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Abstract

Tissue engineering predominantly relies on trial and error in vitro and ex vivo experiments to

develop protocols and bioreactors to generate functional tissues. As an alternative, in silico

methods have the potential to significantly reduce the timelines and costs of experimental

programs for tissue engineering. In this paper, we propose a methodology to formulate,

select, calibrate, and test mathematical models to predict cell population growth as a func-

tion of the biochemical environment and to design optimal experimental protocols for model

inference of in silico model parameters. We systematically combine methods from the

experimental design, mathematical statistics, and optimization literature to develop unique

and explainable mathematical models for cell population dynamics. The proposed method-

ology is applied to the development of this first published model for a population of the air-

way-relevant bronchio-alveolar epithelial (BEAS-2B) cell line as a function of the

concentration of metabolic-related biochemical substrates. The resulting model is a system

of ordinary differential equations that predict the temporal dynamics of BEAS-2B cell popula-

tions as a function of the initial seeded cell population and the glucose, oxygen, and lactate

concentrations in the growth media, using seven parameters rigorously inferred from opti-

mally designed in vitro experiments.

1 Introduction

Tissue engineering is a subfield of biomedical engineering that aims to construct functional tis-

sues and organs using engineering principles applied to biological systems. This field has long

relied on rigorous in vitro, ex vivo, and in vivo empirical studies to identify culture conditions

that achieve experimental objectives, such as maximizing cell yield/function or minimize vari-

ability, among others [1]. Once optimal culture conditions have been identified, bioreactor

devices and associated protocols can be designed to consistently and economically achieve

them.
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In silico approaches, i.e., the use of mathematical models and relevant computational tools,

have become a new paradigm in bioengineering and biomedical studies over the last few years

[2]. In tissue engineering applications, in silico approaches help researchers to formulate exper-

imentally testable hypotheses for how the cells behave with quantitative and qualitative predic-

tions about cell populations and population ratios [3]. In addition, mathematical models can

improve our understanding of complex biological phenomena, guide experimental studies,

and support the design and optimization of bioreactors and associated experimental protocols

[4] for scaled-up production of functional biological tissues. Notably, using mathematical

models for tissue engineering applications allows researchers to leverage advances in Simula-

tion-based Design & Optimization (SBDO), a diverse collection of methods and practices for

the efficient, systematic use of computer and physical models to support the design and opti-

mization of engineering systems. SBDO has the potential to significantly advance tissue engi-

neering by accelerating discovery and by reducing the time and cost required for the

development of next-generation bioreactor devices and experimental protocols [5, 6].

Several mathematical models have been proposed for neotissue growth focusing on bone

[7, 8], cartilage [9], and neural tissues [10, 11]. Most of these models consist of a system of

ordinary and partial differential equations for the cell population and biochemical concentra-

tions [4, 8, 10–12], while others also consider mechanical cues such as shear stress [7, 9, 13].

These differential equations include coefficients and mathematical expressions representing

different aspects of system dynamics, such as diffusion rates, chemical reactions, and modulat-

ing effects of biochemical and mechanical cues, all of which must be calibrated and validated.

Due to data availability, cost, and timeline constraints, not all the mathematical models

found in the literature have been calibrated and/or validated based on specially designed in
vitro or ex vivo experiments [9]. Instead, researchers may rely on model parameters estimated

under different experimental contexts [7], or calibrate their models to reproduce qualitative

behavior only [14]. Additionally, in most cases, the proposed models have not been analyzed

for uniqueness or identifiability [7, 8, 10, 11, 13]. Without this, the estimated subset of model

parameters is not guaranteed to be physically consistent [12, 15] and generalizable.

One of the potential application areas of the SBDO paradigm is the engineering of func-

tional lung and airway tissues, organoids, and even whole organs, with potential applications

in screening and development of drug therapies [16], disease modeling [17] and, eventually, to

create de novo tissues and organs for human transplantation [18]. A large body of work has

focused on engineering airway tissues using synthetic [19–21] and donor-derived scaffolds

[22, 23]. Among the many scientific and translational challenges of this line of research, one of

the most significant is the design and optimization of protocols and devices to sustain the rele-

vant cells as they deposit and attach to suitable scaffolds, proliferate, migrate, and differentiate

into the targeted cell types required for functional tissues. A promising approach focuses on

creating scaffolds through partial or total decellularization of donor organs. This strategy can

result in 3D scaffolds that already have the necessary biochemical and mechanical cues needed

for subsequent recellularization [22, 24] with recipient-derived adult cells [24], embryonic

stem cells [25], or induced pluripotent stem cells (iPSC) [26, 27]. Still heavily under research,

several airway-relevant cell lines are used instead of donor cells for both accelerating discovery

and proof-of-concept studies, including BEAS-2Bs [28–30], A549s [31], Calu-3s [32], and

human tracheal epithelial cells [33]. Despite the utility of these cell types, no mathematical

models currently exist to describe their population dynamics under targeted culture conditions

in vitro and/or ex vivo. The availability of such mathematical models can help accelerate dis-

covery and translation in tissue engineering.

In this work, we propose a detailed, rigorous methodology for developing in silico models

for neotissue growth in vitro and ex vivo. We propose a model-based design of experimental
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protocols (MBDEP) approach that, leveraging these in silico models, defines the spatio-tempo-

ral sampling frequency required to optimally infer the model parameters based on experimen-

tal data. Starting from a set of biologically-informed model proposals, the proposed model

development methodology uniquely combines methods from model inference (e.g., non-linear

regression), model selection (data splitting), design of experiments, mathematical statistics

(e.g., identifiability analysis [15, 34]), sensitivity analysis [35]), and optimization.

As a case study to illustrate our model development approach, this paper describes the

development of the first mathematical model capable of predicting the population dynamics of

bronchio-alveolar epithelial cells (BEAS-2Bs). BEAS-2Bs are non-cancer, immortalized cells

that grow in monolayers [36], and replace normal human bronchial epithelial cells as a model

in various toxicology studies [37]. BEAS-2Bs were chosen to showcase the proposed methodol-

ogy because they are often used in tissue engineering, organ regeneration, and transplantation

studies, including decellularization and recellularization of airway tissue scaffolds [24, 38, 39],

due to their ability to grow in a lab setting and mimic the function of the human airway epithe-

lium [29, 37]. Thus, the mathematical model developed in this paper will be directly applicable

to these contexts. Importantly, the proposed model development methodology is directly

applicable to the formulation, calibration and validation of mathematical models for any other

single cell line population and, with a suitable family of model proposals, to multicellular pop-

ulation dynamics.

2 Materials and methods

2.1 Experimental setup

Cell culture. In vitro experiments are run for five days with four initial cell populations of

25,000, 50,000, 100,000, and 200,000 cells/well in 6-well plates. Each replicate has three wells

seeded with the specified population of BEAS-2Bs [28, 37]. Each experiment has three repli-

cates (3 × 3 = 9 total wells per initial cell density). The experiments did not involve any media

change to observe the effect of more extreme concentrations. We ran four experiments at dif-

ferent glucose and oxygen levels to see their effects on cell population dynamics. For the first

experiment, the media was 3 mL Dulbecco’s Modified Eagle Medium (DMEM, Gibco, USA)

with high glucose and pyruvate, and the cells were cultured at 37˚C, normoxic incubator [40]

(18.6% oxygen), with 5% carbon dioxide. The second experiment used the same configuration

as experiment one with DMEM with low glucose and pyruvate as the culture medium. For the

third and fourth experiments, we altered experiments one and two by culturing the cells at

37˚C in the tri-gas incubator [41], CellXpert C170i (Eppendorf, Germany), with 5% oxygen

and 5% carbon dioxide.

