If a model performs

well across all K folds, it is an indication that the model is less likely to be overfitting [49].

When a model is trained and evaluated on a single train-test split, the performance estimate

can be highly dependent on which data points end up in the training set and which end up in

the test set. This can lead to high variance in the performance estimate. K-fold cross-validation

helps to reduce this variance by averaging performance across K different validation sets, pro-

viding a more stable estimate of model performance [49]. In each fold of K-fold cross-valida-

tion, every data point is used for both training and validation. This ensures that all data points

contribute to the evaluation of the model, which can help in identifying overfitting tendencies

that may not be apparent when using a single train-test split [50]. K-fold cross-validation can

be used to compare the performance of multiple models and select the one that generalizes

best to unseen data. This can help in choosing a model that is less prone to overfitting [50].

When tuning hyperparameters of a model, K-fold cross-validation can be used to find the opti-

mal settings while guarding against overfitting to the validation set. Overall, K-fold cross-vali-

dation is a valuable tool for assessing and addressing overfitting in machine learning models

[50]. It provides a more robust evaluation of model performance and helps in selecting models

that are more likely to generalize well to new data.
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3.4.1 Sum of Squared Errors (SSE). The sum of squared errors (SSE), also known as the

residual sum of squares (RSS), is a commonly used metric for evaluating the performance of a

regression model. It is a measure of the discrepancy between the observed values and the val-

ues predicted by the model [59]. In the context of linear regression, the SSE is calculated by

taking the difference between each observed target value (i.e., the actual value in the dataset)

and the corresponding predicted value (i.e., the value predicted by the regression model),

squaring each difference, and then summing up all these squared differences [58,59]. Mathe-

matically, the SSE for a regression model with n data points can be expressed as:

SSE ¼ Sðyi � yÞ2 ð1Þ

Where: yi represents the observed value of the target variable for the i-th data point, ȳ repre-

sents the predicted value of the target variable for the i-th data point, and the summation is

taken over all n data points. The SSE is a measure of the variability of the data that is not

explained by the regression model [49]. A lower SSE indicates a better fit of the model to the

data, as it means that the model’s predictions are closer to the actual observed values. The SSE

is often used in the context of ordinary least squares (OLS) regression, where the goal is to

minimize the SSE to find the best-fitting line or hyperplane for the given data [50]. Minimizing

the SSE is equivalent to finding the parameters of the regression model that provide the best fit

to the data in terms of minimizing the squared differences between the observed and predicted

values [59]. While the SSE is a useful metric for evaluating the performance of regression mod-

els, it is important to consider other metrics as well, such as R-squared and others, to gain a

comprehensive understanding of the model’s performance.

3.4.2 R-squared value. R-squared, often denoted as \ (R^2 \), is a statistical measure that

represents the proportion of the variance in the dependent variable that is predictable from the

independent variable(s) in a regression model [59]. In the context of linear regression, it is a

measure of how well the independent variables explain the variability of the dependent vari-

able. The \ (R^2 \) value is calculated as the ratio of the explained sum of squares (ESS) to the

total sum of squares (TSS), and is defined as:

n½R2̂ ¼ 1 � nfracfSSEgfTSSgn� ð2Þ

Where: SSE denotes the sum of squared errors (also known as residual sum of squares),

which measures the discrepancy between the observed values and the values predicted by the

model. TSS represents the total sum of squares, which measures the total variance in the

dependent variable. Alternatively, the \(R^2 \) value can also be calculated as the squared cor-

relation coefficient between the observed and predicted values of the dependent variable [58].

This interpretation underscores the notion that \(R^2 \) measures the proportion of the vari-

ance in the dependent variable that is explained by the independent variables in the model.

The \(R^2 \) value ranges from 0 to 1, with: \(R^2 = 0 \) indicating that the independent vari-

ables do not explain any of the variability of the dependent variable. \(R^2 = 1 \) indicating

that the independent variables explain all of the variability of the dependent variable [59].

