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Abstract

Maze-solving is a classical mathematical task, and is recently analogously achieved using

various eccentric media and devices, such as living tissues, chemotaxis, and memristors.

Plasma generated in a labyrinth of narrow channels can also play a role as a route finder to

the exit. In this study, we experimentally observe the function of maze-route findings in a

plasma system based on a mixed discharge scheme of direct-current (DC) volume mode and

alternative-current (AC) surface dielectric-barrier discharge, and computationally generalize

this function in a reinforcement-learning model. In our plasma system, we install two elec-

trodes at the entry and the exit in a square lattice configuration of narrow channels whose

cross section is 1×1 mm2 with the total length around ten centimeters. Visible emissions in

low-pressure Ar gas are observed after plasma ignition, and the plasma starting from a given

entry location reaches the exit as the discharge voltage increases, whose route converging

level is quantified by Shannon entropy. A similar short-path route is reproduced in a reinforce-

ment-learning model in which electric potentials through the discharge voltage is replaced by

rewards with positive and negative sign or polarity. The model is not rigorous numerical repre-

sentation of plasma simulation, but it shares common points with the experiments along with

a rough sketch of underlying processes (charges in experiments and rewards in modelling).

This finding indicates that a plasma-channel network works in an analog computing function

similar to a reinforcement-learning algorithm slightly modified in this study.

Introduction

Maze-solving is a task that fascinates not only general people solving puzzles but also scientists

in a wide range of categories [1]. Its scientific quest being started as a mathematical problem, it

is a benchmark of the intelligent level for various media such as living tissues [2], chemical
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systems [3], fluid flow [4], and ensembles of electric devices (like memristors) [5], most of

which possess nonlinear properties in their individual element and a complex network in their

unity. The task of maze-solving includes a problem of non-deterministic polynomial-time (NP

problem) [6] in the comprehension in computational studies of complexity, and such nonlin-

ear elements and their networking are functional for the solution in the previous studies listed

above. Maze-solving is also a gateway to other physical computing schemes like digital logic

circuits and analog computers [4].

Discharge plasma possesses nonlinearity as well, and several experimental studies for maze-

solving have been reported so far. In a glow discharge, electrons and ions actively move at ran-

dom with neutral particles according to principles on electric-field drift and particle diffusion

via spatial density gradient [7]. General glow-discharge experiments in a rare-gas space seem

to be quite simple and easy to reproduce primitively if the implementation of a vacuum pump

and gas supply system with sufficient high-voltage electric power supply are available, and the

entire phenomenon is completed remarkably in a short time. In one experiment [8], microchip

structure with tiny trenches was etched on a dielectric plate to configure a maze, and high-volt-

age (1–6 kV) direct-current power supply generated glow-discharge plasma between elec-

trodes located at starting and ending points. Visible plasma emission displayed the shortest

path successfully, and such high voltage would have been required to accelerate initial elec-

trons directly between both ends. Another previous experiment about plasma ignition in a

multi-wall low-pressure space also testified that maze-solving was successful as a path along

glow-discharge plasma [9]. According to the report of this experimental study, the visible

image of the glow discharge showed a striation pattern [7], which is an evidence of importance

in electric potential profiles to form a plasma path in the corresponding experimental appara-

tus. The authors also performed an experiment of surface microdischarges [10], and this

maze-solving method was applied to biomaterial processing [11], which is a technical applica-

tion of this plasma maze-solving method.

We also pay attention to reinforcement learning (RL) [12–16], which offers an effective

computing algorithmic model for maze-solving [14, 15, 17, 18]. RL typically works well for

problems that includes close interactions between agents and their environment, and favorable

next action is selected to optimize the final goal in a given problem. Although a simple route-

finding action induces no change on the environment which is given as an exit location of the

maze, RL is still powerful for finding the shortest route among the choices in a complicated

labyrinth. As a maze solver, the heuristic property that RL substantially possesses is beneficial,

and its feasibility can be upgraded in several ways. For instance, after the initial proposal of Q-

learning [12], inclusion of multi-agent models and its decentralization system was recently

proposed [19], which enhances rapid convergence with robustness. In the case of maze-solving

in a simple RL model, the distribution of the reward spreading from the exit is a key issue, and

its spatial pattern is configured in automatic and arbitrary iterations. The pattern created after

many iterations are similar to physical diffusion profiles of particles from the source, as shown

later in this report.

