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Abstract

Given the prolonged timelines and high costs associated with traditional approaches, accel-

erating drug development is crucial. Computational methods, particularly drug-target inter-

action prediction, have emerged as efficient tools, yet the explainability of machine learning

models remains a challenge. Our work aims to provide more interpretable interaction predic-

tion models using similarity-based prediction in a latent space aligned to biological hierar-

chies. We investigated integrating drug and protein hierarchies into a joint-embedding drug-

target latent space via embedding regularization by conducting a comparative analysis

between models employing traditional flat Euclidean vector spaces and those utilizing

hyperbolic embeddings. Besides, we provided a latent space analysis as an example to

show how we can gain visual insights into the trained model with the help of dimensionality

reduction. Our results demonstrate that hierarchy regularization improves interpretability

without compromising predictive performance. Furthermore, integrating hyperbolic embed-

dings, coupled with regularization, enhances the quality of the embedded hierarchy trees.

Our approach enables a more informed and insightful application of interaction prediction

models in drug discovery by constructing an interpretable hyperbolic latent space, simulta-

neously incorporating drug and target hierarchies and pairing them with available interaction

information. Moreover, compatible with pairwise methods, the approach allows for additional

transparency through existing explainable AI solutions.

Introduction

Modern drug development, despite its critical role, is characterized by lengthy timelines and

high costs, with bringing a new drug to market often requiring 10–15 years and 1.5–2.0 billion

USD [1]. A promising strategy to accelerate drug development is drug repositioning, involving

the use of existing drugs for new therapeutic applications. Computational methods, especially

those leveraging drug-target interaction (DTI) prediction, have been widely used due to

advancements in machine learning and the availability of vast databases. These approaches

offer efficiency and accuracy, reducing the time and cost of experimentally measuring the
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Copyright: © 2024 Pogány, Antal. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All utilized datasets

have been previously published and are freely

available. The two interaction datasets, KIBA and

NURA are available free of charge via the following

Zenodo open repositories: https://zenodo.org/

https://orcid.org/0000-0003-4968-7504
https://doi.org/10.1371/journal.pone.0300906
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0300906&domain=pdf&date_stamp=2024-03-21
https://doi.org/10.1371/journal.pone.0300906
https://doi.org/10.1371/journal.pone.0300906
https://doi.org/10.1371/journal.pone.0300906
http://creativecommons.org/licenses/by/4.0/
https://zenodo.org/records/5105698


interactions [2, 3]. Nevertheless, besides predictive performance, the interpretability of DTI

models is another important aspect that needs to be addressed.

Another prominent area in machine learning research is the exploration of hyperbolic

embeddings, recognizing their potential in handling datasets with intrinsic hierarchies and

non-linear structures more effectively than traditional Euclidean representations. Incorporat-

ing hyperbolic geometry into machine learning models allows hierarchical data representation

with less distortion [4]. Recently, hyperbolic methods have gained more interest in DTI pre-

diction and repositioning due to their ability to capture underlying biological structures and

achieve enhanced predictive performance with lower dimensions [5–7]. While some studies

explore embedding drug hierarchies in hyperbolic space [8], to the best of our knowledge, as

for now, no known solutions are integrating both drug and target hierarchies within a DTI

model.

Our work aims to incorporate information from drug and target hierarchies into DTI pre-

diction models to enhance explainability by constructing a meaningful latent space. Leveraging

distance-based DTI predictors for their inherent interpretability, our approach regularizes the

joint-embedding drug-target latent space, making it simultaneously embed drug and target

hierarchies while pairing them based on the available interaction information. We explore the

effect of the hierarchy-based embedding regularization on both Euclidean and non-Euclidean

manifolds. Additionally, we conduct a latent space analysis to gain a deeper understanding of

the resulting drug-target model space, providing insights into the organization and interpret-

ability of hierarchical information.

In summary, our contributions include introducing a method to embed drug and target

hierarchies into a shared DTI representation space, evaluating the impact of prior hierarchy

regularization on DTI prediction models, and offering a comprehensive latent space analysis

as an illustrative example to interpret the resulting model. As a result, our joint-embedding

hierarchy regularization leads to a more interpretable and meaningful latent space with only a

slight performance cost, facilitating a more informed and insightful application of DTI predic-

tion models in drug discovery. An overview of the proposed method is provided in Fig 1.

The paper proceeds as follows: Section Preliminaries provides background information,

Section Methods outlines our datasets and methods, Section Results presents the outcomes of

our comparative study and provides an example latent space analysis, and finally, Section Dis-

cussion and conclusions summarizes our work, discussing potential applications and future

research directions.

Preliminaries

Drug-target interaction prediction

The advancement of artificial intelligence technologies has significantly impacted various

aspects of the medical domain, including processing biological networks [9], diagnosing

patients [10], and even accelerating different stages of drug development. In recent years, clas-

sical machine learning methods have become increasingly common among DTI prediction

approaches as well [3, 11], enabling the estimation of interactions between unknown proteins

and molecules. The experimental validation of compound-protein pairs often demonstrates a

significant correlation between predicted and measured bioactivities, highlighting the poten-

tial of predictive models to fill experimental gaps in existing compound-target interaction

maps [12]. This capability proves valuable in early development by identifying candidates that

bind to specific proteins or revealing new therapeutic applications for existing drugs through

repositioning.
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Most current DTI prediction approaches are based on a pairwise neural network model

involving dual inputs, such as a molecule and a protein. An illustration of this model type is

the DeepDTA architecture [13], which takes a Simplified Molecular Input Line Entry System
(SMILES) drug representation and an amino sequence on the input. Convolutional encoders

process these inputs to generate drug and protein embeddings, which are then concatenated,

and amulti-layer perceptron (MLP) with a sigmoid activation predicts the interaction. An alter-

native, widely used solution is to utilize pre-trained embeddings on the input, potentially

Fig 1. Overview of the proposed method. (A) As a preprocessing step, the DTI matrix for the positive and negative interactions, the lowest common

ancestor distance matrices for the hierarchies, and the input representations are created and stored. (B) Then, during the training phase, b interactions,

n drug and target anchors, and for each anchor, one positive andm negative samples are selected in each batch (in this example, b = 3, n = 1,m = 2).