Interpretation of \(R^2 \): A higher \(R^2 \) value indicates that a larger proportion of the vari-

ance in the dependent variable is explained by the independent variables, suggesting a better

fit of the model to the data. A lower \ (R^2 \) value indicates that the independent variables

provide little explanatory power for the dependent variable [57]. It’s important to note that

while \ (R^2 \) is a useful measure for assessing the goodness of fit of a regression model, it

should be used in conjunction with other metrics, such as adjusted \ (R^2 \), mean squared

error (MSE), and others, to gain a comprehensive understanding of the model’s performance

and to avoid potential pitfalls associated with overfitting or underfitting.
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3.5 Response Surface Methodology (RSM)

Response Surface Methodology (RSM) the framework of which is shown in Fig 5 is a collection

of mathematical and statistical techniques used for designing experiments, building empirical

models, and finding the optimal conditions for a process [52]. It is commonly used in scientific

and engineering fields, particularly in areas such as chemical engineering, manufacturing, and

product development. Modeling and optimizing a process: RSM is used to develop mathemati-

cal models that represent the relationship between input variables (factors) and the output

response of interest [53]. These models are then used to optimize process conditions to achieve

desired outcomes. Experiment design: RSM involves the design of experiments to efficiently

explore the relationships between multiple input variables and the response variable [54]. This

typically involves conducting a series of experiments with carefully chosen factor settings to

collect data for model building. Finding optimal process conditions: Once the mathematical

models are developed, RSM techniques are used to identify the optimal or near-optimal set-

tings of the input variables that lead to the desired response [55]. Factorial designs: These are

experimental designs in which all possible combinations of factor levels are studied. They are

used to identify the main effects and interactions of the factors on the response [56]. Central

composite designs: These designs involve a combination of factorial points and center points,

and are used to fit a second-order polynomial model. They are effective for estimating curva-

ture and interaction effects [57]. Box-Behnken designs: These designs are used to fit a second-

order model without needing to study all possible combinations of factor levels. They are par-

ticularly useful when the number of factors is moderate. Analysis of variance (ANOVA):

ANOVA is used to analyze the significance of the factors and their interactions on the response

variable [54]. Response surface optimization: Optimization techniques are used to find the

optimal settings of the input variables that lead to the best or desired response [56]. Overall,

Fig 5. Typical framework for the RSM model.

https://doi.org/10.1371/journal.pone.0301075.g005
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Response Surface Methodology provides a systematic and efficient approach for understand-

ing and optimizing complex processes by using empirical models and statistical techniques.

4. Results and discussion

4.1 GP model technique

The developed GP model has four levels of complexity. The population size, survivor size and

number of generations were 100 000, 30 000 and 100 respectively. Eqs 3 and 4 presented the

output formula for (UCS7and UCS28) respectively. The average errors % of total dataset are

(0.24, 0.34), while the R2 values are 0.777 and 0.650 in order. The proposed closed-form equa-

tion suggests that the proportion of silt and clay are more decisive in the behavior of the com-

pressive strength of the lime reconstituted soil at the 7 days curing stage.

UCS7 ¼
2ðMþ CÞ
Gþ S � M

�
ðC � 2MÞ2

C � S � G
þ 2GðMþ CÞ þ 773

� �
2:77þ C � 2ðSþ GÞ
1:77þ C � 2ðSþ GÞ

� �

þ
2ðMþ CÞð3C � 2MÞL � 8ðMþ CÞ2

2LðMþ CÞðC � MÞðC� 2MÞ
þM:L

þ
2Sþ 2G � 4M � 5C

L
þ 3C � 2Mð Þ ð3Þ

UCS28 ¼
1600ðL � 2Þ

L
þ
ð2GSþ 1Þð2M � 2LÞ � 2GSðSþ GÞ

2S � 40
þ

2ð2S � 40Þ
2

M � L

þ
3LðG � Sþ 3M � C � 2LÞ � 1600ðL � 2Þ

L
þ

2GSðG � SÞ þ ð4GSþ 1ÞðM � LÞ
2S � 40

� �

�
1

2ðS � MÞS
þ 4 GSþ C � Mð Þ ð4Þ

4.2 ANN model technique

A predictive model was developed using ANN technique to predict both UCS7 and UCS28 val-