Measurements. In each experiment, we removed the plates from the respective incubator

and took 200 μL media samples and measured glucose, lactate, oxygen, potassium, sodium,

and calcium concentrations using RAPIDPoint 500 Blood Gas Systems (Siemens Healthcare

Limited, Canada) six hours after seeding and then every 12 hours (Experiment 1), or 24 hours

(Experiments 2, 3, and 4), with the last measurement taken at 114 hours (5 days). At the same

intervals, we took five images of the wells (EVOS FL Cell Imaging System) to estimate the total

cell count.

2.2 Model development methodology

This paper proposes a methodology for the development of mathematical models for neotissue

growth dynamics. The overarching problem here is to identify, calibrate and validate a mathe-

matical (in silico) model for the population dynamics of a given cell type as influenced by a

pre-defined set of biochemical stimuli. Sections 2.2.2 to 2.2.10 below discuss in more detail
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each of the corresponding steps of the proposed methodology, shown in Fig 1. Results of

applying this methodology for in silico modeling of cell population dynamics during in vitro

culture of BEAS-2Bs cells are presented in Sec. 3.

First, we start with designing a model for cell culture in well plates under static (no flow)

conditions with different biochemical environments. This model will focus on the effect of

chemical substrates (external stimuli) on proliferation and apoptosis rates (cellular responses).

The model proposals are informed by the known biology and physics of the system. After cre-

ating a library of candidate models that govern the dynamics, the models are studied through

structural identifiability analysis (section 2.2.2). The structurally identifiable models are con-

sidered for the next steps of model development. The next step is to define the objective func-

tion that encodes the model inference goal, typically minimizing the prediction error of the

model with respect to the experimental data. Alternative goals may be formulated as part of

the objective function or as optimization constraints, e.g., minimizing the variance of the

parameter estimates, minimizing the number of parameters to be estimated, or minimizing

residuals with respect to physical or empirical laws, among others. Then, an experimental pro-

tocol for data collection (e.g., sampling frequency) is designed so that it is optimal for the fam-

ily of model proposals over a range of assumed noise levels. Once the experiments are

conducted and the data collected and post-processed, the methodology focuses on model

inference, i.e., model calibration (fitting) and selection. The result of this process is a single

model selected from the set of model proposals that best fits the data according to the previ-

ously defined objective function. Next, practical identifiability analysis confirms that the

inferred model parameters are unique and finite, i.e., that the objective function has a single

global optimum. Then, the goodness of fit of the model is quantified (model validation) to pro-

vide an estimate of the expected predictive performance of the model under experimental con-

ditions that are different from those used during model calibration and selection. We conclude

the model development procedure using global sensitivity analysis to rank the controllable

experimental parameters according to their predicted effect on the cell population. Sensitivity

analysis is also used as a diagnostic tool for model calibration by identifying the subset of

model parameters that have the greatest influence on model fit.

2.2.1 Model proposals. In this work, we will discuss the modeling methodology focusing

only on the dynamics of the cell population, including proliferation and apoptosis of a single

Fig 1. Model development framework. The green box shows the mathematical model development steps, blue boxes depict the mathematical checks on

the model, orange boxes display the experimental steps, and yellow boxes show the initial steps in model development.

https://doi.org/10.1371/journal.pone.0300902.g001
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cell line in a biochemical environment that is governed by advection, diffusion, and reaction

phenomena. However, the methodology can be applied for inference of mathematical models,

including other aspects of neotissue growth, such as scaffold biomechanics, cell-cell, and cell-

scaffold interactions, cell migration via chemotaxis and haptotaxis, and cell differentiation, by

including additional equations codifying the underlying physics [42].

Using the mass balance equation for cell density and for the chemical species concentra-

tions (also referred to as “substrates” in the literature) leads to a set of coupled advection-diffu-

sion-reaction equations that describe the spatiotemporal cells densities and substrates

concentrations fields [43]. These spatiotemporal equations relate the rate of change of specific

concentrations and densities to the diffusion, advection, and reaction rates. The equations are

defined as,

@ci
@t
ðX; tÞ þr:ðciðX; tÞuðX; tÞÞ � r:ðDci

rciðX; tÞÞ

¼ Mci
ðNðX; tÞ;CðX; tÞÞ;

ð1Þ

@nj

@t
ðX; tÞ þr:ðnjðX; tÞuðX; tÞÞ � r:ðDnj

rnjðX; tÞÞ

¼ Mnj
ðNðX; tÞ;CðX; tÞÞ:

ð2Þ

Here, ci is concentration, and nj is density for each chemical species, i, or cell line, j, respec-

tively. Dci
and Dnj

are the diffusion coefficients, u is the fluid velocity, Mci
is the substrate reac-

tion rate, Mnj
is the cellular responses (proliferation, death, and differentiation), X is the

position vector, t is time, C and N are vectors containing all concentrations and densities,

respectively, andr� is the divergence operator.

The general governing Eqs 3 and 4 have been applied to a broad spectrum of growth and

transport of biological processes [44–46]. Simplified versions of Eqs 1 and 2 can be obtained

when the concentration and cell density fields are spatially homogeneous, such as in the case

of in vitro submerged static cultures on well plates. Since there is no spatial variability, the dif-

fusion and advection terms in Eqs 1 and 2 can be disregarded, thus

dci
dt
ðtÞ ¼ Mci

ðNðtÞ;CðtÞÞ; ð3Þ

dnj

dt
ðtÞ ¼ Mnj

ðNðtÞ;CðtÞÞ: ð4Þ

Eqs 3 and 4 show that the rate of change for concentrations and cell densities are defined by

the reaction and response rates in a homogeneous domain. These rates are the summation of

the production and consumption rates in the case of chemical species concentrations, and the

summation of proliferation, death, and differentiation rates in the case of cell line densities [8,

10, 47].

Let us now look at specific, biologically informed functional forms for the right hand side of

Eqs 3 and 4. For neotissues consisting of a single cell line that does not differentiate, we pro-

pose a model for the growth of the cell population incorporating proliferation and apoptosis
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rates [42] as,

dn
dt
ðtÞ ¼ f1ðcoðtÞÞf2ðcgðtÞÞf3ðclðtÞÞ

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
effect of the environment ðFenvÞ

bnðtÞ 1 �
nðtÞ
nmax

� �

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
growth limited by space

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
proliferation rate

� dnðtÞ
zffl}|ffl{

death rate

ð5Þ

Here, n, co, cg, cl, nmax, δ, and β are the cell density, concentrations of oxygen, glucose, and lac-

tate, maximum cell density, apoptosis rate constant, and coefficient of proliferation, respec-

tively. As seen in the equation, it consists of two terms, one for the proliferation rate and the

other for the death rate. The proliferation rate term is proportionally modulated by two effects

[48], the first shows the biochemical stimuli effect, and the other shows the proliferation rate

limited by the physical space. A logistic function for the latter term shows that the growth rate

per capita linearly drops as the population increases until cell population saturation [49, 50].

In Eq 5, the potential modulating effect of the biochemical substrates is usually defined in

the literature as,

fkðciðtÞÞ ¼ 1; zero-order; ð6aÞ

fkðciðtÞÞ ¼ ciðtÞ; first-order; ð6bÞ

fkðciðtÞÞ ¼
ciðtÞ

ciðtÞ þ Ki
; MMK ðpositive feedbackÞ; ð6cÞ

fkðciðtÞÞ ¼
Ki

ciðtÞ þ Ki
; MMK ðnegative feedbackÞ;

ði; kÞ 2 fðo; 1Þ; ðg; 2Þ; ðl; 3Þg;
ð6dÞ

where Ki is the Michaelis-Menten Kinetics (MMK) constant. Each of the three substrates can

either have a zero-order [8], linear [10], or Michaelis-Menten [7, 47] effect on cell growth rate.

The modulating effects depend on the cell type and the chemical substrate under consideration

and, when unknown, can be the subject of data-driven model selection methods. It is impor-

tant to note that, depending on the specific cell type, additional chemical substrates may have

significant modulating effects on the cell population, e.g., growth factors, blockers and inhibi-

tors, among others. These can be trivially included in the model through additional modulat-

ing terms in Eq 4 and additional advection-diffusion-reaction equations (Eq 1).

