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Abstract

Nearly 300 million individuals live with chronic hepatitis B virus (HBV) infection (CHB), for

which no curative therapy is available. As viral diversity is associated with pathogenesis and

immunological control of infection, improved methods to characterize this diversity could aid

drug development efforts. Conventionally, viral sequencing data are mapped/aligned to a

reference genome, and only the aligned sequences are retained for analysis. Thus, refer-

ence selection is critical, yet selecting the most representative reference a priori remains dif-

ficult. We investigate an alternative pangenome approach which can combine multiple

reference sequences into a graph which can be used during alignment. Using simulated

short-read sequencing data generated from publicly available HBV genomes and real

sequencing data from an individual living with CHB, we demonstrate alignment to a phyloge-

netically representative ‘genome graph’ can improve alignment, avoid issues of reference

ambiguity, and facilitate the construction of sample-specific consensus sequences more

genetically similar to the individual’s infection. Graph-based methods can, therefore,

improve efforts to characterize the genetics of viral pathogens, including HBV, and have

broader implications in host-pathogen research.

Introduction

Approximately one-third of the world’s population has been exposed to the hepatitis B virus

(HBV), a major cause of hepatocellular carcinoma and end-stage liver disease [1]. With nearly

300 million individuals suffering from chronic HBV infection (CHB), novel drugs are needed

as no effective curative therapies currently exist [2]. While spontaneous recovery occurs, the

biological mechanisms underlying the immunological control of HBV remain unclear. In

addition to age, clinical and environmental factors, and host genetic variation [3, 4], viral

genetic diversity contributes to the pathogenesis and the severity of CHB [5–8].
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HBV has a small (3.2 kilobases (kb)) partially double-stranded circular DNA genome with

four overlapping gene-encoding regions and a higher mutation rate than most double-

stranded DNA viruses [9]. With 10 known genetically and geographically distinct HBV geno-

types and>30 subgenotypes, CHB is also caused by recombinants or mixtures of genotypes

[10–16]. Additionally, like other chronic viral infections, intra-host CHB diversity involves

multiple viral strains that evolve, mutate, and change in frequency over time, termed a viral

quasispecies [17–20]. Intra-host diversity has also been shown to influence disease progression

[21–23], treatment outcome [24, 25], and confound molecular epidemiology or surveillance

efforts (e.g., transmission of non-consensus/minor-frequency viral strains) [26–28].

Characterizing this extensive genetic variation is therefore important for advancing our

understanding of the natural history of disease and potential treatment targets. Sequencing-

based analyses of HBV and other microbial pathogens usually involve an initial alignment of

sequencing data to a representative reference genome to infer a ‘consensus’ sequence which

provides an approximation of the genome causing the infection. The construction of consen-

sus sequences is a typical objective of viral-focused genetic analyses [29, 30], including HBV

[31, 32]. Choosing the right reference is critical, as only data sufficiently similar to the refer-

ence can be aligned and retained within subsequent analyses [33, 34]. However, it can be diffi-

cult to select the most appropriate reference sequence when analyzing clinical CHB samples of

unknown HBV genotype or subgenotype.

The use of unrepresentative reference sequences can interfere with characterizing pathogen

diversity, resulting in false or missing mutations and biased phylogenetic relationships [35–

37]. Reference selection can also affect the ability to accurately derive sample-specific ‘consen-

sus’ sequences which reflects the most commonly observed nucleotide at each site across the

genome, inferred from the aligning sequencing data against a specific reference sequence. This

issue of reference ambiguity is especially problematic for CHB, as a set of phylogenetically rep-

resentative HBV reference sequences has only recently been proposed [38]. Furthermore,

given the extreme diversity of CHB, the use of a single reference sequence, even of the correct

HBV genotype, may be insufficient [34, 35].

Approaches involving the simultaneous use of multiple references during read alignment

could avoid these issues. One such approach involves combining a phylogenetically represen-

tative set of genome-length HBV sequences into a single pangenomic ‘genome graph’, and

using this for alignment rather than any single linear HBV genome sequence. By genome

graph, we mean a sequence variation graph comprised of ‘nodes’, which reflect stretches of

genetic sequence, and ‘edges’, which form the connections between nodes and determine the

order a genome-length sequence traverses the graph [33, 36, 39, 40]. Sequence variation graphs

efficiently represent genetic variation from multiple genomes and have been shown to improve

sequence alignment and variant calling for highly variable regions of the human genome and

microbial organisms like Escherichia coli. [33, 36, 41]. A graph-based reference containing a

representative sampling of the genetic variation observed across all known HBV genotypes/

subgenotypes might improve sequence alignment and variant calling, as well as enable the gen-

eration of accurate sample-specific consensus sequences for HBV-related genetic analyses.

However, whether a graph-based approach can improve viral sequence alignment and sample-

specific consensus sequence construction has, to our knowledge, yet to be demonstrated.