Utilizing the distances between the model embeddings of the selected samples, the loss is calculated, and based on its gradient, the model weights are

updated. (C) Finally, the resulting model allows the visualization of the joint-embedding DTI space, which now encodes interactions as well as prior

hierarchies. After encoding input representations and subsequently applying dimensionality reduction, the hyperbolic latent space of the model can be

visualized in two dimensions. The latent space might be subject to further analysis, such as navigating with the translation operator and identifying

clusters of interest. For more details see the following subsections: (A) Datasets, (B) Model and objective function, (C) Latent space analysis.

https://doi.org/10.1371/journal.pone.0300906.g001
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reducing convergence time while reaching the same predictive performance with less data

[14]. Another challenge in DTI prediction is the imbalanced nature of the available datasets.

Possible solutions include weighted negative sampling, utilizing unlabeled interaction infor-

mation in a semi-supervised way [15], or even applying feature selection [16].

Pairwise methods often result in a shared drug-target latent space. In these joint-embedding

models, the similarities between the entities reflect interaction information, i.e., interacting

pairs are close to each other. This makes pairwise models parallel to some representation-

learning approaches. For instance, in a prior study, we showed a way to treat interaction pre-

diction with imbalanced data as a representation learning problem, leveraging the advantages

of the state-of-the-art metric learning approaches [17]. Beyond their improved effectiveness,

similarity-based models offer a degree of transparency. Visualizing their latent space might

provide some explainability by analyzing predicted interactions based on the distances

between corresponding entities and identifying clusters with similar drugs or targets nearby.

Explainable AI

Despite their success, machine learning models are often perceived as black boxes, hindering

their interpretability, a critical factor, particularly in medical applications [18]. Therefore, the

need for eXplainable Artificial Intelligence (XAI) solutions is increasing, aiming to provide

transparency and facilitate decision-making. This need has led to the development of various

XAI methods, ranging from model-specific to more general, known as model-agnostic

approaches [19]. Besides providing interpretable models for machine learning practitioners,

there is also a growing demand to increase user trust [20] and even understand how users

engage with the explanations [21].

A widespread approach in the medical domain is utilizing interpretable tree-based predic-

tive architectures [18, 22]. Besides, there are existing solutions to enhance the explainability of

more complex models, such as deep neural networks, for instance, by generating counterfac-

tual explanations [23, 24] or by attributing the predictions to the input features [25].

XAI approaches are frequently used in drug development to enhance model transparency,

identify crucial input features, validate output acceptability, offer insights to decision-makers,

and estimate the uncertainty associated with predictions [26]. A prominent example is the uti-

lization of the SHapley Additive exPlanations (SHAP) methodology to provide local explana-

tions by identifying compound features responsible for kinase inhibitor activity prediction [27,

28]. Besides, pairwise DTI predictors can also be subjected to XAI solutions, with most recent

methods relying on the interpretable-by-design attention mechanism. For instance, some solu-

tions leverage mutual learning attention for drug and target encoders coupled with attention

visualization for local interpretation and identification of relevant input features [29]. Others

use cross-modal attention with regularization guided by non-covalent interactions [30], and

some graph-based models identify protein binding sites for enhanced interpretability [31].

In our current paper, we also use pairwise DTI models. However, instead of local input

interpretations provided by the attention mechanism, we aim to make the joint-embedding

latent space more explainable by incorporating a priori drug and target hierarchies. Besides

evaluating the effect of embedding prior biological hierarchies, we extend our investigation to

non-Euclidean representations, considering their potential advantages in preserving hierarchy

trees.

Hyperbolic geometry

Mathematical models of non-Euclidean spaces were originally formulated in hyperbolic geom-

etry and later found their way into machine learning. A fundamental representation of
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hyperbolic space is the Poincaré ballmodel or its two-dimensional version, the Poincaré disk,

often used for visualization purposes. This model was the first to be used by a machine learning

approach to learn continuous, hierarchical word representations [4]. The model represents the

hyperbolic space as an open d-dimensional unit ball Bd
¼ fx 2 Rdj1 > kxkg with a Riemann-

ian metric. In this model, the Poincaré distance dP between vectors x and y in the unit ball is

defined as:

dPðx; yÞ ¼ cosh� 1
1þ 2

kx � yk2

ð1 � kxk2
Þð1 � kyk2

Þ

 !

ð1Þ

The Poincaré distance within Bd
increases gradually with the Euclidean norms of vectors kxk

and kyk, making it suitable for embedding trees and data with inherent hierarchies. For exam-

ple, positioning the root node of a tree at the origin maintains short distances to other nodes,

while distances between leaf nodes near the boundary grow rapidly as their embeddings have

norms close to one.

Multiple equivalent models of the hyperbolic space exist, such as the Lorentz model, fre-

quently used in machine learning applications for its improved numerical stability [32]. The d-

dimensional Lorentz (or hyperboloid) model is represented by a hyperboloid manifold Hd;b

embedded in a d+1-dimensional Euclidean ambient space. Hd;b
is defined by Eq (2), where

−1/β is the constant negative curvature of the space and h:; :iL is the Lorentzian inner product.

Hd;b
¼ fx ¼ ðx0; . . . ; xdÞ 2 R

dþ1
jhx; xiL ¼ � b; x0 > 0g

hx; yiL ¼ � x0y0 þ
Xd

i¼1

xiyi <¼ � b
ð2Þ

The two models are equivalent, with an invertible mapping h : Hd;b
7!Bd

given by:

hðxÞ ¼
ðx1; . . . ; xdÞ
x0 þ 1

2 Bd
ð3Þ

Using Eq (3), the Poincaré distance with the Lorentzian inner product can be expressed as

dPðhðxÞ; hðyÞÞ ¼ cosh� 1
ð� hx; yiLÞ. We can use other metrics, such as the squared Lorentzian

distance defined in Eq (4), which satisfies all distance metric axioms except the triangle

inequality and is widely employed in machine learning applications [33].

d2
Lðx; yÞ ¼ hx � y; x � yiL ¼ � 2b � 2hx; yiL ð4Þ

While the Lorentz model has its stability, other models have other advantages. For example,

the Poincaré model is well suited for visualization since it does not require an extra ambient

dimension. More than that, it supports useful operators such as translation, i.e., rotating the

Poincaré disc to move the origin to a given point while distances between vectors remain

intact. As the spatial resolution is amplified near the origin, translation in hyperbolic space can

also be considered a “zoom-in” method by moving the area of interest to the center [4]. Other

practical models, like the Klein model, facilitate other efficient operations in hyperbolic spaces,

such as averaging feature vectors. For instance, when working with Poincare embeddings and

aiming to calculate their average (referred to as the Einstein midpoint in hyperbolic spaces),

the process involves converting the embeddings to Klein coordinates, performing the averag-

ing and converting the result back to Bd
, as the Einstein midpoint is most efficiently expressed

in the Klein model [34].
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Researchers have integrated hyperbolic spaces into deep learning methods, leveraging mod-

els and operators from differential geometry and developing hyperbolic versions of known

neural architectures. Examples include MLP layers with trainable hyperbolic parameters [35],

Poincaré variational autoencoders (VAE) [36], and graph convolutional neural networks [37].