For the purpose of describing the methodology and illustrating it with a specific cell line,

we will limit our discussion to the modulating effects of glucose, oxygen, and lactate. These

nutrients affect growth the most and play a crucial role in tissue viability [7, 47, 51]. The reac-

tion rates in Eqs 3 and 4 are dependent on concentrations and neotissue density n as,

Miðn; ci; ci0 Þ ¼ RðnÞRiðci; ci0 Þ ¼ nRiðci; ci0 Þ; ð7Þ

where i0 is the inhibitor and Ri(ci, ci0) is referred to as the reaction term and can take one of
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several mathematical forms, each representing different kinetics [10, 42, 52],

Riðci; ci0 Þ ¼ Vi; zero-order;

Riðci; ci0 Þ ¼ Vici; first-order;

Riðci; ci0 Þ ¼
Vici

ci þ �ci
; Michaelis-Menten;

Riðci; ci0 Þ ¼
Vici

ci þ �cii0ci0 þ �ci0
; competitive inhibition:

ð8Þ

Here, Vi, �ci, �cii0 , are the reaction constant, the MMK constant, and the inhibition constant,

respectively. With a set of biologically-informed mathematical models, model calibration and

selection methods utilizing the experimental observations will find the best kinetics for each

substrate and its corresponding parameters (Eqs 6 and 8).

The proposed mass-conservation-based neotissue growth model treats the entire popula-

tion of cells as homogeneous in their density and type without considering multiple cell types,

their interactions, and cell transitions from one type to another (i.e., cell differentiation). How-

ever, the framework we propose can be easily applied to multiple cell types by adding addi-

tional equations similar to Eq 2 for each type, and including transitions between cell types

through the response terms. Future spatiotemporal (nonhomogeneous) models will include

diffusion and advection terms for the cell population similar to Eqs 1 and 2 [53].

2.2.2 Structural identifiability analysis. Mathematical models in biology are usually

defined with differential equations as [15],

_Y ¼ fðY;Θ;uÞ: ð9Þ

In this equation, Y is a vector containing a set of state variables, e.g., substrate concentration

and cell densities, Θ is a vector of model parameters, u is a vector of the external stimuli, and

_Y is the rate of change of the state variables over time. Usually, not all the state variables can be

measured directly during the experiments; thus, the observables, z are denoted as,

z ¼ gðY;Θ;uÞ: ð10Þ

A mathematical model is identifiable whenever a unique set of observations or measurements

would result in one and only one set of model parameters [50]. Mathematically, if Θ and Φ are

two valid sets of model parameters, then

gðY;Θ;uÞ ¼ gðY;Φ;uÞ ) Θ ¼ Φ: ð11Þ

Structural identifiability analysis is performed on the mathematical model before model cal-

ibration, and it focuses on the relation between the state variables and observables. The model

is discarded or modified if it is deemed that data collected about the observables, regardless of

the amount of data, will not result in a unique set of model parameters. If a model is structur-

ally identifiable, all the model parameters can be estimated from a sufficiently large number of

observable measurements [4, 54]. To make this determination, the analysis consists of creating

a modified differential algebraic equation (DAE) form from model equations that meets a cer-

tain rank criterion. The observability matrix is then obtained via symbolic techniques. The

model is considered structurally identifiable if the observability matrix has full rank [55].

2.2.3 Objective function definition. Generally, inferring a parametric model from data is

a mathematical optimization problem, in which a set of model parameters is estimated that

maximize a user-defined measure of ‘goodness of fit’. Two standard methods for parameter

estimation of mathematical models are maximum likelihood estimation (MLE) and nonlinear
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least squares (NLS) [56], which use the likelihood function and the sum of squared errors as

objective functions, respectively. The choice of objective function consolidates the assump-

tions about the data into the calibration process. In MLE, the posterior probability of the

observed data is maximized based on the known or assumed statistical distribution of the data.

In contrast, NLS minimizes the sum of squared residuals between observations and predic-

tions (NLS) without any distributional assumption about the data.

In this work, we employ MLE because it produces a suitable frequentist formulation of the

calibration process without imposing unwarranted assumptions about the data and noise dis-

tribution. The likelihood function for independent and identically distributed observations (i.

i.d.), Zi, is defined as the multiplication of their probability functions (p) as,

LðΘ;ZÞ ¼ Pn
i¼1

pðΘ; ziÞ: ð12Þ

Let us assume that the observations are normally distributed, with a time-dependent but

unknown mean as predicted by the model with unknown parameters Θ and unknown stan-

dard deviation. Then, minimizing the negative log-likelihood objective function, −ℓ(Θ;Z), is

mathematically equivalent to the weighted NLS problem defined as [4],

LS ¼ � ‘ðΘ;ZÞ ¼
1

2

Xnz

j¼1

Xnk

k¼1

wjðtkÞðZjðtkÞ � zjðtk;ΘÞÞ
2

ð13Þ

where wjðtkÞ ¼ s� 2
j ðtkÞ. Here, nk, nz, zj, Zj, and σj(tk) are, respectively, the number of time

points, the number of observables, the model predictions, and the mean and standard devia-

tion of each observable at each time point across experimental replicates, respectively.

2.2.4 Model-based design of experimental protocols (MBDEP). We propose an

approach to design the data collection protocol so that it minimizes the error of estimated

model parameters for a given set of model proposals under expected experimental noise levels.

Given the non-linearity of the models we use here, our approach is based on statistical simula-

tion, as follows.

First, we identify a set of plausible model parameters, e.g., taking parameter values from the

relevant literature, similar experiments with other cell types, or other experiments done with

the cell type of interest. Alternatively, some model parameters may be roughly estimated based

on the known biology and physics of the process. Next, we do a forward modeling step, in

which we use the models with these assumed parameter values to generate simulated noiseless

experimental data about the observables. Gaussian noise is then added to this data, i.e.,

ZjðtkÞ ¼ zjðtkÞð1þ �ZiðtkÞÞ

ZjðtkÞ � N ðm ¼ 0;s2 ¼ 1Þ
ð14Þ

where, � is the noise level, zj(tk) represents the simulated value of observable j at time tk, and N
is the Gaussian probability distribution function. Different noise levels, � 2 {0, 0.05, 0.1, 0.2,

0.3, 0.4, 0.5}, can be used for this analysis to observe how different experimental noise levels

would affect model inference. Note that here we assume that all observables can be measured

with a similar level of experimental error (noise). However, the same approach can be used

with different noise levels for each observable, e.g., representing the availability of different

measurement techniques or equipment with different levels of accuracy. The simulated data

with added noise is then used for MLE or NLS estimation of model parameters (Sec. 2.2.7),

and the difference between the assumed and the estimated values of the model parameters is

calculated.
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These steps are repeated with multiple sets of simulated data and different spatio-temporal

sampling frequencies (i.e., with different amounts of data). The results of this effort allow us to

identify the sampling frequencies that are required to ensure that the estimation of model

parameters is robust to the expected levels of experimental noise. Furthermore, if there are

external constraints on the experimental procedure (e.g., equipment/personnel availability,

cost, timelines, etc.), the proposed MBDEP can be used to check the feasibility of model infer-

ence and thus signal the need for reformulating experimental goals.

2.2.7 Model inference. Once the experimental data has been collected, the data is split

into three subsets for calibration (60% of the data), selection (20%), and validation (20%), fol-

lowing best practices. The calibration data set is then used to formulate, for each candidate

model, a nonlinear optimization problem to determine the set of model parameters that best

fit the data, i.e.,

Θ∗ ¼ arg min
Θ
� ‘ðΘ;ZÞ ð15Þ

The optimization problem posed in Eq 15 is solved through a multi-start strategy, which helps

with detecting and averting the local minima [57]. A maxi-min Latin hypercube method is uti-

lized to generate a set of initial guesses that cover the search space with guaranteed lower-

dimension projection properties [58, 59]. Starting from each initial parameter guess, the opti-

mization problem is solved using the Adam stochastic gradient decent-based method [60].