An agent action questing the maximum reward is optimized in a RL model, while particle

motions in plasma are regulated along the physical principles. In this study, we compare these

two dynamic systems to search for plasma maze-solving functions which seem to be intelligent

and also to reveal RL functions as an analogous simulator for some physical events. The config-

uration for plasma generation is different from the previous study [9] and close to the other

[8]; we designed a fine channel structure surrounded by dielectric walls whose surfaces are

almost at a floating potential [20], and plasma particles sense the electric potential not only

governed by electrodes but depending mainly on charged dielectric in dielectric barrier dis-

charges [21, 22]. This electric charging is a result of charged particle accumulation in the
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preceding bipolar discharge pulses. After demonstrating route findings by visible plasma chan-

nels, we compare the experimental results with the RL calculations in the model similar to the

maze structure used in the experiments. Here, we follow achievements by the Q-learning

model [12, 13] in which reward is distributed from the maze exit by a large number of accumu-

lated iterations, and modify it to imitate motions of a huge number of plasma particles mobile

in the experimental space.

Methods

Experimental apparatus

Experiments were performed in a system composed of a small vacuum chamber with a carved

dielectric pattern, a vacuum pump with gas feeding facility, and an electric power supply. Most

of them are typical in experiments of plasma generation, and carved maze patterns on the sur-

face of the dielectric plates induces a distinguishable perspective for experimental performance

in our study. Following our previous brief report [20], here we demonstrate various experi-

mental results to reveal functions for maze-solving.

A conventional chamber for plasma generation forms a discharge space that occupies the

most of inner volume, and inserted metallic electrodes connected to the outer electric power

supply generates plasma through ionization in an intensified electric field [23]. Dielectric com-

ponents are used as supporters for spatial arrangements of metallic parts. The gas feeding

equipment controls the pressure in the discharge space together with multiple valves; for

instance, when the electrode gap is several tens of mm, the gas pressure is at tens of Pa in a typ-

ical plasma experimental setup [7].

However, in our chamber system (in Fig 1), all of the discharge space consisted of micro-

channels whose square cross section was 1 by 1 mm in size as a trench of a Teflon dielectric

plate. Channels were arranged in a square lattice configuration, and the lattice constant was 10

mm. Microchannels were open or closed by carving them on the dielectric surface according

to each maze design. Thus, a microchannel was almost independent from each other without

cross talks of electrical potentials, unlike the previously study in which channels were adjacent

across a thin dielectric wall [9]. Electrodes, which were 1-mm-diemater circular poles of stain-

less steel, can be located at grid crossing points of the lattice, and the high-voltage electrode

works as the entry or starting location of the maze, while the grounded electrode corresponds

to the exit, goal or finishing location. In the following experiments, we fixed the dielectric carv-

ing pattern and the entry node, while the goal node was set to different locations in two experi-

ments (patterns A and B). The top plate of the chamber was also a dielectric material, quartz

glass, to complete dielectric channels and to make the plasma image visible from the outside.

The output of our electric power supply (Haiden Laboratory PKF-2KW) was in a bipolar

pulsed shape, with small ringing subsequent waves. This output waveform, different from a

simple sinusoidal waveform, is not dominant for the function of maze-solving, but useful to

observe residual potentials or remaining charges on the dielectric after the main pulses. Bipolar

pulses are essential for our system to induce charged dielectric; after imposing a positive pulse

on a high-voltage electrode, electrons flow into it, and the dielectric surface in the microchan-

nels around it are charged up negatively. Next, when the negative pulse comes, the charged

dielectric works to enhance its negative potential, and the charge was replaced by the positive

one after a plasma shot. Plasma was generated in Ar gas with small gas flow (�30 sccm) from

the inlet to the outlet holes through all the microchannel structure; gas pressure was higher

than 100 Pa. This relatively high gas pressure in comparison with conventional plasma experi-

ments is attributed to the small cross section in this experimental setup [24], and this plasma
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scheme with highly frequent collisions among particles is maintained by surface dielectric bar-

rier discharges which can be operated at high gas pressure [21, 22].

Experimental data are acquired as visible images taken by a CCD (Charge Coupled Devices)

device by a widely-available digital camera (Olympus SP-550UZ) and time-evolution signals

recorded by a conventional digital oscilloscope (Tektronix TBS1064) with a high-voltage

probe (Tektronix P5100). Raw datasets acquired in the experiments are displayed in S1

Appendix.