Assessing every potential HBV reference sequence to identify the most appropriate refer-

ence for a given sample is both computationally expensive and can still fail within the context

of recombinant or mixed infections. In this study, we leverage 2,837 publicly available full-

length HBV genomes, simulated high-throughput sequencing data from these HBV sequences,

and real-world longitudinally collected sequencing data from an individual with CHB to iden-

tify the optimal alignment method as determined by the proportion of successfully aligned
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HBV sequencing data. To model alignment using standard linear reference sequences, a non-

overlapping set of 44 phylogenetically-representative HBV genome sequences reflecting the

known breadth of HBV diversity were used [38]. To model graph-based alignment, a HBV ref-

erence graph was constructed using these same sequences. By comparing the proportion and

accuracy of successfully aligned HBV sequence and alignment-derived consensus sequences,

respectively, the accuracy of graph vs. linear reference-based alignment methods will be evalu-

ated to determine whether a phylogenetically diverse graph-based reference can improve

genetic analyses of HBV while alleviating the issues associated with reference selection.

The aim of this study is to assess whether a pangenomic graph-based approach can improve

sequence alignment and mitigate reference ambiguity for genetic studies of HBV. Additionally,

we aim to determine if this approach leads to more accurate sample-specific consensus

sequences compared to standard linear reference-based approaches.

Results

Simulations to assess HBV sequence-to-graph alignment and coverage

To assess whether the graph or any of the linear reference sequences can capture the known

genetic diversity of HBV, short Illumina-like reads were simulated from 59 genetically diverse

HBV genomes encompassing 9 HBV genotypes and aligned to both the HBV reference graph

and each of the 44 linear references. Despite all reads being of HBV origin (N = 500,002 reads),

only 84.3% to 96.6% of sequences successfully aligned to these 44 linear references (Fig 1A). In

contrast, >99.9% of this diverse simulated HBV sequencing data successfully aligned to an

HBV reference graph. To ensure that loci from across all HBV genomes used to create the

graph are adequately represented by the reference graph, seven randomly subsampled sets of

simulated high-throughput HBV sequencing data (N = 507,938 reads) generated from these 44

genomes were aligned to the HBV reference graph, with 100% of reads always aligning to the

graph.

The simulated HBV sequences that failed to align to the linear references (3.4%-15.7%)

were not uniformly distributed across the genome, with loci observed to have precipitous

drops in coverage corresponding to regions of increased genetic diversity (Fig 1B). While

these genomic segments were positionally consistent, drops in coverage were highly heteroge-

neous in magnitude across reference sequences of different HBV genotypes, with the lowest

proportion of successfully aligned HBV sequencing data and the most precipitous drops in

coverage in regions of increased nucleotide diversity occurring for HBV genotypes H and G

reference sequences. As>99.9% of sequencing data successfully aligned to the HBV reference

graph, no significant drops in coverage were observed.

To reflect a more realistic scenario in which an individual would likely only have sequences

derived from endemic co-circulating genotypes, we limited the simulated data used in our

alignment comparisons to those generated from HBV sequences of genotypes B or C, the most

common genotypes in East and Southeast Asia [42]. While>99.9% of simulated reads from

genotypes B and C successfully aligned to the reference graph, a high proportion of these reads

also successfully aligned to linear reference sequences of genotype B (97.9%-98.4%) and C

(97.6%-98.8%) (S3 Fig in S1 File). This improved performance of the linear references is to be

expected given the more homogenous set of simulated HBV reads being assessed.

To determine whether graph-aligned HBV sequences aligned best to the path/reference

sequence embedded within the graph of the same HBV genotype as the query sequence, all

full-length HBV genome sequences (N = 2,837) and each set of simulated short-read HBV

sequencing data generated from the HBV genomes used in the simulations (N = 59) were

aligned to the HBV reference graph. For each genotype-specific set of alignments, all genome-
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length and simulated set of short-read sequences of genotypes A (N = 259, N = 7), B (N = 687,

N = 17), C (N = 1,094, N = 19), D (N = 549, N = 9), E (N = 145, N = 2), F (N = 80, N = 2), G

(N = 3, N = 1), H (N = 11, N = 1), I (N = 9, N = 1) always resulted in paths of the same HBV

genotype having the highest alignment score (S1 Table in S1 File), demonstrating the impor-

tance of representing each phylogenetically-distinct HBV genotype within the reference graph.

These results also demonstrate that the path-specificity of sequence-to-graph alignment can

enable HBV genotype prediction using either the alignment score directly or a metric based

on the path-depth of nodes with successful alignments for genome-length and high-through-

put HBV sequences, respectively.