Then, the best-performing solutions are used as starting points for a further optimization stage

using the BFGS method [61] to ensure final convergence.

Model selection is made between the candidate models by checking how well they match

the time evolution of state variables, i.e., cell populations and biochemical concentrations on

the selection dataset. Several error metrics (e.g., MSE, RMSE) can be used for this purpose.

However, given that the candidate models may have different numbers of parameters, in this

work, we use the Akaike Information Criterion (AIC) or Bayesian Information Criterion

(BIC),

AIC ¼ 2k � 2‘ðΘ;ZÞ;

BIC ¼ k logðmsÞ � 2‘ðΘ;ZÞ:
ð16Þ

to select the model that best balances model complexity and goodness of fit [4, 62, 63]. In Eq

16, log(x) is the natural logarithm of x, k is the number of inferred parameters, and ms is the

number of observations in the selection dataset. The use of AIC and BIC has been widely dis-

cussed in the literature, and although no definitive recommendations have been made, it is

commonly accepted that AIC is an optimal rule for selecting a model among a set that may not

contain the true model for the purpose of predicting the dependent variable over unseen data.

In contrast, BIC is an optimal rule for selecting the true model (or the lowest-dimension

model that best describes the data) among a set of models that contains the true model [64].

Note that model selection is ultimately performed by humans, using expert knowledge

about the physics and biology of the situation, and with a clear experimental goal (e.g., predic-

tion vs. description). However, when knowledge about the underlying physical or biological

phenomena is incomplete, data-driven model selection between plausible models can help

researchers gain knowledge about the phenomenon of interest and may point to unconsidered

physics.

2.2.8 Practical identifiability analysis. Practical identifiability analysis is performed after

model calibration and selection. It utilizes the inferred model and the experimental measure-

ments to find confidence intervals for each inferred parameter. The sparsity of the experimen-

tal data set, or large experimental variability can result in practical unidentifiability [12].
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There are several methods to conduct practical identifiability analysis of models. A com-

monly used method calculates the local sensitivities of the model with respect to its parameters

to construct the Fisher information matrix (FIM). The method then either uses the eigenvec-

tors of FIM or constructs the correlation matrix to finalize the analysis [65, 66]. Null eigenvec-

tors and high correlations point to the unidentifiable parameters. An alternative, which we use

in this work, is profile likelihood-based methods, which are invariant to model reparameteriza-

tion, are not limited to symmetric confidence intervals, and can even detect structural uniden-

tifiabilities [15].

Profile likelihood-based methods consider one model parameter (e.g., θi) as fixed at a given

value, and then find the MLE of the rest of the parameters (θj, 8j 6¼ i) in Eq 15, i.e.,

PLðyiÞ ¼ min
yj6¼i

LðΘÞ: ð17Þ

This process is systematically repeated for different values of the fixed model parameter θi, and

then for each parameter θj in turn. Then, the confidence interval for each parameter is defined

as the set

CIPLðyiÞ ¼ fyi j PLðyiÞ � LðΘÞ þ Dag ð16Þ

where Δα is the α-quantile of the χ2 distribution with one degree of freedom. A model parame-

ter is deemed as practically identifiable if the corresponding confidence interval is finite.

2.2.9 Goodness of fit. Goodness of fit refers to the assessment of how well the model rep-

resents the data using a suitable error metric. In the context of model selection among a set of

calibrated models, an unbiased assessment of goodness of fit must rely on hold-out data, i.e.,

data from the same experimental context (same generating process) but distinct from that

used for model calibration and selection. This hold-out data is referred to herein as the valida-

tion data set. In this work, we use the mean relative prediction error of the inferred model on

the validation dataset as,

Error ¼
1

m

Xnz

j¼1

Xnk

k¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðZjðtkÞ � zjðtk;ΘÞÞ
2

q

ZjðtkÞ
ð19Þ

This value predicts the model accuracy when predicting the state variables for any case within

the convex hull of the experimental data used to calibrate, select and validate the models.

As an additional metric to assess the accuracy of the model predictions, we calculate the

mean relative experimental variance of the data. In other words, this is the standard deviation,

among the number of experiment replicates (9), of each observable at each time point, normal-

ized with the value of the mean value of the observable at that time point, and averaged over all

time points and observables, i.e.

Noise ¼
1

m

Xnz

j¼1

Xnk

k¼1

sjðtkÞ
ZjðtkÞ

 !

: ð20Þ

Note that this value expresses the variance among replicates in normalized terms. This infor-

mation is critical to properly evaluate the prediction error of the models, which cannot be

meaningfully expected to be lower than the intrinsic variability of the experimental data.

2.2.10 Global sensitivity analysis. Global sensitivity analysis (GSA) quantifies the effect

that any input has on the system output, averaged over the input domain, i.e., over the hyper-

cube formed by the Cartesian product of the ranges of each input. In the context of the pro-

posed methodology, GSA can be used to rank the model parameters in terms of their
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quantitative impact on the model predictions. It also is used for identifying unimportant

parameters and parameter space regions where each parameter is most important [67]. More

importantly, GSA applied to the validated model can allow us to rank the variables that can be

controlled during an experiment in terms of their effect on any observable of interest. Whether

applied to the model parameters or to the experimentally controllable variables, GSA is an

often overlooked and crucial step for both quality assurance and practical application of in sil-
ico models [35].

Variance-based GSA methods such as Sobol’s [68] and Saltelli’s [69] are the most com-

monly used in the literature, mainly due to their suitability for non-linear, high-dimensional

responses, and for their consideration of interactions between input variables [70]. Variance-

based GSA methods are based on a seminal work by Sobol [68], which showed a general

decomposition of non-linear, continuous functions (e.g., Yk in Eq 9) into a set of integrals of

increasing dimensionality representing the overall mean, main effects, and interactions of

increasing order between variables [71].

Yk ¼ f0 þ
Xd

i¼1

fiðXiÞ þ
Xd

i<j

fijðXi;XjÞ þ . . .þ f1;2;...;dðX1;X2; . . . ;XdÞ ð21Þ

where f0 is a constant, fi(Xi) is the main effect of Xi (effect of only varying Xi), and fij(Xi, Xj) is

the first-order interaction between Xi and Xj. Assuming Eq 21 to be square-integrable, the

functional decomposition will result in,

VarðYÞ ¼
Xd

i¼1

Vi þ
Xd

i<j

Vij þ . . .þ V1;2;...;d ð22Þ

with,

Vi ¼ VarXi
ðEX�i
ðY j XiÞÞ

Vij ¼ VarXij
ðEX�ij

ðY j Xi;XjÞÞ � Vi � Vj

ð23Þ

where X*i means set of all variables except Xi and E is the expectation operator. Using Sobol’s

method, we calculate first and total-order interactions for all the model parameters as,

Si ¼
Vi

VarðYÞ

STi ¼
EX�i
ðVarXi

ðY j X�iÞÞ
VarðYÞ

ð24Þ

Si measures the effect of varying Xi alone averaged over variations in other input parameters,

standardized by the total variance. These values are calculated with Monte Carlo sampling,

allowing the creation of confidence intervals for the sensitivity indices.

3 Results

In this section, we describe the application of the proposed methodology for inferring the pop-

ulation dynamics of the airway-relevant BEAS-2Bs cell line, under different biochemical con-

ditions in a (no flow) static culture environment. The following subsections will illustrate how

the methodology is applied, step by step, in the development of a model for BEAS-2B cells and

show the challenges and benefits of this strategy. The reader can refer to the Materials and

Methods section for a full description of the methodology.
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3.1 Model proposals

This stage creates a set of model proposals based on the existing knowledge about the specific

cell line under study, in this case, BEAS-2B cells. BEAS-2B is a human bronchial epithelial cell

line derived from normal, non-cancerous human bronchial tissue closely resembling the pri-

mary human bronchial epithelial cell’s morphology and functional characteristics. These cells

do not differentiate, and their growth rate is known to be affected by oxygen, glucose, and lac-

tate levels [39, 72].