Reinforcement learning model

Our RL model is categorized in typical Q-learning methods [12], except the following points:

rewards possess positive and negative polarities, corresponding electric potentials externally

applied by electrodes in one voltage pulse in the experiments, and initially-set rewards r are

transported by random virtual motions for the calculation of expected discounted reward Q.

The model structure in which an agent is mobile is a conventional network or graph [25],

where nodes correspond to the grid crossing points and edges, with slightly negative reward,

exist if the corresponding microchannels are open as maze paths in a given carving pattern.

The agent moves from the entry toward the goal node, and selects a path with larger Q value in

the direction of positive polarity, which is the expected discounted reward for executing action

a at state s [12]. We note that Q and r are given on both directions with different quantities on

one edge. With initial sources of the reward r located near the goal positions, Q has been dis-

tributed from the adjacent edges with parameters of the discount factor γ and the learning rate

Fig 1. Spatial configurations of experimental setup. Plasma channels created in Ar gas by 20-kHz high-voltage power supply are in

trenches on the surface of a Teflon plate. Electrodes of stainless steel are for electric voltage imposition and floating potential

detection. Details shown here is for pattern A, whereas those for pattern B is depicted in S1 Appendix.

https://doi.org/10.1371/journal.pone.0300842.g001
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α in a typical RL formula, given as:

Qiðsj; ajðsjÞÞ ¼ ð1 � aÞQi� 1ðsj; ajðsjÞÞ

þa

�

rj þ g max
ajþ1ðsjþ1Þ

Qi� 1ðsjþ1; ajþ1ðsjþ1ÞÞ

�

;
ð1Þ

where j indicates the number of episodes (or real agent motions) calculated so far. Beware that

a local state (or a local position which now the agent possibly stays at) s is randomly chosen at

the hypothetical iterations i (10,000 times) of Q-transport calculation by Eq (1), even if the

agent never stays there, for derivation of the Q value distribution at each episode. Then, the Q
value is updated to be the saturated state before the actual action of the agent a. The coeffecient

ratio between two terms on the right hand side ((1 − α) : α) of Eq (1) means that learning is

performed in the rate of α from the initial and future rewards, while in the remaining portion

(1 − α) Q follows the last value without updates. By γ, Q increases by selecting the next action

at j + 1 in a rule which is here the choice of the maximum value (“max”).

In our model which is shown in Fig 2, we modify Eq (1) as follows:

Qiðsj; ajðsjÞÞ ¼ ð1 � aÞQi� 1ðsj; ajðsjÞÞ

þa

�

rj þ g randomajþ1ðsjþ1Þ
Qi� 1ðsjþ1; ajþ1ðsjþ1ÞÞ

�

:
ð2Þ

Here, the mathematical function defined tentatively, “random,” indicates random selection

among the possible options with equiprobability. By replacing “max” by “random,” the reward

distribution is performed randomly, which is quite similar to particle motions in the thermo-

dynamical diffusion process.

We set the initial placing of rewards as follows: if one end of an edge is the goal or the entry

node of the maze, the edge has initial rewards with a positive amount (e.g., +100) in the inlet

direction or a negative one (e.g., −100) in the outlet direction, respectively, represented by r in

Eq (1). r on the major or general edges is set to be −10. Then, by spatial transport of Q by accu-

mulation of random hypothetical individual motions in Eq (1), a Q profile is calculated.

Fig 2. Workflow for route finding based on RL model.

https://doi.org/10.1371/journal.pone.0300842.g002
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After this initial calculation of Q, the agent actually moves to find the next path along one

edge with the largest Q. Since this agent motion does not change the environment of the RL

model like r locations, unlike typical RL calculation steps, we can skip the updating procedure

of the Q-profile calculation at every iteration step. The agent iteratively moves to the next node

by selecting the path with the largest Q at each current node until arrival at the goal node.

Finally, we step to confirm the consistency of the route with the shortest one.

Computation in this study was performed by a commercially-available 64-bit personal com-

puter by a homemade Python code; the details are described in S1 Appendix. One calculation

for searching for one route is completed within one second.

Results

Experiments: Route evolution quantified by ambiguity reduction

Fig 3(a) shows visible plasma images at several levels of the discharge voltage. The ignition

started from the high-voltage electrode, and after imposition of the sufficient voltage, the

plasma channel reached the goal or the exit of the maze. As the plasma channel increased its

length, it spread in multiple directions at a node where more than three edges are connected,

although the shortest route leading to the goal was always included. Then, when it reached the

goal, the emission along the route became intense, finishing its quest.