ues. It used normalization method (-1.0 to 1.0), activation function (Hyper Tan) and “Back

propagation” (BP) training algorithm. The ANN developed model weight matrix is presented

in Table 5. The used network layout is illustrated in Fig 6 while the weight matrix of the model

is showed in Table 3. The average errors in percentage for the total dataset were found to be

12% and 15%, with corresponding R2 values of 0.952 and 0.947, respectively. The relative

importance values for each input parameter are illustrated in Fig 7, which indicated that all fac-

tors have almost the same importance for both UCS7 and UCS28 except the Lime content (L)

Table 5. Weights matrix for the developed ANN.

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) H(1:8)

(Bias) -7.28 -6.55 -1.44 1.70 0.44 -8.15 -8.91 -4.32

G 5.93 12.85 2.66 -0.18 0.61 3.19 3.12 -1.73

S 1.31 -4.39 -7.32 -0.90 -0.20 -3.18 -4.94 5.32

M 0.42 10.25 -8.99 2.76 -2.24 -2.47 -4.29 -3.90

C -11.69 8.82 -7.79 3.39 1.63 2.59 1.38 -4.89

L -3.84 0.46 -2.71 0.36 -0.48 -2.12 -2.21 -0.21

H(1:1) H(1:2) H(1:3) H(1:4) H(1:5) H(1:6) H(1:7) H(1:8) (Bias)

UCS7 0.26 0.72 -0.53 3.87 0.76 -2.99 2.88 3.91 -0.53

UCS28 0.31 0.95 -0.74 3.63 0.89 -4.60 4.48 3.73 -0.60

https://doi.org/10.1371/journal.pone.0301075.t005
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which has less influence. It further shows that sand (S) and clay (C) are the most impactful on

the strength response of the lime-reconstituted graded soil, which corroborates with previous

reports [51, 65]. This shows that the finer materials perform better with the strength improve-

ment of landfill liners and subgrades under lime treatment [51].

4.3 EPR model technique

Finally, the developed EPR model was limited to 6th level polynomial, for 5 inputs, there are

462 possible terms (252+126+56+21+6+1 = 462) as follows:

Xn ¼ 5

n ¼ 1

Xm ¼ 5

m ¼ 1

Xl ¼ 5

l ¼ 1

Xk ¼ 5

k ¼ 1

Xj ¼ 5

j ¼ 1

Xi ¼ 5

i ¼ 1
Xn:Xm:Xl:Xk:Xj:Xi

þ
Xm ¼ 5

m ¼ 1

Xl ¼ 5

l ¼ 1

Xk ¼ 5

k ¼ 1

Xj ¼ 5

j ¼ 1

Xi ¼ 5

i ¼ 1
Xm:Xl:Xk:Xj:Xi

þ
Xl ¼ 5

l ¼ 1

Xk ¼ 5

k ¼ 1

Xj ¼ 5

j ¼ 1

Xi ¼ 5

i ¼ 1
Xl:Xk:Xj:Xi þ

Xk ¼ 5

k ¼ 1

Xj ¼ 5

j ¼ 1

Xi ¼ 5

i ¼ 1
Xk:Xj:Xi

þ
Xj ¼ 5

j ¼ 1

Xi ¼ 5

i ¼ 1
Xj:Xi þ

Xi ¼ 5

i ¼ 1
Xi þ C ð5Þ

GA technique was applied on these 462 terms to select the most effective 47 terms to predict

the values of UCS7 and 50 terms to predict UCS28 values. The average error percentages and