In a homogeneous, static growth environment with no cell migration or shear stress, Eqs 5

and 6 are reasonable model hypotheses for cell population dynamics of a single cell line that

does not differentiate. Also, spatial variations in biochemical concentrations would be negligi-

ble, and thus Eq 1 would simplify to Eq 3. The Michaelis-Menten reaction rates for glucose

and oxygen (as defined in Eq 8) will yield the initial system of ordinary differential equations

(ODEs) as,

dn
dt
ðtÞ ¼ f1 coðtÞð Þf2 cgðtÞ

� �
f3 clðtÞð ÞbnðtÞ 1 �

nðtÞ
nmax

� �

� dnðtÞ
dcg
dt
ðtÞ ¼ � RgðtÞ ¼ � VgnðtÞ

cgðtÞ
cgðtÞ þ �cg

dcl
dt
ðtÞ ¼ � 2RgðtÞ þ

RoðtÞ
3
¼

� 2VgnðtÞ
cgðtÞ

cgðtÞ þ �cg
þ

1

3
VonðtÞ

coðtÞ
coðtÞ þ �co

ð25Þ

In these equations, lactate production is calculated using the relationship between aerobic res-

piration and glycolysis [7, 8].

For each of the terms f1(co(t)) and f2(cg(t)), which account for the potential effect of oxygen

and glucose on the cell population growth rate, we select three candidate models, namely zero-

order (Eq 6a), first-order (Eq 6b), and MMK with positive feedback (Eq 6c). Similar candidate

models are chosen for the lactate effect, f3(cl(t)), but using MMK with negative feedback (Eq

6d) instead. Thus, the model proposal stage results in a total of 27 different candidate models,

which will be investigated later in the model inference step via model selection methods.

3.2 Structural identifiability analysis

To study the structural identifiability of the models proposed for the BEAS-2B cell line, we

focus on the most complex candidate model, i.e., the model with the largest number of param-

eters and/or most severe non-linearity. The implicit assumption is that, if it is deemed struc-

turally identifiable, then simpler models will be as well. This assumption is reasonable because

there are only minor differences between the models being considered.

Global structural identifiability for the model was confirmed using StructuralIdentifiability.

jl; an open-source SciML package for structural identifiability analysis [73–75]. In the specific

case of the BEAS-2B candidate models proposed in the previous step, the most complex model

corresponds to Eq 25 with MMK effects for the three substrates. The observables for perform-

ing this analysis are the cell population density and glucose and lactate concentrations. Results

showed that this model is structurally identifiable.
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3.3 Objective function definition

The next step in the methodology is defining the objective function. For the specific case of the

BEAS-2B model, we use non-linear least squares (NLS). Let Zj 2 fNi;Cgi
;Cli
g and

zi 2 fni; cgi ; clig, then the least square problem becomes finding the parameters Θ* by,

Θ∗
¼ arg min

Θ
� ‘ðΘÞ ¼

X

Ni2ST

wNi
ðNi � niðΘÞÞ

2

þ
X

Cgi2ST

wGi
ðCgi
� cgiðΘÞÞ

2

þ
X

Cli2ST

wLi
ðCli
� cliðΘÞÞ

2

ð26Þ

where ST is the training set. As mentioned in Sec. 2.2.3, minimizing Eq 26 is equivalent to

using the maximum likelihood estimator in Eq 12 [15] if the experimental data is assumed to

have a Gaussian distribution.

3.4 Model-based design of experimental protocols

We applied the proposed approach for model-based design of experimental protocols (Sec.

2.2.4) to the inference of a model for cell population dynamics of BEAS-2B cells. Since this is

the first mathematical model for BEAS-2Bs, there is no available data or information on which

to base decisions about the frequency and resolution required for cell growth experiments, i.e.,

the number and timing of the experimental measurements required to properly capture the

system dynamics. Let us assume that one of the model proposals selected in Sec. 3.1, e.g., Eq 25

with MMK effects, is an appropriate description of the system. We then assume that the model

parameters have known values (see supplementary material), which are taken from similar

experiments published in the literature for nerve cells [10], osteoblast cells [8], and mesenchy-

mal stromal cells [47].

Using this model with initial conditions consistent with our experimental setup (Sec. 2.1)

and assumed model parameters, we generate synthetic data about the observables, namely cell

population and concentrations of glucose, lactate, and oxygen as a function of time, for a total

of 16 different initial conditions. Gaussian noise was added to the data as described in Sec.

2.2.4.

Solving Eq 26 with the generated synthetic data results in the inferred parameters (Θ*).
This process was repeated five times with data sets with different sizes, corresponding to the

measurement of the observables at periods of 1, 2, 4, 24, and 48 hours. To compare the perfor-

mance of the parameter inferences using different sampling periods, we defined error as the

difference between the assumed and inferred (Eq 26) parameters,

e ¼
jΘ � Θ∗j

jΘj
: ð27Þ

Fig 2 shows the resulting error in parameter inference as a function of the sampling frequency

for the observables. For estimating parameters for the set of model proposals considered here,

taking cell population and concentration measurements every 24 hours results in a 7.32%

error. Since more frequent measurements do not result in better parameter estimates, we

selected 24 hours as the sampling period for our BEAS-2B experiments.
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3.5 Running and postprocessing the experiments

Experiments were conducted as described in Sec. 2.1. We conducted nine replicates of each

experimental condition by doing three runs of each experiment, using three well plates in each

run.

Two-way statistical analysis of variance (ANOVA) test (using the Pingouin [76] Python

library) demonstrated statistically significant differences in cell populations between different

culture conditions. Specifically, cell populations at time t = 102 hours were significantly

affected by the change in the culture environment, suggesting that oxygen and initial glucose

concentrations affect the growth dynamics. Notably, since oxygen and glucose affect cell popu-

lation growth, this implies that five of the 27 model proposals can be discarded, since these

would make the cell population after t = 102 hours independent of oxygen or glucose levels.

Hence, only 22 model proposals were considered in the next steps of the methodology.

To prepare the experimental data for model inference, we implemented a data splitting

strategy, following best practices in model fitting, selection, and validation typically found in

the machine learning literature. The full dataset contains the time evolution of state variables

under four different culture environments with four different initial cell densities, giving a

total of 16 experimental conditions. This dataset was split into calibration, selection, and vali-

dation datasets containing 60%, 20%, and 20% of the data, respectively. Through this process,

we implemented a stratified sampling approach to ensure that all experimental conditions

were equally represented in each dataset.

Fig 2. Parameter inference errors for different temporal sampling periods for substrate frequency increases. Parameter inference error decreases as

concentration and cell population data is collected more frequently. However, collecting samples at intervals shorter than 24 hrs has no further impact on

estimation errors for model parameters.

https://doi.org/10.1371/journal.pone.0300902.g002
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3.6 Model inference using in vitro data

As described in Sec. 2.2.7, using the calibration dataset we inferred the parameters

ðb; d;Vg ;Ko;Kg ;Kl;�cgÞ for the 22 candidate models. Due to experimental constraints, it was

not possible to measure the oxygen concentration in the growth media, and thus it is assumed

to be constant and equal to the oxygen concentration in the environment. We consider this a

reasonable assumption, given the time scales involved and the fact that oxygen from the incu-

bator chamber continuously diffuses into the growth media, replenishing the oxygen con-

sumed by the cells. As a result, the advection-diffusion-reaction equation (Eq 1 in Materials

and Methods) for oxygen was modified by setting Mco
ðNðtÞ;CðtÞÞ ¼ 0, thus indicating a zero

rate of change for oxygen concentration. Note, however, that oxygen concentration does affect

the cell growth dynamics of BEAS-2B cells. Hence we included Ko in our set of model parame-

ters to be estimated.