To optimize the non-euclidean parameters of these models, Riemannian versions of conven-

tional adaptive optimization methods can be employed [38]. In non-Euclidean machine learn-

ing applications, operations like the exponential and logarithmic maps become essential for

converting between Euclidean and hyperbolic embeddings. For instance, in the Lorentz

model, the exponential map is defined as:

expxðvÞ ¼ coshð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv;viL

p
Þxþ sinhð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv;viL

p
Þ

v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hv;viL

p ð5Þ

Here, expx : T xH
d;b
7!Hd;b

maps a tangent vector v 2 T xH
d;b

onto the Lorentz manifold Hd;b
,

where T xH
d;b
� Rd

denotes the tangent Euclidean subspace at x 2 Hd;b
.

Embedding biological hierarchies into hyperbolic space. Various biomedical domains

have an underlying hierarchical structure, making hyperbolic embeddings a reasonable choice.

For instance, phylogenetic trees are evident examples. Making use of the hierarchical nature of

genetic data, Klimovskaia et al. developed a hyperbolic manifold learning method called Poin-
caré maps, leveraging single-cell RNA sequencing measurements to produce two-dimensional

representations of cell trajectories on the Poincaré disk [39]. Hyperbolic embeddings can also

be used to reconstruct evolutionary relationships, as demonstrated by Macaulay et al., who

successfully employed a hyperbolic Markov Chain Monte Carlo method for Bayesian phyloge-

netic inference [40].

There are other biology-related hierarchies that can enhance machine learning methods,

such as the Anatomical Therapeutic Chemical (ATC) drug hierarchy. Yu et al. applied a hyper-

bolic VAE for drug molecules, aligning the latent space according to the ATC hierarchy and

using it for drug repositioning tasks [8].

Proteins also exhibit hierarchies, such as the kinase hierarchy [41]. For instance, the similar-

ities based on the hierarchy of protein kinases can be utilized in multi-target DTI prediction

methods to find targets with a stronger multi-task effect [42]. The early use cases of manual

Poincaré embeddings for cluster identification and hierarchy visualization [43] have evolved

with automatic learning methods. For example, the PoincaréMSAmethod automatically pro-

duces kinase hierarchy embeddings with the Poincaré maps dimensionality reduction tech-

nique using multiple sequence alignment data [44].

Hyperbolic DTI prediction. Recent advancements in drug-target interaction prediction

include state-of-the-art hyperbolic solutions. Among the first was the work of A. Poleksic, a

hyperbolic matrix factorization (MF) method [5]. The paper uses a distance-based prediction

in a joint-embedding manner. It compares the squared Lorentzian distance with the Euclidean

dot-product metric, demonstrating the superior performance of the hyperbolic version.

Another recent approach, the Fully LOrentz Network Embedding (FLONE) [6], adopts a simi-

lar joint-embedding model with Lorentzian squared distance. Instead of a shallow MF, the

method incorporates drug-drug and protein-protein similarity-based inputs, employs hyper-

bolic neural networks for embeddings, and uses disease-aware drug representations to

enhance the performance. Hyperbolic methods extend to graph embeddings as well. Lau et al.

applied hyperbolic graph neural networks for drug repurposing in Leishmaniasis [7]. Li et al.

used hyperbolic knowledge graph embeddings for protein-protein interaction prediction [45].

Zahra et al. leveraged hyperbolic protein-protein interaction network embeddings to identify
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efficient drugs inhibiting closely situated proteins and discover potential synergic drugs inhib-

iting proteins from the same pathway [46].

While existing approaches utilize hyperbolic embeddings for drug or target hierarchy pres-

ervation, and others use shared drug-target representations via pairwise neural networks or

graph embeddings, none directly incorporate both known drug and target hierarchies into a

shared DTI latent space. We only found existing solutions outside the DTI domain that embed

hierarchies of two different modalities into the same space, such as using a shallow Poincaré

model in a joint-embedding way for words and labels to pair their hierarchies [47]. Our

research aims to bridge this research gap by simultaneously embedding drug and target hierar-

chies in a joint-embedding interaction space, assessing its impact, and demonstrating explain-

ability through use cases.

Methods

In the subsequent section, we provide an overview of the datasets, models, and evaluation met-

rics employed in our study.

Datasets

Drug-target interactions. To assess the effect of hierarchy regularization, we utilized two

DTI benchmark datasets containing interaction between compounds and target proteins given

by the dissociation constant. One of them has protein kinases as targets, called the Kinase
Inhibitor BioActivity (KIBA) [48] dataset, which is, to the best of our knowledge, one of the

largest DTI datasets with rich, labeled hierarchical information. The other, smaller one con-

tains interactions to nuclear receptors (NRs), called the NUclear Receptor Activity (NURA) [49]

dataset.

As for preprocessing, we binarized interactions using a dissociation constant threshold of 3,

following the recommendation of Öztürk et al., the authors of the DeepDTA method [13]. We

discarded duplicated compounds lacking a SMILES descriptor or containing more than 100

non-H atoms, as well as compounds for which we could not produce an input representation.

Table 1 presents the characteristics of the resulting data.

Input representations. In our study, we utilized structure-based input representations

generated by pre-trained, unsupervised machine-learning models.

When exploring various molecule representations, including one-hot and categorical inputs

without prior information, Morgan fingerprints with various lengths, SMILES descriptor, and

the 300-dimensional, pre-trained Mol2vec embeddings [50], the latter proved most efficient

and achieved superior performance. We produced the embeddings with the pre-trained

Table 1. Summary of the used datasets.