Alignment of real CHB sequencing data to an HBV reference graph

Unlike our simulated HBV sequencing datasets, real-world CHB-derived HBV sequencing

data can reflect extensive genetic variation due to both host and pathogen-derived evolution-

ary pressures in addition to any sample processing or sequencing-related errors. Additionally,

real CHB sequencing data can have highly variable quality and coverage distributions across

the genome. Using the baseline and subsequent longitudinally collected samples from a treat-

ment naïve individual with CHB, analyses of patient-derived CHB sequencing data demon-

strates graph-based sequence alignment consistently achieved higher proportions of

successfully aligned HBV sequence data compared to any single linear reference (N = 44), with

Fig 1. Alignment and depth of coverage across the HBV genome for simulated HBV sequencing data. In panel A, points reflect the proportion of

successfully aligned simulated reads, colored by either the genotype of the reference or whether graph-based alignment was performed. The Y axis reflects the

proportion of successfully aligned reads. Labels indicate the reference sequence genotype or graph used in the alignment and the proportion of reads aligned. In

panel B, the X axis reflects genome position, with gene regions provided as colored bars along the base of the figure: C = core, P = polymerase, S = Surface,

X = X. In the top section, the Y axis reflects depth of coverage across the HBV genome obtained when using reference sequences of different HBV genotypes,

using the same genotype-specific color scheme as panel A. Significant drops in coverage are indicated with the grey vertical lines. The Y axis of the middle

section reflects the average pairwise nucleotide diversity (0–1) estimated from all combinations of the included HBV genotypes/subgenotypes using a sliding

window across the genome.

https://doi.org/10.1371/journal.pone.0301069.g001

PLOS ONE Improved analyses of HBV using a reference graph

PLOS ONE | https://doi.org/10.1371/journal.pone.0301069 April 26, 2024 4 / 19

https://doi.org/10.1371/journal.pone.0301069.g001
https://doi.org/10.1371/journal.pone.0301069


98.7%, 93.2%, 99.4%, 98.6%, and 98.7% of successfully aligned sequence for the baseline patient

sample (SRR7471513, obtained in 1991) and subsequent samples SRR7471501 (7 months fol-

low-up), SRR7471502 (16 months follow-up), SRR7471499 (30 months follow-up), and

SRR7471500 (64 months follow-up) (Fig 2), respectively (S4 Fig in S1 File). The choice of lin-

ear reference had a significant effect on the proportion of aligned sequences across the five

samples, with a per-sample difference between the best and worst-performing linear reference

ranging from 32.8% to 38.1%. The best performing linear reference (HBV subgenotype B2,

GenBank ID: GU815637) resulted in 98.6%, 92.4%, 99.3%, 98.5%, and 98.6% of aligned

sequences for each sample (from baseline to final sample, respectively), which were all lower

than the proportion of successful graph-based alignments. Notably, differences were also

observed between references of the ‘correct’ HBV genotype (B), with a per-sample difference

between the best and worst-performing reference ranging between 7.2% (85.3% vs. 92.4% for

Fig 2. Proportion of successfully aligned HBV sequencing data for the first CHB sample. Points reflect the

proportion of successfully aligned sequences, colored by either the genotype for linear reference-based alignment or if

sequences were aligned to the HBV reference graph. The Y axis reflects the proportion of successfully aligned reads.

Labels reflect for the reference of the highest and lowest observed aligned proportions.

https://doi.org/10.1371/journal.pone.0301069.g002
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the second sample) and 7.8% (90.8% vs. 98.6% for the baseline visit). Thus, compared to

graph-based alignment across these samples, up to 8.8% of HBV sequencing data can be

missed due to the use of a linear reference sequence of the correct HBV genotype compared to

the HBV reference graph.

HBV-derived sequences that failed to align to the non-subgenotype B2 reference were also

not uniformly distributed across the genome (S5 Fig in S1 File). The distribution of where res-

cued reads aligned to the B2 reference is informative as more reads from non-HBV genotype B

references were rescued across the HBV genome except in the pre-core/core region. At this

locus, the average distribution of rescued reads from genotype C was always the lowest (S5 Fig

in S1 File), which is unsurprising as the pre-core/core region within HBV subgenotype B2

reflects a known recombination event between genotypes B and C [43]. For reads which still

failed to align to the best performing linear B2 reference sequence across each sample, 30.5%-

63.2% were rescued via graph-based alignment (N = 130,154, 71,526, 83,348, 61,692, 52,071

reads rescued, respectively). The distribution in the start sites of all rescued reads was similarly

non-uniformly distributed. Interestingly, the loci in which graph-based alignment rescued the

most reads also corresponded to loci with increased pairwise nucleotide diversity estimated

across the 44 phylogenetically representative proposed HBV reference sequences (S6 Fig in

S1 File), consistent with our simulations and suggesting regions of increased genetic diversity

globally may correspond to loci of increased intra-host sequence variation in real CHB

samples.

There was no significant difference in the observed proportion of successfully aligned reads

when using all or a down-sampled subset (to 20,000X coverage) of the QC-passed HBV

sequencing data across the real CHB samples (P>0.99). Additionally, there was no significant

difference in the proportion of aligned reads when the full-length linear reference sequences

or extended linear reference sequences were used across the linear reference-based alignments

(p = 0.76) (S7 Fig in S1 File).