Optimization runs were conducted over a search space spanning multiple orders of magni-

tude, defined as a hypercube of dimension 7 over the range [10−7, 107]. A total of 1300 starting

points for the optimization were selected as a maxi-min Latin hypercube over the search space

to ensure good coverage, for a total of 1300 × 22 = 28600 runs. This process was implemented

in the Julia programming language using Flux.jl [77] and Optim.jl [78] libraries for Adam and

BFGS optimizers, respectively.

Since parameter calibration is a non-convex multimodal optimization problem with poten-

tially many local optima, we further analyzed the resulting losses and inferred parameters to

confirm convergence to a global optimum (S1 Fig in S1 File). These analyses suggest that the

model inference does indeed have multiple local optima, but also provide evidence that the

optimization strategy used here converges to what is likely the globally optimal model parame-

ters for all 22 candidate models. Once the parameters for all candidate models were inferred

with the calibration dataset, we used the selection dataset to calculate the BIC values for all

models. Fig 3 shows the resulting BIC values, with different markers/colors indicating the

number of first-order modulating effects (Eq 6) present in the model. The BIC criterion

strongly suggests that model performance deteriorates as more of the substrates are assumed

to have first-order effects on the cell population. Thus, we focused on the top five models (low-

est BIC), which include MMK-type effects in at least one of the substrates, namely

Fenv ¼ f1ðcoðtÞÞf2ðcgðtÞÞf3ðclðtÞÞ

OxyGluLac : Fenv ¼
coðtÞ

Ko þ coðtÞ
�

cgðtÞ
Kg þ cgðtÞ

�
Kl

Kl þ clðtÞ

GluLac : Fenv ¼ 1 �
cgðtÞ

Kg þ cgðtÞ
�

KlðtÞ
Kl þ clðtÞ

OxyLac : Fenv ¼
coðtÞ

Ko þ coðtÞ
� 1 �

Kl

Kl þ clðtÞ

OxyGlu : Fenv ¼
coðtÞ

Ko þ coðtÞ
�

cgðtÞ
Kg þ cgðtÞ

� 1

Lac : Fenv ¼ 1 � 1 �
Kl

Kl þ clðtÞ

ð28Þ

where the models have been named according to which substrates incorporate an MMK effect.

As seen in Fig 3, the top-performing models have very similar BIC values, so a purely data-

driven model selection strategy fails in this case to identify a single winner. However, we note

that the model OxyGluLac is mathematically equivalent to the other four models at infinitely
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large or low values of Ki’s, e.g., when Kl!1, the OxyGluLac model is equivalent to the Oxy-

Glu model. Hence we select the OxyGluLac model for the remainder of the study, as the best

representation of the underlying cell behavior. This choice is also supported by the known

biology of BEAS-2B cells.

Table 1 shows the inferred parameters for the OxyGluLac model resulting from the calibra-

tion process. Observing the values for Kis, it can be seen that, in the range of the experimental

conditions tested in this work,i.e., co 2 [0.05, 0.18] mol m−3, cg 2 [2, 25] mol m−3, and cl 2 [2,

Fig 3. BIC values for the 22 candidate models. Different markers show the number of first-order effects on the cell proliferation rate.

https://doi.org/10.1371/journal.pone.0300902.g003

Table 1. Inferred parameters of the OxyGluLac model using experimental data.

Parameter Value (Lower bound, Higher bound) Unit

β 3.83 × 10−5 (3.28, 4.42) ×10−5 s−1

δ 3.12 × 10−5 (2.60, 3.70) ×10−5 s−1

Vg 8.78 × 10−19 (8.23, 9.37) ×10−19 s−1

Ko 1.88 × 10−5 (1.58, 7.76) ×10−5 mol m−3

Kg 6.86 × 10−7 (5.93, 14.6) ×10−7 mol m−3

Kl 8602 (8600, 86100) mol m−3

�cg 1.66 (1.31, 2.05) mol m−3

�co 6.66×10−9 mol m−3

Vo 2.00×10−19 s−1

https://doi.org/10.1371/journal.pone.0300902.t001

PLOS ONE In silico model development for cell population growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0300902 May 15, 2024 16 / 27

https://doi.org/10.1371/journal.pone.0300902.g003
https://doi.org/10.1371/journal.pone.0300902.t001
https://doi.org/10.1371/journal.pone.0300902


20] mol m−3, lactate has the highest effect among the biochemical substrates considered. This

observation is confirmed later in the Global Sensitivity Analysis step.

Fig 4 compares the inferred in silico model results versus the experimental observations in

all experiments. In this figure array, each column in the figure refers to an observable variable

(cell density, glucose, and lactate concentrations), and each row represents a different set of

experimental conditions (initial concentrations of glucose and oxygen). In each plot, different

lines represent different initial cell densities. As the figure illustrates, the calibrated model is

indeed able to capture the effect of different biochemical conditions well and accurately predict

the resulting cell population through the experiment for all experimental conditions.

Fig 4 also shows the difference between the model prediction and the experimental observa-

tions versus the noise of the experimental data, defined as standard deviation over the mean.

The figure shows that the model is fairly balanced in underpredicting and overpredicting the

state variables. The model predictions are mostly between error bars for the in vitro experi-

ments. Perhaps the only exception is the top left subfigure, corresponding to the prediction of

cell density under normoxia and high glucose concentration in the culture media. In this case,

the model predictions consistently underpredict the experimental data starting at the first time

point. These differences are more suggestive of a constant bias than of a prediction error,

which can be attributed to systematic errors in our measurements for this specific condition.

Fig 4. Model inference. Inferred model versus the in vitro observations. The in silico model results are shown with curves, and the in vitro model results are

shown as dots with error bars showing standard deviation.

https://doi.org/10.1371/journal.pone.0300902.g004
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This observation is supported by the larger dispersion seen in the cell population measure-

ments at the first time point. Further analysis (not shown here for brevity, see S2-S4 Figs in S1

File) confirms that experimental observations are within the confidence intervals of the model

predictions.

3.7 Practical identifiability analysis

We perform profile likelihood-based practical identifiability analysis using the ProfileLikeli-

hood.jl [79] package. Table 1 shows the resulting confidence intervals for all estimated model

parameters are finite, thus proving the practical identifiability of the model based on our

experimental data [80].

3.8 Goodness of fit

The relative root-mean-square prediction error of the inferred model was calculated using the

validation data set as described in Sec. 2.2.9, Eq 19. Results show that the inferred model has a

RMSE of 18.3%. For context, the experimental error (noise), calculated as the average of the

standard deviations of experimental replicates for each time point and experimental condition,

is 18.7%. Based on this, we consider that the model is sufficiently accurate for its applications

in support of BEAS-2B tissue engineering.

3.9 Global sensitivity analysis

A global sensitivity analysis of the OxyGluLac model was performed. Specifically, we calculated

the sensitivity of cell population and glucose and lactate concentrations at time t = 114 hr with

respect to the experimental conditions that can be controlled, i.e., oxygen concentration in the

incubator, initial glucose concentration in the culture media, and initial seeded cell density.

For this purpose, we use Sobol’s method (Sec. 2.2.10) with 40,000 Monte Carlo samples. First-

order Sobol indices rank the importance of each condition alone, while total-order Sobol indi-

ces also include parameter interactions.

Fig 5A shows the resulting Sobol indices. It can be seen that the initial cell population has

the largest effect on both the terminal cell population and lactate concentration while having

only a small effect on the terminal glucose concentration. Taken together, these observations

suggest that the culture conditions used in the experiments did not impose significant meta-

bolic constraints on the cells during the first t = 114 hr. This is also consistent with the lack of

significant parameter interactions, as evidenced by the similarity between the first-order and

total-order Sobol indices. To further analyze the effect of the culture conditions on the cell

population, Fig 5B shows the total-order Sobol sensitivity indices of the cell population

throughout the duration of the experiment. It can be observed that the sensitivity increases as

the experiment unfolds, suggesting that if the experiment were to be run for longer (e.g., 10 to

15 days), we would see a more significant effect of the biochemical substrates on the cell

population.