R2 values for UCS7 and UCS28 were found to be 12% and 18% and 0.955 and 0.923,

Fig 6. Layout for the developed ANN models.

https://doi.org/10.1371/journal.pone.0301075.g006
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Fig 7. Relative importance of input parameters.

https://doi.org/10.1371/journal.pone.0301075.g007
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The relations between calculated and predicted values are shown in Figs 8 and 9 and the

results of all the developed models are summarized in Table 6. In Fig 10, the accuracies of the

developed models are compared by using Taylor charts for the UCS7 and UCS28.The data

entries are more concentrated around 500 to 1500 kPa for the UCS7 and around 900 to 2700

kPa for the UCS28 for the training and validation entries of the three models as shown in Figs

8 and 9. The best fit for the ANN with the line equation of y = 0.987x and y = 980x for the 7

days cured unconfined compressive strength (UCS7) and the 28 days cured unconfined com-

pressive strength (UCS28), respectively show the best efficient model execution even though

the ANNs models did not produce closed-form equations, which may allow for a manual

application of the superior model. The Taylor diagram agrees with the performance model

shown in Figs 8 and 9, which shows the ANN and EPR in the 0.95–0.99 segment of the accu-

racy diagram in Fig 10. Finally, the closed-form equations especially the EPR model are appli-

cable in the design and construction of landfill liners and subgrade to determine the optimized

compressive strength of the compacted earth layer as the foundation course for a flexible pave-

ment at 250 kN/m2 and compacted earth liner at 200 kN/m2 strength surfaces to determine

the allowable strength for sustainable liner courses for a lime reconstituted gravel-sand-silt-

clay (G-S-M-C) graded soil, however this is supported by previous research works [1,3,4,65].

Fig 8. Relation between predicted and calculated (UCS7) values using the developed models.

https://doi.org/10.1371/journal.pone.0301075.g008
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The ANN model can only be applied within the intelligent interface because it didn’t produce

a closed-form equation with which a manual application is executed.

4.4 RSM model analysis

The Predicted R2 for the UCS 7 of 0.9879 is in reasonable agreement with the Adjusted R2 of

0.8805; i. e. the difference is less than 0.2. Adeq precision measures the signal to noise ratio. A

ratio greater than 4 is desirable. Your ratio of 14.169 indicates an adequate signal. This model

Fig 9. Relation between predicted and calculated (UCS28) values using the developed models.

https://doi.org/10.1371/journal.pone.0301075.g009

Table 6. Accuracies of developed models.

Item Technique Model SSE Avg. Error (%) R2

UCS7 GP Eq 3 6,037,178 24 0.777

ANN Fig 3, Table 3 1,496,464 12 0.952

EPR Eq 6 1,403,965 12 0.955

UCS28 GP Eq 4 33,340,605 34 0.650

ANN Fig 3, Table 4 6,679,788 15 0.947

EPR Eq 7 8,864,671 18 0.923

https://doi.org/10.1371/journal.pone.0301075.t006

PLOS ONE Modeling the influence of lime

PLOS ONE | https://doi.org/10.1371/journal.pone.0301075 April 2, 2024 22 / 33

https://doi.org/10.1371/journal.pone.0301075.g009
https://doi.org/10.1371/journal.pone.0301075.t006
https://doi.org/10.1371/journal.pone.0301075


can be used to navigate the design space. The Predicted R2 for the UCS 28 of 0.9942 is in rea-

sonable agreement with the Adjusted R2 of 0.8780; i.e., the difference is less than 0.2. Adeq pre-

cision measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of

14.722 indicates an adequate signal. This model can be used to navigate the design space.