Fig 3 also displays ambiguity reduction as the route converged. Here we calculate Shannon

entropy H [26] from probability distributions in path selection, as displayed in Fig 3(b). If a

route finder works randomly, a forward branch is selected with equiprobability. Then, at each

branch, the probabilities are assigned equally, and a dead end becomes a leaf or termination

node of the graph tree that is given a probability pk, where the summation of k means the num-

ber of the leaf nodes. As the route proceeds to the goal, some edges connecting to each branch

are not selected, their probabilities turning into zero. This converging process of the route can

be estimated using by H in the unit of bits, simply given as:

H ¼ �
X

k

pk log2
pk;

X

k

pk ¼ 1: ð3Þ

and H represents an ambiguity level of states in the system. Generally, more leaf nodes exist, a

larger value H possesses since the level of ambiguity in branch selection is higher. On the other

hand, if there is no other choice to select a path to goal along a route with no possible branches,

H is zero, the minimum value.

In Fig 3, as the plasma channel traces the correct route, paths removed from the route (in

white) increasing, and consequently branches decreases along the route which converged into

a simple line (changing from hatched to colored edges). Finally, the route finding was com-

pleted when the plasma channel reached the goal node or the ground electrode. This evolution

is quantified by decrement of H; while the route was not fixed, H stayed at a high level, but it

decreased after the converging process went on. Some paths out of the route with plasma emis-

sion remained when the route finding was completed, with a finite H value. If such unneces-

sary edges were successfully removed, H would drop down to zero.

To generate plasma channels shown in Fig 3(a), bipolar pulse voltage by the power supply

was applied between two electrodes, and discharge current was monitored by detecting the

voltage drop across the series resistance at 2 kO (Fig 4). We note that the current signal

includes the component of displacement current in its large portion, and an additional calcula-

tion step yields the net transport of charged particles, which will be discussed using Fig 6. To

understand complex behaviors observed in the signal of the floating potential, further consid-

eration is also required with additional analysis.
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Fig 3. (a) Visible plasma images and corresponding path processions with branch probabilities in case of pattern A depicted in Fig 1, with Ar gas pressure 300 Pa.

Voltage depicted is at peaks of bipolar pulses. At each stage, possible paths selection with equiprobability are exemplified in attached directed graphs, where solid

yellow paths are in the fixed route, hatched yellow paths are in possible routes, and white paths are removed from the route. (b) Variation of Shannon entropy as the

route is found in (a). Numbers of progress stages are listed in images in (a).

https://doi.org/10.1371/journal.pone.0300842.g003
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Experiments: Parameter range for plasma route findings

This plasma generation was successful in a wide range of gas pressure, as described below. In a

typical glow discharge, at either direct-current or high-frequency operations of discharge volt-

ages, the optimum gas pressure exists for one electrode gap [7]. Apart from the point with the

lowest discharge voltage, the voltage increases sharply at both higher and lower pressures since

electrons run with collisions in the parallel electrode gap. Consequently, the pressure range for

operation is limited around the optimum gas pressure (around 100 Pa) for several tens of mm

gap. However, electrons in the microchannel, bending at several branches, cannot run

smoothly between electrodes, and strongly influenced by surface potentials on the dielectric

walls. Their mobility had not been rigorously analyzed so far, but they contain similar motions

in dielectric barrier discharges [21, 22] in which the transport of charged particles seems to be

frequent between dielectric surfaces with charged particles in opposite signs. Then, flight dis-

tance of charged particles vary within the microchannel length, from *10 mm to *100 mm

in our case.

In Fig 5(a), in which ignition and route-completed voltages are plotted as a function of Ar

gas pressure, we cannot find any sharp minimum property [7], and the possible operation

pressure ranges approximately by one order of magnitude. This is attributed to the above

model based on the reports about dielectric barrier discharges [21, 22], unlike the case close to

pure glow discharges [9]. Fig 5(b) shows evolutions of the route length along the plasma emis-

sion channels, and with slight slope changes of the emission lengths, similar completion of

route findings is observed at every gas pressure. These facts indicate that the wide operational

range is due to partial properties of dielectric barrier discharges, meaning that charged

Fig 4. Time evolutions of applied voltage from power supply, flowing discharge current, and floating potential in

case of pattern A depicted in Fig 1. Parameters shown as inset numerals in voltage correspond to the bipolar peak

voltage, with Ar gas pressure 300 Pa.

https://doi.org/10.1371/journal.pone.0300842.g004
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particles accumulated by the previous discharge pulse work effectively to evolute the plasma

channels.