3.10 Application: Optimizing culture conditions

One application of the SBDO paradigm using our model development methodology is study-

ing the effect of different experimental settings efficiently [7, 81]. Here we study how different

media refreshment regimens affect cell population dynamics. In silico, this study is imple-

mented by resetting the concentration values of chemical substrates to be equal to their initial

values at series of refreshment time points. Fig 6 shows the estimated cell yields after 43 days of

culture under different refreshment periods, from 2 to 24 days, indicated as vertical lines. It is

PLOS ONE In silico model development for cell population growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0300902 May 15, 2024 18 / 27

https://doi.org/10.1371/journal.pone.0300902


observed that refreshing the culture media every 2 to 10 days maintains a relatively stable cell

population, with small oscillations that increase in amplitude as the media refreshment period

increases. Conducting the experiment with media refreshments every 10 days or more results

in drastic decreases in cell population, which become unrecoverable if the media is not

refreshed at least every 14 to 16 days. Note that this in silico study takes only minutes to run on

a desktop computer once an inferred and validated model is available. However, conducting

all these experiments in vitro would take significant time and incur costs in supplies, equip-

ment, and personnel.

4 Discussion

The comprehensive methodology for the development of in silico models for neotissue growth

proposed in this work leverages state-of-the-art methods for experimental design, data-driven

model inference and selection, and post-hoc analysis, validation, and interpretation of biologi-

cally informed models based on systems of differential equations.

The proposed methodology addresses the complexity, sparsity, and variability of tissue

engineering experiments by implementing specific model formulation calibration, selection,

Fig 5. Global sensitivity analysis. A: GSA on terminal values of observables. The x-axis shows the three observables. B: Time evolution of the global

sensitivity of cell population to variables controlled during the experiments.

https://doi.org/10.1371/journal.pone.0300902.g005
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and validation steps that are not typically considered in previous works. For instance, Coy

et al. [10] developed a model for the regeneration of nerve cells but did not conduct identifia-

bility and sensitivity analysis, which was used by Villaverde et al. [4]. Our proposed methodol-

ogy uses both structural and practical identifiability analysis to properly assess the suitability of

a model and the ability to infer a unique set of parameters based on the available (noisy) exper-

imental data. In comparison with [4], we implement additional model selection and validation

steps based on hold-out data. Furthermore, in contrast with [4, 65], we add an extra step for

global sensitivity analysis, which provides important insights for model diagnosis and interpre-

tation [71].

Uniquely, in our methodology, we propose a novel method for model-based design of

experimental protocols (MBDEP). Starting from the set of biologically informed model pro-

posals being considered, and leveraging prior information about model parameters, MBDEP

optimally selects the spatial and temporal sampling frequency required to minimize the esti-

mation error of the inferred model parameters, taking into account the expected experimental

noise. In addition, MBDEP provides valuable information regarding the suitability of the mea-

surement equipment and techniques, vis-a-vis their expected measurement error, for the

intended model inference application. This is in contrast with SBDO literature in non-biology

related applications, which has focused instead on experimental designs balancing the needs

for model inference and optimization. For instance, [82–84] combined simulation models and

data-driven surrogate models for the adaptive, sequential design of experiments. In particular,

starting from an existing mathematical model of the system, these works determined a set of

experimental conditions (i.e., the actual sampling points) required to improve a figure of

merit, such as maximizing the information content of the data [85], or optimizing a response

variable based on a limited set of computationally expensive deterministic computer experi-

ments [82]. In contrast, our proposed model-based experimental protocol design approach

Fig 6. Study of refreshment periods. Lower media refreshment periods result in higher and more stable cell populations.

https://doi.org/10.1371/journal.pone.0300902.g006
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aims at determining, a priori, the quantity and quality of noisy data needed for robust inference

of mathematical models for neotissue growth formulated as a system of differential equations.

However, once a mathematical model has been inferred for the system, adaptive/sequential

sampling methods may be used to gather further data to improve the model, capture additional

dynamics, or optimize according to experimental goals.

In the context of our in vitro experiments with BEAS-2B cells on well plates, where observ-

ables vary in time but not in space, the proposed MBDEP allowed us to adequately capture the

time evolution of the observables objectively establishing that measuring cell density every 24

hr was necessary to infer model parameters from experimental data over a wide range of mea-

surement noise. Comparatively, previous work in the literature does not typically provide a

rationale for certain aspects of their experimental protocols. For instance, Coy et al. [10] used

only the terminal cell density after 24 hr for model inference (a total of 15 measurements),

Eleftheriadou et al. [11] used 36 measurements to infer a 16-parameter model, while

Duchesne et al. [12] used 10 measurements to infer 6 to 8-parameter model. Future

extensions of the BEAS-2B models where spatial variations in cell density and substrate con-

centrations are present could use the proposed MBDEP to determine the distance between

measurements (i.e., spatial sampling frequency) and/or their specific location for robust model

inference.

We applied the proposed methodology to develop the first mathematical model to predict

population dynamics of BEAS-2B cells in vitro under different biochemical environments

characterized by glucose, oxygen, and lactate concentrations. Over the validation dataset, the

resulting BEAS-2B model exhibited a prediction error of 18.3%, an accuracy comparable to the

experimental noise (18.7%), thus suggesting the suitability of the inferred model for the design

and optimization of bioreactor devices and experimental protocols to maximize cell yield,

reduce variability, improve cell coverage, among others [1, 86].

BEAS-2B cells are widely used as an in vitro platform for numerous studies in airway/lung

homeostasis and disease [28, 87–90] spanning drug screening, toxicology, viral cellular

response, and more recently in tissue engineering applications focusing on optimization of

methods for generating bioengineered lungs [23, 91]. As such, a mathematical model accu-

rately predicting BEAS-2B growth and metabolic activity would be valuable in determining

experimental conditions in each context.

As an illustration, the inferred model was used to study the effect of the media refreshment

period on the resulting BEAS-2B cell population. It was shown that changing the culture

media every 1 to 10 days did not have a significant effect on the final cell population after 43

days. Comparatively, cell culture protocols for BEAS-2B cells and similar airway-relevant tis-

sues typically prescribe media changes every 48 hr to 72 hr in growth media. Insights from

experimentally validated in silico models may thus translate to significant savings in supplies

(e.g., 10X reduction in growth media in this case) and personnel, especially in the context of

commercial production of engineered tissues.

4.1 Concluding remarks

The in silico model considered in this work is based on a system of coupled differential equa-

tions describing advection-diffusion-reaction of biochemical substrates and their effect on

neotissue growth of a single cell type, without considering multiple cell types and transitions

between them. The mathematical model family proposed here can be applied to other single

cell line populations with their dynamics affected by glucose, lactate and oxygen concentra-

tions. In such applications, all the model parameters would need to be re-calibrated using rele-

vant experimental data. Also, in the case of biochemical stimuli other than glucose, lactate and
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oxygen, additional terms representing their rates of change would need to be added to the sys-

tem of equations, along with their potential effect on the cell proliferation term.

The framework we propose can be easily applied to multiple cell types by adding additional

equations similar to Eq 5 for each cell type, and including transitions between cell types

through the response terms [92]. Duchesne et al. [12] proposed such a model for the differenti-

ation of chicken erythroid progenitor cells, in which transitions between cell types depended

on cell densities only, without considering bio-chemo-mechanical cues. Such formulations

could be combined with the proposed methodology for studying the directed differentiation of

pluripotent stem cells under different environments [27, 93]. Additional effects such as shear

stress [39], scaffold stiffness, and air-liquid interface exposure could be added to the model,

e.g., through Eq 6.