These are presented in Table 7. The UCS7 equation (Eq 8) in terms of actual factors can be

used to make predictions about the UCS response for given levels of each factor with high

accuracy and adequate precision. Here, the levels should be specified in the original units for

each factor. This UCS7 equation should not be used to determine the relative impact of each

Fig 10. Comparing the accuracies of the developed models using Taylor charts, a) For UCS7, b) For UCS28.

https://doi.org/10.1371/journal.pone.0301075.g010
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factor because the coefficients are scaled to accommodate the units of each factor and the

intercept is not at the center of the design space. The UCS28 equation (Eq 9) in terms of actual

factors can be used to make predictions about the lime reconstituted soil strength response for

given levels of each factor with high performance accuracy. Here, the levels should be specified

in the original units for each factor. This equation should not be used to determine the relative

impact of each factor because the coefficients are scaled to accommodate the units of each fac-

tor and the intercept is not at the center of the design space.

UCS7 ¼ 3:00273Eþ 06 � 43948:95160G � 60393:75334S � 61832:70889M
� 59877:68708Cþ 322:80660Lþ 441:16380G∗Sþ 453:56275G∗M
þ 435:09326G∗C � 4:91665G∗Lþ 621:52991S∗Mþ 602:89345S∗C � 1:95523S∗L
þ 616:86171M∗C � 1:66066M∗L � 0:774502C∗Lþ 162:15468G2 þ 303:45791S2

þ 318:08864M2 þ 298:26931C2 � 9:66276L2 ð8Þ

UCS28 ¼ 5:41923Eþ 06 � 66782:14211G � 1:09543Eþ 05S � 1:11595Eþ 05M
� 1:07794Eþ 05C � 1082:29002Lþ 670:25613G∗Sþ 694:67228G∗M
þ 655:88448G∗Cþ 11:98451G∗Lþ 1127:09317S∗Mþ 1090:27190S∗C
þ 14:79881S∗Lþ 1110:45194M∗Cþ 15:30650M∗Lþ 16:88140C∗L
þ 171:27991G2 þ 553:64498S2 þ 574:04265M2 þ 535:51876C2 � 26:49127L2 ð9Þ

The optimized model representation are shown in Figs 11–21 and these succinctly illustrate

the normal plot of residuals for normal percentage probability and externally studentized

residuals for the unconfined compressive strength RSM model, the illustrative representation

Table 7. Fit Statistics of the RSM UCS model.

UCS 7 UCS 28

Std. Dev. 317.33 R2 0.8427 Std. Dev. 626.70 R2 0.8405

Mean 861.82 Adjusted R2 0.8805 Mean 1440.07 Adjusted R2 0.8780

C.V. % 36.82 Predicted R2 0.9879 C.V. % 43.52 Predicted R2 0.9942

Adeq Precision 14.1694 Adeq Precision 14.7220

https://doi.org/10.1371/journal.pone.0301075.t007

Fig 11. Normal plot of residuals for normal percentage probability and externally studentized residuals for the

unconfined compressive strength RSM model.

https://doi.org/10.1371/journal.pone.0301075.g011
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Fig 12. Illustrative representation of the externally studentized residuals and the predicted values of the UCS

model.

https://doi.org/10.1371/journal.pone.0301075.g012

Fig 13. Illustrative representation of the externally studentized residuals and the entry runs of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g013

Fig 14. Illustrative representation of the Cook’s distance of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g014
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of the externally studentized residuals and the predicted values of the UCS model, the exter-

nally studentized residuals and the entry runs of the UCS model, the Cook’s distance of the

UCS model, the Box-Cox Plot for Power Transform, the predicted versus actual values of the

UCS model, the residuals versus gravel parameter values of the UCS model, the leverage versus

run values of the UCS model, the DFFITS versus run values of the UCS model, the DFBETAS

versus run values of the UCS model, and the perturbation, FDS, and 3D surface behavior of

the UCS model with selected parameters, respectively. These further show the optimization

strengths of the RSM to produce graphical presentations of the behavior of the modeled

unconfined compressive strength of the lime reconstituted soil for the purpose of the sustain-

able design and construction subgrade and landfill line for a sustainable environmental safety.