KIBA NURA

Number of compounds 50,418 31,006

Compounds with known hierarchy 272 42

Number of proteins 467 22

Proteins with known hierarchy 409 22

Number of interactions 235,625 39,162

Number of positive interactions 72,944 30,868

Number of negative interactions 162,681 8,294

Sparsity (ratio of the unknown interactions) 98.9993% 94.2589%

https://doi.org/10.1371/journal.pone.0300906.t001
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Mol2vec model using the SMILES descriptor as input, excluding the compounds for which the

Mol2vec model could not provide an output.

For protein embeddings, we examined several pre-trained models utilizing amino acid

sequences [51]. Among these, ProtVec [52], which employs the Word2vec concept and is com-

monly paired with Mol2vec [14], emerged as a standard choice. While two of the other pre-

trained methods, namely CPCProt [53] and ProtTrans [54], also seemed promising, with the

former slightly improving predictive performance and the latter exhibiting better hierarchy

preservation, ProtVec offered a balanced trade-off between these considerations. Additionally,

we explored alternative approaches, such as using one-hot and categorical inputs, as well as

employing bag-of-words representations with k-mers of various lengths in the amino

sequences. We also experimented with different dimensionality reduction techniques on the

input representations and the combination of different embeddings, utilizing appropriate mul-

timodal encoders. However, none of the methods listed above managed to outperform the

pre-trained embeddings. Consequently, we opted for the 300-dimensional ProtVec protein

embeddings and used them throughout our study.

A priori hierarchies. Known biological hierarchies for compounds and proteins were

obtained and utilized as prior information for model regularization. Notably, for both hierar-

chies, the entities we want to embed are situated at the leaves, making it unnecessary to learn

representations for the internal nodes of the hierarchy trees.

We utilized the ATC hierarchy for drug compounds, precisely the ATC subset provided by

Yu et al. [8]. We mapped the hierarchy information to our compounds based on canonical

SMILES descriptors, resulting in 272 and 42 compounds with ATC information in the KIBA

and NURA datasets. The ATC hierarchy comprises five levels denoted from ATC1 to ATC5,

where ATC1 represents the top level, and ATC5 includes the leaves (drugs). A distance matrix

based on ATC was created to facilitate hierarchy-based representation regularization. As a dis-

tance, we chose to use the level of the lowest common ancestor in the ATC tree, ranging from

1 (drugs with the same ATC4 label) to 5 (drugs with different ATC1 labels). Note that the

leaves are not unique in ATC, i.e., one drug may appear more than once with different hierar-

chy classes on the higher levels. Duplicated drugs were handled by selecting the corresponding

leaf with the lowest distance.

For the protein kinases in the KIBA dataset, we employed the human kinome tree hierarchy

defined by Manning et al. [41] and managed to map hierarchy information to 409 targets via

UniProt IDs. This four-level hierarchy includes group, family, subfamily, and the genes as

leaves. We applied the same lowest common ancestor distance, which ranges from 1 to 4 in

this case. Two groups, other and atypical, were treated differently. If the lowest common ances-

tor of two proteins is the node belonging to the other or atypical group, then the distance

between them is 4 instead of 3, reflecting the expectation that proteins in these groups are less

similar.

We created a similar distance matrix for the nuclear receptors, using the three-level subfam-
ily-group-memberNR hierarchy known for all 22 targets given by Wang et al. [49].

An abstract overview of the resulting preprocessed data is found in Fig 1A.

Model and objective function

Pairwise DTI model. We compared pairwise representation-based predictors with

squared Lorentz distance and dot product, akin to A. Poleksic [5]. However, instead of a shal-

low MF with a wrapped normal distribution as prior, we incorporated input representations,

similarly to the FLONE method [6]. We chose to work with the commonly used structural
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priors, as they enhance the performance and solve the cold-start problem, i.e., the model also

works for unseen drugs and targets.

The pre-trained representations, Mol2vec and ProtVec, are inputs to drug and target

encoders, i.e., MLPs with hidden ReLU activation and dropout between the layers. Predictions

for the binary output interaction are produced through an inner product applied to the result-

ing drug and target latent representations, followed by a sigmoid activation.

To account for class imbalance, evident in Table 1, we employed the weighted binary cross-
entropy (BCE) loss as the objective function, denoted as LwBCE.

Hyperbolic version. To create a hyperbolic version of the predictor, we utilized the

Lorentz model and the squared Lorentzian distance as it is widely used in the literature [5, 32,

33]. The output prediction, shaped by an exponential activation, is expressed as e� d2
Lðd;tÞ, where

d and t represent the latent drug and target embeddings, and d2
L is the squared Lorentzian dis-

tance defined by Eq (4). After obtaining latent embeddings with the drug and target encoders,

we applied the exponential map from Eq (5) to ensure d and t are on the Lorentz manifold.

Note that we could also use the exponential map on the input Mol2vec and ProtVec represen-

tations and use hyperbolic neural networks as encoders, akin to the FLONE method [6]. How-

ever, we did not find any increase in performance, and the Riemannian optimization resulted

in a much higher computational cost. Consequently, we opted for an Euclidean encoder fol-

lowed by an exponential map.

A clip regularization was applied to the latent embeddings, ensuring the Euclidean norm of

the representations was less than or equal to a pre-defined α threshold. Originally introduced

to prevent vanishing gradients during Riemannian optimization [55], we found that even with

Euclidean neural networks and the Adaptive Moment Estimation (Adam) optimizer, clipping

the representations before the exponential map contributed to more stable training.

Hierarchy regularization. We incorporated known hierarchies as a priori input to regu-

larize the model embeddings. Following the work of Nickel et al. [32] and Yu et al. [8], we

introduced a ranking-based regularization term in the loss function, leveraging pairwise drug-

drug and target-target embedding similarities. In batch-wise loss calculation, we first sampled

n representations known as anchors (drug or target, depending on the prior hierarchy used).

For each anchor xi 2 A, a positive example xi+ was sampled from the leaves sharing at least

one common ancestor with xi in the hierarchy tree. Sampling was done uniformly based on

the hierarchy-based distance, i.e., the level of the lowest common ancestor between xi and xi+.