In vitro neotissue growth, whether under static or perfusion conditions, is a complex multi-

scale multi-physics phenomenon [94]. To realize the full potential of SBDO applications in tis-

sue engineering, there is a need for end-to-end in silico modeling, including perfusion cell

seeding, deposition, attachment, proliferation, migration, and differentiation in response to

both biochemical and mechanical cues.

In this context, hybrid Lagrangian-Eulerian formulations that consider scaffold biomechan-

ics, cell-cell, and cell-scaffold interactions [95] while tracking the motion of individual cells or

cell parcels within a flow field [39, 96], are promising approaches. Neotissue growth models

such as those presented in this work could be combined with hybrid Lagrangian-Eulerian for-

mulations to achieve end-to-end in silico neotissue growth modeling.
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15. Wieland FG, Hauber AL, Rosenblatt M, Tönsing C, Timmer J. On structural and practical identifiability.

Current Opinion in Systems Biology. 2021;. https://doi.org/10.1016/j.coisb.2021.03.005

16. Miller AJ, Spence JR. In vitro models to study human lung development, disease and homeostasis.

Physiology. 2017; 32(3):246–260. https://doi.org/10.1152/physiol.00041.2016 PMID: 28404740

PLOS ONE In silico model development for cell population growth

PLOS ONE | https://doi.org/10.1371/journal.pone.0300902 May 15, 2024 23 / 27

https://doi.org/10.3390/pr9030447
https://doi.org/10.1089/ten.tea.2021.0215
https://doi.org/10.1089/ten.tea.2021.0215
http://www.ncbi.nlm.nih.gov/pubmed/35345902
https://doi.org/10.1038/s41536-021-00134-2
https://doi.org/10.1038/s41536-021-00134-2
http://www.ncbi.nlm.nih.gov/pubmed/33846347
https://doi.org/10.1093/bib/bbab387
http://www.ncbi.nlm.nih.gov/pubmed/34619769
https://doi.org/10.1098/rsfs.2015.0105
http://www.ncbi.nlm.nih.gov/pubmed/27051516
https://doi.org/10.1016/j.biocel.2022.106195
http://www.ncbi.nlm.nih.gov/pubmed/35339913
https://doi.org/10.1002/bit.26500
http://www.ncbi.nlm.nih.gov/pubmed/29205280
https://doi.org/10.1177/2041731419830264
http://www.ncbi.nlm.nih.gov/pubmed/30858965
https://doi.org/10.1007/s10237-015-0666-0
https://doi.org/10.1007/s10237-015-0666-0
http://www.ncbi.nlm.nih.gov/pubmed/25804699
https://doi.org/10.1098/rsif.2019.0801
http://www.ncbi.nlm.nih.gov/pubmed/32208821
https://doi.org/10.1002/bit.28105
http://www.ncbi.nlm.nih.gov/pubmed/35445744
https://doi.org/10.3233/ISB-190471
http://www.ncbi.nlm.nih.gov/pubmed/31006682
https://doi.org/10.1007/s10237-019-01188-4
https://doi.org/10.1007/s10237-019-01188-4
http://www.ncbi.nlm.nih.gov/pubmed/31201621
https://doi.org/10.1007/s11538-013-9810-0
https://doi.org/10.1007/s11538-013-9810-0
http://www.ncbi.nlm.nih.gov/pubmed/23358798
https://doi.org/10.1016/j.coisb.2021.03.005
https://doi.org/10.1152/physiol.00041.2016
http://www.ncbi.nlm.nih.gov/pubmed/28404740
https://doi.org/10.1371/journal.pone.0300902


17. Tian L, Gao J, Garcia IM, Chen HJ, Castaldi A, Chen YW. Human pluripotent stem cell-derived lung

organoids: Potential applications in development and disease modeling. Wiley Interdisciplinary Reviews:

Developmental Biology. 2021; 10(6):e399. https://doi.org/10.1002/wdev.399 PMID: 33145915

18. Van Raemdonck D, Neyrinck A, Cypel M, Keshavjee S. Ex-vivo lung perfusion. Transplant International.

2015; 28(6):643–656. https://doi.org/10.1111/tri.12317 PMID: 24629039

19. Dhasmana A, Singh A, Rawal S. Biomedical grafts for tracheal tissue repairing and regeneration “Tra-

cheal tissue engineering: An overview”. Journal of Tissue Engineering and Regenerative Medicine.

2020; 14(5):653–672. https://doi.org/10.1002/term.3019 PMID: 32064791

20. Fishman JM, Wiles K, Lowdell MW, De Coppi P, Elliott MJ, Atala A, et al. Airway tissue engineering: an

update. Expert opinion on biological therapy. 2014; 14(10):1477–1491. https://doi.org/10.1517/

14712598.2014.938631 PMID: 25102044

21. Varma R, Poon J, Liao Z, Aitchison JS, Waddell TK, Karoubi G, et al. Planar organization of airway epi-

thelial cell morphology using hydrogel grooves during ciliogenesis fails to induce ciliary alignment. Bio-

materials Science. 2022; 10(2):396–409. https://doi.org/10.1039/D1BM01327K PMID: 34897300

22. Aoki FG, Varma R, Marin-Araujo AE, Lee H, Soleas JP, Li AH, et al. De-epithelialization of porcine tra-

cheal allografts as an approach for tracheal tissue engineering. Scientific Reports. 2019; 9(1):1–12.

https://doi.org/10.1038/s41598-019-48450-4 PMID: 31427611

23. Ahmadipour M, Duchesneau P, Taniguchi D, Waddell TK, Karoubi G. Negative Pressure Cell Delivery

Augments Recellularization of Decellularized Lungs. Tissue Engineering Part C: Methods. 2021; 27(1):

1–11. https://doi.org/10.1089/ten.tec.2020.0251 PMID: 33307958

24. Haykal S, Salna M, Zhou Y, Marcus P, Fatehi M, Frost G, et al. Double-chamber rotating bioreactor for

dynamic perfusion cell seeding of large-segment tracheal allografts: comparison to conventional static

methods. Tissue Engineering Part C: Methods. 2014; 20(8):681–692. https://doi.org/10.1089/ten.tec.

2013.0627 PMID: 24392662

25. Varma R, Soleas JP, Waddell TK, Karoubi G, McGuigan AP. Current strategies and opportunities to

manufacture cells for modeling human lungs. Advanced Drug Delivery Reviews. 2020;. https://doi.org/

10.1016/j.addr.2020.08.005 PMID: 32835746

26. Varma R, Marin-Araujo AE, Rostami S, Waddell TK, Karoubi G, Haykal S. Pre-Clinical Application of

Functional Human Induced Pluripotent Stem Cell-Derived Airway Epithelial Grafts. bioRxiv. 2021;.

27. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibro-

blast cultures by defined factors. cell. 2006; 126(4):663–676. https://doi.org/10.1016/j.cell.2006.07.024

PMID: 16904174

28. Han X, Na T, Wu T, Yuan BZ. Human lung epithelial BEAS-2B cells exhibit characteristics of mesenchy-

mal stem cells. Plos one. 2020; 15(1):e0227174. https://doi.org/10.1371/journal.pone.0227174 PMID:

31900469

29. Park Yh, Kim D, Dai J, Zhang Z. Human bronchial epithelial BEAS-2B cells, an appropriate in vitro

model to study heavy metals induced carcinogenesis. Toxicology and applied pharmacology. 2015;

287(3):240–245. https://doi.org/10.1016/j.taap.2015.06.008 PMID: 26091798

30. Garcia-Canton C, Minet E, Anadon A, Meredith C. Metabolic characterization of cell systems used in in

vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicology in Vitro. 2013;

27(6):1719–1727. https://doi.org/10.1016/j.tiv.2013.05.001 PMID: 23669205

31. Bouquerel C, César W, Barthod L, Arrak S, Battistella A, Gropplero G, et al. Precise and fast control of

the dissolved oxygen level for tumor-on-chip. Lab on a Chip. 2022; 22(22):4443–4455. https://doi.org/

10.1039/D2LC00696K PMID: 36314259
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