Graph-derived consensus sequences are more genetically similar to HBV

sequencing datasets

Unlike the genotype or subgenotype-specific genomes included within an established set of

reference sequences, sequencing data-derived consensus sequences should reflect the most

accurate representation of the HBV genome causing the infection. While no single full

genome-length HBV sequence could realistically capture the sequence variation observed

across our simulated high throughput HBV sequencing data, the graph-based variant calling

performed using the variation graph toolkit (VG) provided a consensus sequence with the low-

est genetic distance to the full set of HBV genomes used in the simulations (S8 Fig in S1 File)

mash distances ranging between 7.50x10-2 and 7.82x10-2. Using the Mash distance as an

approximation of average nucleotide identity (ANI), consensus sequences had ANIs ranging

between 92.2%-92.5%, with the consensus inferred from VG-based variant calling having the

highest ANI (92.5%).

For consensus sequences derived using the subset of HBV sequencing data generated from

HBV genotypes B/C only, VG-based variant calling also resulted in the sequence with the lowest

Mash distance and highest ANI compared to the full HBV genotype B/C sequences. However,

all genotype B and C specific consensus sequences had similar Mash distances, ranging between

6.01x10-2 and 6.17x10-2, and ANIs ranged between 93.8% and 94.0% (S9 Fig in S1 File).

For analyses of the real CHB sequencing data, the de novo assembled viral haplotypes always

had the lowest Mash distance compared to the HBV sequencing data for each sample. This
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suggests viral haplotypes comprising an individual’s CHB quasispecies better approximate the

overall sequence diversity of an infection than any derived consensus sequence.

For consensus sequence comparisons, a graph-based variant calling approach resulted in

consensus sequences with the lowest average Mash distance and highest ANI compared to

each sample-specific set of HBV sequencing data across the longitudinal CHB samples. Our

graph-based consensus sequence construction method provided improvements (i.e., a reduc-

tion in genetic distance) over attempts involving linear reference sequences when variants

were identified via LoFreq and every sample other than SRR7471499 when consensus

sequences were generated using iVar (Fig 3, S10 Fig in S1 File). For this sample, graph-based

variant calling and consensus sequence generation resulted in the same genetic similarity esti-

mate (ANI = 89.3%) as a consensus derived using a subgenotype C1 reference sequence (Gen-

Bank ID: DQ089781). While both iVar and LoFreq can be used to identify variants across a

Fig 3. Genetic distance comparisons of consensus sequences and de novo assembled HBV haplotypes with CHB sequencing data from the first CHB

sample. Points reflect the Mash distance estimated between each consensus sequence generated from the 44 HBV reference sequences or the HBV reference

graph. The Y axis reflects the Mash distance estimated between each LoFreq-derived consensus sequence and the X axis reflects the Mash distance estimated

between each iVar-derived consensus sequence. The color of each point reflects the genotype of the reference used to generate a consensus, or if the consensus

was derived via graph-based alignment or reflects sample-specific HBV haplotypes. Points for graph-derived consensus sequences, including VG-based variant

calling (‘VG alignment consensus’), graph-based surjection (‘Best reference path’), and the de novo assembled viral strains (‘HBV Haplotypes (>1%)’) are

enlarged.

https://doi.org/10.1371/journal.pone.0301069.g003

PLOS ONE Improved analyses of HBV using a reference graph

PLOS ONE | https://doi.org/10.1371/journal.pone.0301069 April 26, 2024 7 / 19

https://doi.org/10.1371/journal.pone.0301069.g003
https://doi.org/10.1371/journal.pone.0301069


diverse set of viral pathogens [44, 45], LoFreq has repeatedly been used to identify variants

from real CHB-derived HBV sequencing data [46, 47]. Additionally, while both consensus

identification methods used the same site-specific depth threshold, our LoFreq-based

approach accounted for insertions and deletions, potentially explaining its consistently lower

Mash distance compared to the consensus sequences obtained via iVar (Fig 3, S10 Fig in

S1 File).

For linear reference iVar-based variant calling across all samples, Mash distances ranged

between 1.07x10-1 and 1.27x10-1, for SRR7471499, SRR7471500, and SRR7471502. For

SRR7471501, distances ranged between 1.07x10-1 and 1.30x10-1 and for SRR7471513 ranged

between 1.07x10-1 and 1.28x10-1. Mash distances from the LoFreq-derived consensus

sequences ranged between 1.07x10-1 and 1.10x10-1 for SRR7471499, SRR7471501,

SRR7471502, and SRR7471513 and 1.07x10-1 to 1.09x10-1 for SRR7471500. VG-based variant

calling derived consensus sequences each had Mash distances of 1.07x10-1. Additionally, we

observed no differences in the Mash distances between consensus sequences derived using

reads re-aligned to a single path within the graph, or surjected, into the HBV subgenotype B2

path (B2, GenBank ID: GU815637) and the linear reference-based alignment derived consen-

sus using the same B2 reference.

Discussion

In this study, we confirm that the choice of reference plays a critical role in the alignment of

high throughput HBV sequencing data and can influence the construction of sample-specific

consensus sequences in genetic studies of CHB. We also demonstrate that sequence variation

graphs can improve upon widely accepted methodologies used for sequence alignment of

HBV. Using both real-world CHB and simulated high-diversity HBV sequencing datasets, we

show that alignment to a phylogenetically representative reference graph results in a higher

proportion of successful sequence alignment and facilitates the generation of accurate sample-

specific consensus sequences.