Subsequently, at most m negative samples were randomly selected from the set Ki consisting

of other leaf nodes that are further away in the hierarchy tree from xi than xi+. With these sam-

ples, the regularization term is expressed as:

LREG ¼
X

xi2A

log
e� dðxi ;xiþÞ

P
xk2Ki

e� dðxi ;xkÞ ð6Þ

We introduced LdrugREG and LtargetREG regularization terms to the final loss function, weighted with

λdrug and λtarget, the resulting loss function is the following:

L ¼ LwBCE þ l
drugLdrugREG þ l

targetLtargetREG ð7Þ

With Eq (7) as the objective function, the model can simultaneously embed drug and target

hierarchies while pairing them based on the available interaction information. Fig 1B shows

the batch selection and the training process, while Fig 2 depicts an overview of a hyperbolic

pairwise model regularized with prior hierarchies.
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Evaluation metrics

We evaluated and compared our models according to two aspects: the predictive performance

of the binary classification task and how well the resulting latent space preserves prior

hierarchies.

Predictive performance. For the binary interaction classification task, we employed two

metrics summarizing the classifier’s performance across varying classification thresholds: the

area under the receiver operating characteristic curve (ROCAUC) and the area under the preci-
sion-recall curve (PRAUC), both ranging from 0 to 1.

Hierarchy preservation. Following the work of Heller et al. [56] and Yu et al. [8], we uti-

lized the expected dendrogram purity (EDP) metric to evaluate hierarchy preservation. EDP

assesses how well a learned hierarchy tree T matches discrete class labels C on the leaf nodes.

Measuring dendrogram purity involves examining pairs of nodes within the same class. For

each pair, we identify the smallest subtree containing both nodes and calculate the ratio of

leaves in that subtree belonging to the same class as the given pair. Dendrogram purity is the

average of these ratios across all possible pairs with the same class labels. The metric ranges

from 0 to 1, achieving its maximum when all leaves in each class are part of some pure subtree.

Fig 2. An illustrative overview of the proposed pairwise architecture using a hyperbolic manifold. Besides the interactions (solid-positive, dashed-

negative), the model takes structural (amino sequences and SMILES descriptors) and hierarchical (ATC drug and kinase/NR protein hierarchies) priors

as input. The input sequences are first converted to 300-dimensional vectors using pre-trained Mol2vec and ProtVec embeddings. Subsequently, drug

and target encoders, coupled with an embedding clip and exponential map, generate drug and protein latent representations within a shared hyperbolic

manifold. The squared Lorentzian distances between these latent embeddings are then utilized for interaction prediction. As a result of simultaneously

applying LwBCE, LdrugREG , and LtargetREG in the objective function, the model encodes interactions as well as prior hierarchies in the joint-embedding space. This

means that interacting pairs are close to each other, while negative pairs are distant, and entities closer in the prior hierarchy tree are also closer in the

latent space, providing some interpretability. For instance, after applying Poincaré maps dimensionality reduction, we can visually identify clusters in

the latent space where subtrees of the prior drug and target hierarchies are closely embedded because of the interacting leaf nodes.

https://doi.org/10.1371/journal.pone.0300906.g002
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We opted for the more efficient EDP, which samples only k pairs for each class label instead of

considering all possible pairs. Based on distances in the latent embedding space, we performed

agglomerative hierarchical clustering on the drugs and targets to obtain the learned hierarchy

trees T drug and T target, respectively. To calculate the EDP score for a tree, we averaged the scores

for that tree with respect to class labels Ci on each level i in the given prior hierarchy.

Results

Computations were executed on a 32GB NVIDIA Tesla V100 GPU, and the models were

implemented using the PyTorch framework. Notably, following hyperparameter optimization,

we found that the model is robust considering most of its parameters except for the latent

dimension, i.e., the size of the drug and target embeddings between which the distances are

calculated. Therefore, we applied a previously identified effective configuration consistently

throughout our study, focusing our detailed comparison solely on the latent dimension. The

other hyperparameters did not significantly affect the results and, consequently, were not sub-

jected to a thorough examination. After Xavier weight initialization, we trained the models for

16 epochs using a batch size of 1024 and Adam optimizer with a learning rate of 5*10-5. The

drug and target encoders had two layers with 1024 neurons each, a 10% dropout, and an out-

put layer with configurable latent dimension. The hyperbolic version employed the Lorentz

model with β = 1, i.e., a constant curvature of -1, and clipped the latent embeddings using a

threshold of α = 1. We used weighted BCE in the final objective function to offset class imbal-

ances. The ratio of the weights for positive to negative interactions was 2 to 1 for the KIBA and

1 to 2 in the case of the NURA dataset. For the hierarchy regularization terms in the loss func-

tion, we used n = 10 positive and m = 256 negative samples. In the final loss, λdrug and λtarget

weights were set to 0.1 when hierarchy regularization was applied and 0.0 otherwise. Lastly,

the hyperparameter of the EDP evaluation score, determining the number of samples for each

class in each level, was set to k = 10.

Comparative analysis

We conducted a comparative analysis to assess the effect of incorporating prior hierarchies

into DTI prediction. Employing five-fold cross-validation with an interaction-based train-test

split, we explored the influence of hierarchy regularization in models featuring different mani-

folds and latent dimensions. It’s important to note that, due to the interaction-based train-test

split, all drugs and targets are included in the training data. Consequently, unlike the AUC

scores, EDP is not evaluated on separate test data (mainly due to the small amount of available

data with known hierarchy information). This way, this paper does not focus on the generali-

zation capability of hierarchy preservation, simply on how well hierarchies can be encoded

and paired in different joint-embedding models and the consequent impact of this regulariza-

tion on predictive performance. We distinguished four scenarios concerning the regulariza-

tion, using only the BCE loss, applying either drug or target hierarchy regularization, and

utilizing both drug and target priors. For each scenario, we compared the Euclidean and

hyperbolic versions of our pairwise model across different latent sizes: 2, 4, 8, 16, and 32. More

precisely, in the Lorentz model, the applied dimensions were one larger since the Lorentz

manifold embedded in the ambient Euclidean space is one dimension smaller than the repre-

sentation itself. We performed cross-validation for all setups and repeated the measurements

on the KIBA and NURA datasets. Fig 3 shows the resulting means and standard deviations for

all evaluation metrics, as well as the time required to train the model for one epoch on our pre-

viously mentioned hardware setup.
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In terms of predictive performance, contrary to expectations, Euclidean models slightly

outperform hyperbolic ones, especially in lower dimensions. However, the differences are sub-

tle except for the two-dimensional case, where the Lorentz distance exhibits somewhat poorer

performance. Our observations also indicate that increasing the latent dimension above 16

does not lead to further enhancement in predictive performance. Additionally, when hierarchy

regularization is applied, there is a slight decline in AUC scores, especially for the KIBA