These further show the point at which selected parameters of this study is optimized against

the value of the UCS at both 7 and 28 days curing regime. These performance agrees with

Fig 15. Illustrative representation of the Box-Cox Plot for Power Transform of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g015

Fig 16. Illustrative representation of the predicted versus actual values of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g016
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previous works where RSM had been applied as the decisive model [52–55]. Comparatively,

the perfromance level of the RSM is to be considwred seriosly in the deisgn and cinstruction of

civil engineering structures like the road pavement subgrade and landfill liner due to its ability

to propose a closed-form equation at over 95% accuracy and over 14% adequate precision, that

could be applied manually and automatically during the design and constructted structures

performance monitoring [49,50]. In Fig 21, a 3D surface and FDS graphical behavior of the

UCS was presented showing the 3D behavioral effect of selected parameters. It further shows

the behavioral consistency between the UCS at 28 days of the lime reconstituted soil and the G

versus S, M, and C proportions in the overall mixes. It can be adduced that the UCS improved

with higher values of S, M, and C against higher values of the G, which produced a reduction

trend in the behavior of the UCS at 28 days.

Fig 17. Illustrative representation of the residuals versus gravel parameter values of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g017

Fig 18. Illustrative representation of the leverage versus run values of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g018
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5. Conclusions

This study presents three models utilizing Artificial Intelligence (AI) techniques, namely

Genetic Programming (GP), Artificial Neural Network (ANN), and Evolutionary Polynomial

Regression (EPR), and one utilizing a symbolic algorithm known as the Response Surface

Methodology (RSM) to predict the unconfined compressive strength after 7 and 28 days

(UCS7 and UCS28 in kPa) for lime-stabilized soil. The models incorporate input variables

such as Gravel, Sand, Silt, Clay, and Lime contents (G, S, M, C, L). The following key conclu-

sions can be drawn from comparing the accuracies of the developed models:

Fig 19. Illustrative representation of the DFFITS versus run values of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g019

Fig 20. Illustrative representation of the DFBETAS versus run values of the UCS model.

https://doi.org/10.1371/journal.pone.0301075.g020
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• Both ANN and EPR demonstrated similar levels of accuracy, reaching approximately 88%

for the compressive strength after 7 days (UCS7), while the GP model exhibited a lower

accuracy level of 76%.

• The prediction accuracy of the compressive strength after 28 days (UCS28) was lower com-

pared to UCS7 due to the increased complexity of the required formula. The accuracy for

ANN and EPR models was approximately 85% and 82%, respectively. Conversely, the GP

model exhibited the lowest performance with an accuracy of 66.0%.

• The results indicate that all factors have nearly equal importance for both UCS7 and UCS28,

except for the lime content (L), which has a lesser influence.

• Similar to other regression techniques, the generated formulas are valid within the consid-

ered range of parameter values. Beyond this range, it is essential to verify the prediction

accuracy.

• However, the RSM model compared well with the results of the AI-powered models in

performance accuracy and further proposed a closed-form equation for manual and auto-

matic application in the design of optimized utilization of lime in soil treated for the pur-

pose of subgrade and landfill liner construction. This is very important in practice as

quicker manual applications are needed to verify optimized material usage for the best

performance.

• This research emphasizes the immense potential of ML techniques in predicting the uncon-

fined compressive strength of lime reconstituted graded soil mixtures. It further emphasises

the impactful influence of the finer soils in the sand and clay categories on the strength of

the studied lime reconstituted soil. The findings contribute to a better understanding of the

behavior of lime-stabilized soil, offering valuable insights for engineering applications in the

field of soil mechanics. However, the results and validity of the models are within the selected

database and the soil treated with lime. So, future research work is expected to extend

towards studying other sustainable cementitious materials database applied in soil for the

design and construction of subgrade and landfill liners.

Fig 21. Illustrative representation of the perturbation, FDS, and 3D surface behavior of the UCS model with

selected parameters.

https://doi.org/10.1371/journal.pone.0301075.g021
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