As the benefits of sequence-to-graph alignment are greatest for highly diverse sequencing

datasets, the utility of graph-based sequence alignment is dependent upon the research question

of interest. For example, sequence-to-graph alignment recovers only marginally more simulated

sequencing data generated from a subset of HBV genotype B and C sequences (S3 Fig in S1

File) compared to linear reference-based approaches using genotype B or C reference

sequences. Furthermore, linear reference-based sequence alignment is highly successful at cap-

turing HBV sequences from regions across the HBV genome with non-extreme global sequence

diversity (Fig 1). While our results demonstrate that for regions of increased diversity, any sin-

gle linear reference is likely insufficient to capture the genetic variation observed across all HBV

genotypes/subgenotypes or mixed CHB infections, many CHB infections are comprised of a

single HBV genotype, and thus linear reference-based alignment using a correct genotype/sub-

genotype sequence would not be expected to omit important information. This is, however, not

guaranteed, as we find that>8% of viral sequences can fail to align to a phylogenetically repre-

sentative linear reference sequence and may represent variation within highly diverse regions

encoding immunodominant epitopes of biological or clinical importance. For more genetically

diverse infections, a hybrid approach in which a linear reference-based alignment is followed by

graph alignment of unmapped reads could also solve issues related to reference ambiguity while

limiting the computational burden associated with graph-based sequence alignment. Notably,

we find reads rescued via graph alignment largely originate from regions across the HBV

genome of increased global sequence diversity (S6 Fig in S1 File), suggesting these loci could

also correspond to regions of increased intra-host genetic variation.
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The generation of consensus sequences is an important product of microbial-focused geno-

mic analyses, and novel software and workflows devoted to generating pathogen consensus

sequences, including for SARS-CoV-2 [29], continue to be developed. In addition to providing

an accurate characterization of the genome comprising a clinical infection, publicly-available

consensus sequences enable molecular epidemiology-focused research, allow for large-scale

phylogenetic analysis, and can aid disease surveillance efforts [48–51]. Consensus sequences

can also serve as the ‘reference’ sequence in subsequent bioinformatic analyses, reducing the

number of spuriously identified variants for HBV [34]. Thus, care should be taken to ensure

the most accurate and genetically representative sequences are obtained from clinical CHB or

other HBV-infected samples. We show that graph-based alignment and variant calling can

often improve upon linear reference-based approaches to derive sample-specific consensus

sequences, even when such efforts utilize reference sequences of the correct HBV subgenotype,

which produces consensus sequences less genetically similar to an individual’s CHB quasispe-

cies than sequences derived via graph alignment. However, given the minute differences in

average nucleotide identity between consensus sequences obtained from any of the best-per-

forming linear references and our graph-based approach, the deleterious consequences of lin-

ear reference-based alignment are likely minimal when an effort is made to first identify a

genetically representative reference sequence for use in alignment.

However, when reference selection is not carefully considered, unrepresentative reference

sequences can impact the fidelity of consensus sequences and other downstream phylogenetic-

focused analyses [35, 37]. It is, therefore, possible that some publicly available full-length HBV

genome sequences, including the 44 reference sequences we used to construct our reference

graph, are not the most accurate HBV-related sample-specific consensus sequences. While

alternative approaches to infer sample-specific consensus sequences exist [5, 34], our approach

using the Mash distance to compare and identify the consensus sequence that best approxi-

mates the set of HBV sequencing data or de novo assembled haplotypes could provide a mech-

anism by which sample-specific consensus sequences are compared and selected for use as

ideal reference sequences.

Sanger sequencing, alternatively, could be useful if consensus sequences were the sole study

objective, as Sanger sequencing largely results in a consensus sequence of amplified primer-

guided fragments of HBV sequence. However, this approach lacks the depth required to detect

low-frequency variants and the full spectrum of viral diversity present within a host. Addition-

ally, as the primer sequences used to amplify viral DNA are derived from some reference

sequence selected a priori, the issue of reference bias remains. For example, while primers are

typically derived from highly conserved loci, sequence heterogeneity due to mixed/recombinant

infection or due to infection with a non-endemic HBV genotype could result in primers being

constructed within inappropriate loci and lead to the failed amplification and subsequent lack

of coverage across large sections of the HBV genome, biasing any subsequent analysis [32].

While sequence-to-graph alignment requires more computational resources than linear

alignment-based approaches, especially for the VG map mapper (S2 Table in S1 File), if the

goal is to capture and retain as much HBV-related sequencing data as possible for analysis, we

show that graph-based methods outperform traditional linear reference-based alignment for

HBV. We should note that effective tools enabling sequence-to-graph alignment and the sub-

sequent identification of graph-derived genetic variation are a relatively recent development.

Improvements in computational performance have already been demonstrated through graph

simplification and the development of more advanced mapping and variant identification

models [52–54], with further improvements expected [55].