All the signals plotted in Fig 5 are shown as photo images in S1 Appendix.

Experiments: Trends of charge accumulation along route

To perform direct observation of charge accumulation on dielectric surface, we measured the

electric potential on one floating electrode Vf in the middle region along the plasma channel,

as shown in Fig 4. Unlike other electrodes, the top of this electrode was installed on the same

surface as the surrounding dielectric (in Fig 1). Although the detected signals are not

completely the same as that of potential by the accumulated charges on the dielectric surface, it

approximates the temporal behavior of the dielectric surface potential.

At the initial phase in which the found route was so short that the plasma emission was far

from the floating electrode, the Vf signal was almost constant as zero. When the front of the

emission reached the tip of the electrode, the signal drastically varies as a large swing in the

level of several tens of V. This large swing of the potential directly reflects accumulated positive

and/or negative discharges at the end of the plasma channel. This charge accumulation takes

place on floating capacitance between the dielectric surface and the electrode poles in the

equivalent circuit. Floating capacitance always work more or less in experiments of dielectric

barrier discharges, and in our case, its effects are getting more apparent as the channel front

approaches to the electrode. That is, plasma supplies charges accumulated on the dielectric

surface along a channel, and the channel front is connected to the goal electrode by floating

capacitance and, in addition, slight charge flows directly in space as Townsend discharge [7],

both of which contribute to selection of proper path at a branch. At the final stage in which the

floating electrode was immersed in the plasma channel whose one end was on the ground elec-

trode, with the discharge including a direct-current component as a portion, the Vf signal

shows regular alternative changes between relatively large positive and negative potentials.

These alternative swings of potentials are due to positive and negative charging synchronized

Fig 5. (a) Observed peak discharge voltages for plasma ignition and route completion as a function of discharge gas pressure in case of pattern B depicted in Fig 1 and

S1 Appendix. (b) Path-length increments as a function of discharge voltage at various gas pressures in case of pattern B depicted in Fig 1 and S1 Appendix.

https://doi.org/10.1371/journal.pone.0300842.g005
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with the alternative discharge voltage. From this measurement, one can confirm the fact that

the dielectric surface attached to the plasma was certainly charged up, and the dielectric-bar-

rier-discharge component worked effectively in this route finding phenomenon.

A more closer look of signals in the time evolutions enables us to quantify the accumulated

charges stored on the surface. By making a connection between discharge voltage and accumu-

lated charge q, integrated from current signals in time, charge-voltage diagrams were derived

from time-evolution signals in Fig 4; these diagrams are Lissajous curves that are deduced

from two synchronous cycle signals, displayed in Fig 6. Since two cycles are included in Fig 4

and the diagrams are almost on the same curve, such alternative charging through discharges

is repetitive. When the peak voltage is in the lower level (< 1.5 kV), q increased as the voltage

was raised, which corresponds to the route extension from the entry to the goal. Another point

we can find is that the summed-up q was balanced between the positive and negative amounts,

which are typical cases for dielectric barrier discharges. When the peak voltage was in the high

level (> 1.7 kV), as we have already noted in one of the current signals in Fig 4, large positive

spikes emerged and pulsed direct-current discharges were dominant, leading to more intense

emissions from plasma in Fig 3.

The area within a closed Lissajous curve is equal to the power consumption or heat injec-

tion to the system. The calculation reveals that the input power ranged from 0.1 to 3.0 W. This

is equal to the input quantity of heat in the thermodynamical point of view.

RL model analysis: Spatial transport of rewards and route finding processes

Using the patterns copied from the spatial node and edge configurations in the maze targeted

in the experiments, we performed simple calculations of route findings based on the RL model

based on Eq (2). Figs 7 and 8 represent initial setting of r on the edges and calculated Q in the

Fig 6. (a) Lissajous curves, or charge-voltage diagrams derived from time-evolution signals in case of pattern A in Fig 4. (b) Enlarged view of (a).

https://doi.org/10.1371/journal.pone.0300842.g006
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model. For each pattern with a different position of the goal node, both increment and decre-

ment effects on Q diverge from the entry and converge on the goal node, respectively.