Fig 3. Cross-validation results on the (a) KIBA and (b) NURA datasets. Models with different manifolds are placed in different columns, while the

different rows display the various evaluation metrics and the time required to train one epoch. Within each plot, four curves corresponding to four

scenarios based on the applied a priori hierarchies depict mean and standard deviation values for different latent dimensions obtained through cross-

validation.

https://doi.org/10.1371/journal.pone.0300906.g003
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dataset, where a greater number of drugs and targets with known hierarchies results in a stron-

ger regularization. However, this is an acceptable tradeoff if we consider the gained

interpretability.

Concerning hierarchy preservation, applying the appropriate regularization significantly

increases the EDP score. As expected, this increase is more pronounced in a hyperbolic latent

space, where large trees can be embedded with less distortion. Notably, in the case of the

NURA dataset, where trees are smaller, the hyperbolic model does not significantly outper-

form the Euclidean model, particularly for the NR hierarchy, where the 22 leaf nodes can be

adequately embedded in Euclidean space as well. Analyzing scenarios without prior hierar-

chies reveals that a hyperbolic embedding space alone does not guarantee a preserved hierar-

chy. Both regularization and a hyperbolic space are necessary to achieve a high EDP score. We

can also examine how the drug and target hierarchies influence each other. Surprisingly,

applying one prior hierarchy does not affect the other, indicating that drug and target hierar-

chies can be paired and embedded together without compromising each other, but they do not

exhibit a synergic effect either, i.e., applying only a drug or target prior does not enhance hier-

archy preservation in the other modality.

As for computational cost, not surprisingly, fitting the model on the larger KIBA dataset

requires more time. Nevertheless, the same conclusion can be drawn from both datasets. The

latent dimension does not significantly affect the training time, i.e., increasing the size of the

hidden representations does not have an additional cost. However, utilizing non-Euclidean

embeddings has a noticeable overhead, more precisely, a multiplicative cost, with training

hyperbolic models for one epoch taking approximately 1.6 times as long as for the Euclidean

ones. On the other hand, hierarchy regularization has rather a cumulative cost, with the extra

cost of row and column regularizations independently added to the base training time. Nota-

bly, after fitting the model, the proposed modifications do not have an extra cost, as the regu-

larization is only applied during training, and the extra exponential map required in the

forward pass for the hyperbolic version does not significantly increase inference time.

Based on the results, hierarchy regularization, at the cost of extra training time, contributes

to forming a more meaningful embedding space without significantly impacting the predictive

performance. Additionally, with more than approximately 30 available leaf nodes in the prior

hierarchy tree, using a hyperbolic embedding space is highly recommended, as it enhances the

quality of hierarchy preservation at only a small computational cost.

Latent space analysis

Besides our comparative study, we performed a downstream analysis of the resulting non-

euclidean models, showcasing the impact of hierarchy regularization and providing a means to

visualize the joint-embedding space. Using a Lorentz manifold and a latent dimension of 8, we

trained models applying both drug and target hierarchy regularization with λdrug = λtarget = 0.5

weights.

To visualize the hyperbolic latent space, we used the Poincaré disk. With two or three-

dimensional models, it is enough to convert the Lorentzian space to Poincare with Eq (3). This

is a common approach, also used by Yu et al. [8], to visualize the ATC hierarchy in the VAE

latent space. However, we saw that a model with a higher dimension performs better, and we

did not want to compromise that just for the sake of visualization. To address this, we applied

dimensionality reduction. We tried different hyperbolic methods, including Co-sne [57], but

we got the best results with the Poincaré maps [39]. First, we converted the embeddings from

the Lorentzian to the Poincaré manifold with Eq (3), then we created a similarity matrix

according to the Poincare metric defined in Eq (1). With this pre-calculated similarity matrix
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as input, we ran the Poincaré maps for 2000 epochs with a batch size of 64 and a learning rate

of 0.05. While keeping the other hyperparameters on their default value, we set the neighbor

number to 5 and the output dimension to 2. Utilizing Poincaré maps to embed kinase hierar-

chies is not a novel concept. In a related method, PoincaréMSA [44], kinase proteins were

embedded in an unsupervised way. However, in our approach, instead of multiple sequence

alignment data, we utilized ProtVec as input. Another key distinction is that our resulting

space is multimodal and jointly optimized to preserve both the ATC and kinase hierarchies as

well as DTI information, necessitating the application of hierarchy regularization. An overview

of the dimensionality reduction and the visualization process is shown in Fig 1C.

For our analysis, we jointly reduced the drug and target representations with known hierar-

chy information, i.e., the leaf node in the prior hierarchies. These were visualized in the Poin-

caré disk and were colored according to class labels on different hierarchy levels. Additionally,

we embedded the hierarchy trees bottom-up by iteratively producing the representations of

the parent nodes with a hyperbolic average of their children. To calculate the average, we uti-

lized the Klein model. More precisely, we transformed the Poincaré embeddings to the Klein

model, calculated the Einstein midpoint, transformed the result back to the Poincaré disk, and

connected it to its children. We also visualized the resulting dendrograms after hierarchical

clustering to compare the prior hierarchy trees with the ones reconstructed by the model, pro-

viding a more interpretable alternative to the dendrogram purity metric. To do so, we used the

squared Lorentzian distance matrix between the latent representations and applied hierarchi-

cal agglomerative clustering using the farthest point algorithm to obtain a dendrogram. We

did the same to the lowest common ancestor-based distance matrix to produce a dendrogram

belonging to the prior hierarchy tree. The results are presented in Figs 4 and 5 for the KIBA

and NURA datasets.

Analyzing the latent representations reveals their alignment with the hierarchies, an obser-

vation supported by EDP scores as well. The KIBA model achieves EDP scores of 0.7669 and

0.8301 for the ATC and kinase hierarchies, respectively, indicating slightly better preservation

of the kinase hierarchy. We can confirm this by visually inspecting the two-dimensional tree

embeddings in Fig 4. The root is indeed close to the origin, while the leaves are situated near

the boundary of the Poincaré ball, with edges of the hierarchy tree rarely crossing each other.