While alternatives to graph-based alignment, which leverage multiple reference sequences,

have also been developed, such as alignment using multiple linear references in tandem [56, 57],
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their performance has not been assessed using HBV sequencing data. Furthermore, an added

benefit of graph-based approaches is that differences observed between the embedded paths/ref-

erence sequences can be utilized during variant calling to identify loci of genetic variation, in

addition to mutations inferred from the alignment of sequencing data directly. The ability to

leverage graph topology was demonstrated in our use of path depth to infer the genotype of HBV

sequences aligned to the reference graph. Alternative graph-based prediction methods, including

models for HBV subgenotype prediction or recombination detection, are worth further explora-

tion. Whether metrics linked to graph topology or complexity, including path depth, can be used

to better characterize the viral genetics of CHB quasispecies, either within specific regions or

across the genome [58, 59], or the genetic diversity of HBV generally remains unexplored. For

example, we observe the distribution of path depth within the phylogenetically representative

HBV reference graph approximates a universal gene frequency distribution typical of many bac-

terial species (S2 Fig in S1 File) [36], despite there being no distinction between a core and acces-

sory genome for HBV. Future efforts should investigate the utility and potential clinical

importance of these graph-derived measures of genetic complexity for HBV and other microbial

pathogens of public health importance. For example, graph-to-graph comparisons could enable

the analysis of genetic sequence data in ways that Euclidean data structures cannot.

Finally, while sequence variation graphs are a relatively recent advancement, they are

increasingly being used to investigate highly genetically diverse microbial pathogens and

regions of the human genome, further catalyzed by the recent completion of the first human

pangenome reference [60]. In this study, we demonstrate the limitations of using linear HBV

reference sequences to derive consensus sequences for CHB samples. Furthermore, we hope to

mitigate issues of HBV reference ambiguity by making this HBV reference graph publicly

available, which will also promote the use of graph-based advances in genetic analyses to

improve our understanding of CHB genetics.

Materials and methods

Source of genetic sequence data

Full-length HBV genome sequences. A set of non-redundant full-length HBV genomes

(N = 2,837) was obtained from the publicly-available resource provided by McNaughton et al.
[38]. Briefly, 7,108 full-length HBV genomes were obtained from the HBVdb database

(https://hbvdb.lyon.inserm.fr/HBVdb/) and recombinant or highly similar full-length HBV

genome sequences were removed. A set of 44 sequences representative of all phylogenetically-

identified genotypes, subgenotypes, and genetically-distinct clades was then identified for use

as reference sequences in downstream analyses.

High-throughput CHB sequencing data. HBV-targeted sequencing data from an indi-

vidual included in a longitudinal cohort study of treatment-naïve individuals with CHB was

obtained via the NCBI Sequence Read Archive (BioProject ID: 479693) [61]. Sample-level clin-

ical and demographic data were obtained through communication with study authors. The

high-throughput CHB sequencing data included in this study reflects five longitudinally sam-

pled visits between 1991–1996 from a single HBeAg positive individual (identifier ‘C4’).

Sequencing was performed using an Illumina HiSeq 2500, as previously described [61]. Cuta-

dapt was used to trim adapters, poor-quality bases, and reads <36bp long [62]. FastQC was

used to ensure the post-QC data passed Illumina sequencing-related QC checks [63].

Patients with HBV infection, including individual C4, were recruited with fully informed

written consent from the Division of Gastroenterology and Hepatology at the National Uni-

versity Health System, Singapore, and the original study received approval from local institu-

tional review boards [61].
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Simulated high-throughput sequencing data. Realistic high throughput HBV sequenc-

ing data were simulated using InSilicoSeq, which enables the generation of error-prone Illu-

mina-like sequencing data with pre-specified abundance/coverages [64]. Two datasets of

paired-end sequences/reads were generated using an Illumina HiSeq error model, the first set

(N = 50,000 reads/genome) was simulated from each of the recommended HBV reference

sequences (N = 44). The second set (N = 500,002 reads total) was simulated from a randomly

selected HBV genome sequence from each of the 9 HBV genotypes (excluding genotype J, as

only a single isolate remains available) and 50 additional randomly selected HBV genomes not

included within the HBV reference graph (total N = 59).

Sequence-to-graph alignment

HBV reference graph construction and alignment. A sequence variation graph, termed

the HBV reference graph, was created using the full set of phylogenetically representative refer-

ence sequences (N = 44) (S1 File) [38]. The HBV reference graph was created using the pan-

genome graph builder (PGGB) pipeline, which performs pairwise whole-genome alignment

using wfmash and graph induction using the seqwish software and then sorts and orders the

graph via partial order alignment using smoothxg [65–67].

The variation graph toolkit (VG, v1.39) was used to perform all graph-related format

conversions, indexing, sequence-to-graph alignment, and collating of mapping/alignment

statistics, as described in the VG documentation [33, 68]. Fast short-read alignment via the

VG giraffe mapper was accomplished by creating a haplotype-aware graph index where

each reference genome was indexed as a unique haplotype [69]. Highly accurate but more

computationally intensive graph-based mapping was performed using the VG map

mapper.

Establishing internal validity of the HBV reference graph. All reads simulated from the

graph-embedded HBV genomes were concatenated and then randomly subsampled to

20,000X coverage seven times. Coverage-based subsampling was performed using rasusa [70].

These subsampled HBV sequencing datasets were aligned to the HBV reference graph using

the haplotype-aware VG giraffe mapper. For the graph to be internally valid, we required

>99% of the reads simulated from HBV genomes embedded within the graph to align

successfully.

To assess whether each path within the graph was utilized during sequence alignment and

to test whether aligned sequences had the highest alignment scores to graph-embedded HBV

genomes, which were more genetically similar to the aligned sequences, each full-length HBV

sequence (N = 2,837) was aligned to the graph using VG map. A ‘correct’ alignment was

observed if the reference path with the highest alignment score was of the same HBV genotype

as the query sequence. Path-specific alignment scores were also derived for alignments made

using the set of simulated high throughput sequencing data from HBV genomes not used in

graph construction (N = 59). Briefly, by identifying the graph nodes for each path with success-

ful alignments, the genome path with the most alignments was able to be identified (S1 Fig in

S1 File). Path-specific alignment scores were derived using the sum of weights estimated for

each node involved in a successful alignment. Weights reflect the path depth of each node (i.e.,

the number of genome sequences containing/traversing through the node), with nodes tra-

versed by a single HBV genome weighted heavily and nodes traversed by all genomes weighted

least (S2 Fig in S1 File). A ‘correct’ alignment was observed if the path with the highest

weighted alignment score was of the same HBV genotype as the genome sequence used to sim-

ulate the HBV sequencing data.
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Alignment of HBV sequencing datasets–graph vs. linear references

Simulated HBV sequencing data. To determine whether a graph-based reference

improves sequence alignment compared to linear reference-based approaches for HBV

sequencing datasets, we aligned the combined simulated high-throughput sequencing data

(generated from 59 HBV genomes not included within the graph) to the graph using VG

giraffe and to each linear reference sequence (N = 44) using BWA-MEM. The proportion of

successfully aligned reads was obtained using ‘VG stats’ and ‘SAMtools flagstat,’ [71] respec-

tively. While comparisons of the computational time and resources required for variation

graph and linear-reference-based aligners have been performed previously [68], ‘/usr/bin/

time’ estimates for the alignments using BWA-MEM, VG giraffe, VG giraffe in fast-mode, and

VG map can be found in S1 Table in S1 File. To approximate a more realistic scenario in

which the observed genetic diversity spans a subset of HBV genotypes known to circulate

within a geographic region rather than all currently known HBV genotypes/subgenotypes, lin-

ear reference and graph-based alignment comparisons were performed using simulated

sequencing data from randomly selected HBV genotype B (N = 6) and C (N = 12) sequences,

the primary genotypes endemic in East and Southeast Asia [42, 43].

We estimated the depth of coverage across the HBV genome for the alignment of all simu-

lated high-throughput sequencing data to each linear reference using ‘SAMtools depth’. Geno-

type-specific depth estimates were obtained by estimating the mean alignment depth across

alignments made using references of the same genotype via a sliding-window approach (50bp

wide) in R. Local minima in depth were estimated using the ggmisc package in R. To approxi-

mate site-specific depth of coverage across the HBV genome from the graph-based alignment,

the start site of each successfully aligned read was used to infer coverage by estimating a rolling

sum of the median number of reads within a sliding window the length of the simulated reads

(125bp).

To facilitate the comparison of whether regions of poor coverage corresponded to loci of

increased pairwise diversity, the local nucleotide sequence diversity across the set of reference

sequences (N = 44) was estimated using a sliding window approach (150bp wide) in R using

the pegas package [72].

Alignment of real CHB sequencing data. To determine the approximate sequencing

depth for each CHB sample (N = 5), raw sequencing data were aligned to each linear reference

sequence (N = 44) using BWA-MEM [73]. Alignment quality was assessed using Qualimap

(v2.2.1) [74]. The proportion of successfully aligned reads were estimated using ‘SAMtools

flagstat’. For each sample, the linear reference with the highest proportion of successfully

aligned reads was an HBV subgenotype B2 sequence (GenBank ID: GU815637). For align-

ments to this reference, mean depth of coverage ranged from 82,930X-334,157X.

To reduce computational time and resources required for our analyses, QC-passed reads

were down-sampled to obtain an average coverage of 20,000X. To test whether subsampling

altered the proportion of successfully aligned reads, subsampled reads were also aligned to

each linear reference sequence and the proportion of successful alignments was compared to

the alignments involving all QC-passed sequencing data using a binomial generalized linear

mixed model (GLMM) with random intercepts in R. The GLMM treated each alignment as a

binomial outcome (successful alignment vs. not successful alignment), with the total number

of reference-specific alignments used as weights. Whether alignments of these subsampled

reads to an extended linear reference, obtained by concatenating the first 120bp of each refer-

ence to the end of each sequence, altered alignment statistics were also assessed using the same

GLMM performed in R. To identify whether reads which failed to align to sub-optimal linear

references (non-HBV subgenotype B2) were uniformly distributed across the genome,
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unaligned reads from each linear reference-based alignment were re-aligned to the best per-

forming linear reference. The genome-wide distribution of these ‘rescued’ reads was visually

assessed in R.