Notably, most of the crossings are associated with the two group-level modes being close to the

root, the other and atypical groups, for which we did not regularize the embeddings to be close

to each other (unless they were part of the same family or subfamily). For all the other groups,

the corresponding embeddings are close to each other, meaning that their Einstein midpoint is

close to the boundary, i.e., the group-level embeddings are close to the boundary, resulting in

fewer crossings between the edges. The EDP scores with the NURA model are 0.6796 for the

drugs and 1.0 for the NRs. An EDP score of 1.0 means that all targets belonging to the same

subfamily or group are contained in a pure subtree. In Fig 5, we can see that the NR tree is

embedded without crossing edges even after the dimensionality reduction. However, this is an

easy task as the hierarchy has only 22 leaf nodes.

As an attempt to elucidate the latent space, we investigated how the two hierarchies are

positioned relative to each other, i.e., identified formations consisting of hierarchy clusters of

different modalities. Fig 4 shows such an example with the cluster of tyrosine kinases (TK),

antineoplastic and immunomodulating agents, andmusculoskeletal system drugs positioned

close to each other in a specific region of the Poincaré disk. The relationship between the target

and the two drug groups is indeed known in the literature. TK enzymes are overactive or

found at high levels in certain cancer cells. Therefore, inhibiting them can prevent these cells

from growing [58]. It has also been published that the discontinuation of some TK inhibitor-

based therapies can lead to musculoskeletal pain as a withdrawal problem [59]. Furthermore,
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there is evidence that proteins in the ROR family of the TK group play a crucial role in mor-

phogenesis and formation of the musculoskeletal system during embryonic development as

well as the regeneration and maintenance of the musculoskeletal system in adults [60]. In

other words, we can explain why these three clusters are close in the latent space. Additionally,

in the case of unknown drugs and targets that come close to them, we can assume that they are

Fig 4. Analysis of the KIBA latent space, with embeddings reduced via Poincaré maps and shown in the Poincaré disk. First, drugs (a-c) and targets

(d-f) are analyzed separately, with drugs colored by ATC1, the top level of the ATC hierarchy (a) and proteins colored by kinase groups (d). The

embedded ATC (b) and kinase hierarchy trees (e) are presented with nodes colored by hierarchy level. As a visual alternative to dendrogram purity,

heatmaps show the drug (c) and target similarity matrices (f), which are ordered along the prior dendrogram (top) and the result of hierarchical

clustering (left). Drug and target embeddings are also shown jointly in the shared latent interaction space (g), with a highlighted section of the Poincaré

disk (h) illustrating an example arrangement of clusters belonging to different modalities.

https://doi.org/10.1371/journal.pone.0300906.g004
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somehow related to the growth of cancer cells and the maintenance of the musculoskeletal sys-

tem. Fig 5 shows a similar analysis with the NURA model, revealing a region of the Poincaré

disk where targets belonging to the NR subfamily 3 are embedded. It can be further divided

into two parts according to the next hierarchy level, the groups, one with the NR3A and

another with the NR3C group. There are two clusters of drugs in this region, the antineoplastic

Fig 5. Analysis of the NURA latent space, with embeddings reduced via Poincaré maps and shown in the Poincaré disk. First, drugs (a-c) and

targets (d-f) are analyzed separately, with drugs colored by ATC1 (a) and proteins by the top two levels of the NR hierarchy, the subfamily and group

(d). The embedded ATC (b) and NR hierarchy trees (e) are presented with nodes colored by hierarchy level. As a visual alternative to dendrogram

purity, heatmaps show the drug (c) and target similarity matrices (f), which are ordered along the prior dendrogram (top) and the result of hierarchical

clustering (left). Drug and target embeddings are also shown jointly in the shared interaction space (g), with a highlighted section of the Poincaré disk

(h) illustrating an example arrangement of clusters belonging to different modalities.

https://doi.org/10.1371/journal.pone.0300906.g005
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and immunomodulating agents and the genito urinary system and sex hormones, the former

being closer to the NR3C and the latter to the NR3A group. This formation is also consistent

with previous literature. For instance, the second member of the NR3C group plays a tumor-

suppressive role in colon cancer [61], while the first member, NR3C1, is involved in multiple

sclerosis, which is an immune-related disease [62]. NR3A and NR3C are both steroid receptor

groups. Among them, the members of NR3A are known estrogen receptors present, for

instance, in Leydig cells [63]. This analysis uncovers latent space regions associated with can-

cer, immune response, and hormonal regulation.

The previous examples demonstrated the visualization of hierarchy trees and the intertwin-

ing of hierarchies of the two different modalities. Nevertheless, we have not yet fully exploited

the possibilities of the Poincaré disk visualization. Fig 6 presents another use-case with the

KIBA model utilizing the translation operator to navigate the hyperbolic space. The used

model representations and the color of the nodes are the same as in Fig 4. Still, notably, due to

the nondeterministic nature of Poincaré maps dimensionality reduction, the 2-dimensional

visualizations are not precisely the same. We can see that by rotating the disk, substructures

with their neighborhood can be examined more thoroughly on different hierarchy levels. This

Fig 6. Navigating the KIBA latent space by the translation operator on the Poincaré disk. In the top row (a-c), the kinase hierarchy tree is depicted,

with nodes colored by hierarchy level, while below (d-f), the jointly embedded drugs and targets are shown, colored by ATC1 and kinase groups,

respectively. From left to right, the figure illustrates the translation process through different nodes in the hierarchy tree. Solid and dashed red arrows

indicate translations yet to occur and those already completed. In the first column (a, d), the original result of the Poincaré maps dimensionality

reduction is presented. In the middle (b, e), the internal node of the hierarchy tree corresponding to the CAMK group, i.e., the average of the

representations belonging to that group, is translated to the origin. Finally, the last column (c, f) displays the neighborhood of the CAMKL family after

translating the corresponding node of the tree to the center.

https://doi.org/10.1371/journal.pone.0300906.g006

PLOS ONE Embedding biological hierarchies into hyperbolic interaction space

PLOS ONE | https://doi.org/10.1371/journal.pone.0300906 March 21, 2024 17 / 23

https://doi.org/10.1371/journal.pone.0300906.g006
https://doi.org/10.1371/journal.pone.0300906


is possible because translating the internal nodes of the hierarchy tree to the origin where dis-

tances are perceived to be larger allows the observation of fine details.