Graph-based alignment of subsampled CHB sequencing data was performed using the VG

map mapper. For samples with higher alignment proportions to the graph than any linear ref-

erence, unmapped reads from the best performing linear reference for each sample were re-

mapped to the graph and the genome-wide distribution of the reads ‘rescued’ via graph align-

ment was visualized using R. To identify and visualize the loci where HBV sequence was res-

cued via graph alignment, the rescued reads were queried via BLAST against a compacted de

Bruijn Graph comprised of the reference sequences and de novo (reference-free) assembled

HBV haplotypes from each sample created using Bifrost and visualized with Bandage [75, 76].

We also performed BLAST in Bandage using these successfully re-mapped reads against the

HBV reference graph only to confirm that rescued reads mapped to regions of increased graph

complexity.

Derived consensus sequences–graph vs. linear reference sequences

Simulated HBV sequencing data. Consensus sequences were obtained from linear refer-

ence-based alignments of simulated non-graph derived sequencing data using iVar [77]. iVar

was developed to analyze amplicon-based viral sequencing data and leverages SAMtools to call

variants and derive a consensus from the most common nucleotide across each position in an

alignment file. We used a minimum base-level quality score of 20 and depth threshold of 10

while accounting for ambiguous nucleotides. For graph-based alignments, we used a wholly

graph-based variant calling approach leveraging the alignments across all paths using VG [33],

followed by consensus generation via bcftools [78].

Longitudinal CHB sample consensus sequences. Prior to performing alignment and var-

iant calling for the real CHB samples, QC-passed paired-end reads were merged using PEAR

and filtered to retain the highest quality reads >150bp long for analysis via bbmap [79, 80].

Reads were aligned to each linear reference or the HBV reference graph, followed by iVar-

based consensus sequence identification. We also performed variant calling using the LoFreq

software, a variant calling tool able to identify even low-frequency variants from high-coverage

data across diverse genetic sequencing datasets [81], for each linear reference-based alignment

followed by consensus generation using a majority allele rule for each site (i.e. alleles with fre-

quency>50% were integrated into the consensus sequence) via bcftools. For LoFreq-derived

consensuses, we used the same depth threshold (10) used in iVar and estimated insertion/dele-

tion qualities which were used in addition to LoFreq’s method of combining base-level, map-

ping, and alignment quality information to determine variant quality and identify the majority

nucleotide at each position, accounting for insertions/deletions. Graph-based alignment was

performed using VG giraffe. VG-based variant calling using the graph alignments and consen-

sus generation were obtained via bcftools. For these CHB samples, we also derived consensus

sequences after re-aligning the successful graph-aligned reads to a single path within the graph

via VG, termed surjection, followed by iVar consensus construction. Graph-aligned reads

were surjected into the path corresponding to the best-performing linear reference.

Consensus sequence comparisons

Consensus sequence comparisons from simulated HBV sequencing data. Comparisons

between each simulation-based consensus sequence and the full set of HBV genomes from

which reads were simulated were performed using Mash [82], which estimates a genetic dis-

tance metric, the Mash distance, based on the estimated mutation rate between two sets of
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sequences and the Jaccard index (the fraction of k-mers shared between the comparison

sequences). The Mash distance also approximates average nucleotide identity (ANI) estimates,

with ANI equivalent to one minus the distance estimate, while also having the benefit of facili-

tating comparisons between sequences/sequencing datasets of variable lengths/sizes [82].

Given the short length of the HBV genome (3.2kb), a k-mer sequence length of 7 was used for

Mash distance estimations [83, 84]. The consensus sequence with the lowest estimated genetic

distance with the set of full-length HBV genome sequences can be inferred to be the most

accurate or genetically representative consensus sequence.

Identifying accurate consensus sequences from real CHB sequencing data. To facilitate

comparisons between CHB-derived consensus sequences and to identify the most genetically

similar consensus to the HBV quasispecies of each sample, we estimated the Mash distance

between each consensus and the subsampled HBV sequencing data which aligned to the best

performing reference (linear or graph-based) for each sample. We also performed de novo
HBV strain-level assembly using SAVAGE and VG-Flow to identify the viral haplotypes com-

prising each CHB infection [85, 86]. For each sample, the best-performing linear reference was

added to the SAVAGE output for VG-Flow to improve strain-level contiguity and assembly.

The set of sample-specific viral haplotypes with frequencies >1% were included in all pairwise

genetic distance comparisons. The consensus sequence with the lowest estimated genetic dis-

tance with the HBV-specific high throughput sequencing data can be inferred to be the most

accurate and genetically representative consensus sequence for each sample.

Statistical analysis. Read depth and coverage-related statistical estimates were performed

using SAMtools while the generalized linear mixed model regressions, sliding-window-based

analyses, and visualizations were performed in R(v4.2.2). Unless otherwise specified, default

parameters were used for the variant calling, consensus construction, and sequence compari-

son tools described above. For all analyses, a statistical significance threshold of p<0.05 was

used.
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