Discussion and conclusions

In the paper, we extensively compared Euclidean and non-Euclidean models, incorporating

various prior hierarchies and latent dimensions. Contrary to our expectations, using a pairwise

model with pre-trained input representations, Euclidean versions perform similarly or even

slightly better according to the binary classification task and are computationally more effi-

cient. Our experiments revealed that hierarchy regularization does not enhance predictive per-

formance but significantly improves dendrogram purity without compromising the

predictions. Additionally, applying regularization in combination with a hyperbolic space

leads to an ample increase in the quality of the embedded hierarchy trees. Considering these

insights, if the primary objective is to optimize the predictive performance of pairwise DTI

models, opting for a more efficient Euclidean model with input representations might be the

preferred choice. However, if creating an interpretable latent space is also a priority, hyperbolic

embeddings are reasonable alternatives. It is important to note that while hyperbolic embed-

dings enhance interpretability, they do not eliminate the necessity for hierarchy regularization.

Or at least in the case of the tried input representations, without regularization, the resulting

EDP scores are similar for the hyperbolic and Euclidean models. Although the method is easy

to implement, robust to the hyperparameters, and does not introduce significant constraints

regarding the model architecture, it increases complexity and training time. As a rule of

thumb, over approximately 30 leaf nodes to embed, we recommend using hyperbolic space

with the regularization as it significantly increases the hierarchy preservation without sacrific-

ing predictive performance.

We also performed a visual analysis to show how hyperbolic models can provide insights

into the latent structures when paired with hierarchy regularization and subsequent Poincaré

maps dimensionality reduction. As an example, we investigated regions of the space where

hierarchy subtrees with different modalities are closely embedded. Nevertheless, Poincaré

maps visualization of the regularized latent space offers a wide variety of experiments beyond

this particular analysis. One option is to reduce embeddings for all drugs and targets, not just

those with a known prior hierarchy, and predict hierarchy labels on a chosen level using latent

space similarities. Another possibility is to embed new drugs or targets with given Mol2vec

and ProtVec representations, visualize their embeddings in the Poincaré disk, and explore

potential interactions and hierarchy labelings based on observed similarities. For instance,

akin to the NR-2L method [64], we can use the NURA model to identify a nuclear receptor

subfamily or group to which a query protein is most similar. Besides the new opportunities,

visualizing the latent space raises new challenges when applied in practical drug discovery

pipelines. A key concern requiring further investigation is the tradeoff between losing

interpretability with dimensionality reduction and losing expressive power with a small latent

dimension.

The regularization can be extended to handle hierarchies where the internal nodes are

also represented. For example, when dealing with drug repositioning datasets where diseases

serve as targets, the Medical Subject Headings (MeSH) [65] can be employed instead of pro-

tein hierarchies. Unlike protein hierarchies, MeSH incorporates targets not only at the leaves

but also within internal nodes, i.e., it is possible that one target is a descendant of another.

The only modification needed in our method is to replace the lowest common ancestor dis-

tance with the number of hops in the shortest path between two diseases. With these adjust-

ments, we ran the model on a subset of the ChEMBL [66] dataset introduced in our previous
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study [17]. Utilizing the MeSH and ATC as prior hierarchies, we obtained similar results,

achieving a high EDP score without significantly impacting predictive performance. Our

experiences indicate the robustness of the regularization method across various hierarchy

types. Including the NR with a regular tree structure, the kinase hierarchy with the other and

atypical groups treated differently, the ATC with leaves belonging simultaneously to multiple

labels in different hierarchy levels, and the MeSH where internal of the tree are also embed-

ded. This opens the possibility to experiment with different types of hierarchies, potentially

identifying new modalities with corresponding hierarchies that can even increase the predic-

tive performance.

Although the regularization approach is not model-agnostic, it is not highly restrictive

either, being compatible with pairwise DTI methods. Further transparency can be achieved by

applying other existing XAI solutions, such as utilizing mutual learning attention layers in

drug and target encoders and visualizing input feature importance based on attention weights

[29]. Alternatively, the SHAP [27, 28] or other gradient or perturbation-based methods can

also be employed to determine feature importance [25], i.e., parts of the drug and target struc-

ture responsible for the given prediction. The regularization is also compatible with the

FLONE method [6], making it possible to handle disease-specific drug representations. In

addition, akin to the work of Zahra et al. [46], our method can be used for informed drug repo-

sitioning guided by the embedded hierarchies.

We can use low-complexity model alternatives as well, for instance, in replicating the work

of A. Poleksic [5], employing a shallow matrix factorization without structural prior inputs, we

confirmed that MF with only one-hot or categorical input representations benefits from the

hyperbolic distance, achieving superior predictive performance compared to the Euclidean

version, yet it also required supervised regularization to embed hierarchies. However, utilizing

the pre-trained inputs, our architecture performs better than both versions of the shallow MF.

As we showed, with this extra model complexity, the model no longer benefits from a hyper-

bolic embedding space. Nonetheless, we believe that hyperbolic embeddings can extract addi-

tional information when employed with a suitable input modality instead of pre-trained

representations produced with a Euclidean approach.

Future research efforts should identify input representations intrinsically suited for hyper-

bolic space, such as transcriptomic data or structure-based pre-trained embeddings produced

with an appropriate hyperbolic method. Given our observation that different embeddings

yield significantly different performances, utilizing suitable input representations might

enhance the predictive performance of hyperbolic DTI models and potentially eliminate the

need for hierarchy regularization. Another challenge to be addressed is the limited availability

of public data containing abundant, labeled hierarchies, leading to the need for diverse DTI

benchmarks and datasets focusing on biological hierarchies.

In conclusion, our joint-embedding hierarchy regularization, compatible with joint-embed-

ding methods, results in a more interpretable and meaningful latent space with minimal

impact on the performance, hopefully facilitating a more informed and insightful application

of pairwise DTI prediction models in drug discovery.
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26. Jiménez-Luna J, Grisoni F, Schneider G. Drug discovery with explainable artificial intelligence. Nature

Machine Intelligence. 2020; 2(10):573–584. https://doi.org/10.1038/s42256-020-00236-4
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