After saturation of a Q profile, an agent starts from the entry node and proceeds by choosing

an edge for the maximum increase of Q in the positive polarity. Then, in both spatial patterns,

the agent successfully finds the shortest route whose end was the goal node, as shown in Fig 8

in configuration of pattern A. Both polarities in r and Q are valid and effective for the guide of

the agent; negative Q expels the agent, whereas positive Q attracts it. Around the starting node

the edges has almost the minimum quantities of Q with large numerals in the negative sign,

and the agent is expelled from such low-level states. The agent aims at selecting a path with

larger Q to the positive sign, yielding that its trace coincides with increment of Q to the goal.

We examined what effect(s) will cause failures in route findings. Fig 9 displays profiles of

visiting nodes in several cases of r around the entry and the goal node. When r around these

nodes are distinguishable from that on major and general edges, route findings are more suc-

cessful, then r on the background field on the way may work as error sources or obstacles. This

fact resembles possible physical cases in which charged density profiles are flat and no further

plasma generation is expected.

Discussion

Comparison between plasma generation and RL model: From formula

structure

As shown and described in the experimental results, charge accumulation on the dielectric

walls was a key factor when the plasma emissions increased its length. The source of charged

Fig 7. Spatial profiles of initial reward r for RL model in configuration of pattern A. The adjacent path from the entry and that to the goal are −100 and +100, while

the other edges have slight negative values (−10).

https://doi.org/10.1371/journal.pone.0300842.g007
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particles is plasma itself generated in the microchannels. The transport of plasma charged par-

ticles with density n is given, in the particle balance equation, as:

dnc

dt
¼ � r � msEnc � Dcrncð Þ þ Sc; ð4Þ

where c represents species of particles, which are charged positively (like ions, symbolized as

‘+’) or negatively (like electrons, as ‘−’), and

r � ðεr�Þ ¼ � eðnþ � n� Þ; ð5Þ

with E = −rϕ. ϕ is the electric potential whose boundary conditions are applied as the dis-

charge voltage and the grounded level. Sc is the source of plasma particles, mainly via ioniza-

tion, μ the drift mobility, and D the diffusion coefficient. In the bulk region inside plasma,

which is the very long part along the channel in our plasma, n+ * n−, then electric field E is

Fig 8. Spatial profiles of expected discounted reward Q calculated in RL model in configuration of pattern A, and result of a route finding by

selecting larger Q at every branch.

https://doi.org/10.1371/journal.pone.0300842.g008
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almost constant and relatively small in the bulk, while strong E field and its gradient are pres-

ent on the end regions.

For the following discussion, it is useful to rewrite Eq (2) as:

Qiðsj; ajðsjÞÞ � Qi� 1ðsj; ajðsjÞÞ
dt

¼ �
a

dt
Qi� 1ðsj; ajðsjÞÞ � g randomajþ1ðsjþ1Þ

Qi� 1ðsjþ1; ajþ1ðsjþ1ÞÞ

� �

þ
a

dt
rj:

ð6Þ

In this form, it is clear that the left hand side of Eq (6) indicates the finite difference method in

solving differential equations numerically as well as an update of Q in every δt step. Eqs (4)

and (6) shares several similar parts, with certain uncommon points; in both cases, source

terms exist (Sc in Eq (4) and (α/δt)rj in Eq (6)), and the diffusion term (Dcrnc) in Eq (4) and

the random spatial-shift term (γ random Qi−1 in Eq (6)) form spatial profiles of charged parti-

cles and Q. A different point is that, in Eq (4), spatial divergence is dominant, whereas the

learning rate (α) is the alternative factor in Eq (6). This partial similarity with different factor

(s) is a key in analogous resemblance between two systems handled in this study. If one made

them closer analogously, a further modified Q-learning model might be possible which mimics

a given physical/chemical/biological system; for instance, α can be set not as a constant but as

a function of spatial divergence to approach to some plasma systems.

In this way, keeping on the similar RL protocol and calculation setup, RL-based methods

can be developed as a physics-informed model for other purposes by modifying and/or adding

some components in the model; in our case, we replace the element max by the function ran-
dom to imitate particle diffusion as a first step. Recently, several studies have reported linkages

between RL models and complex optimization problems in diverse fields of physics [18]. Simi-

lar information flow may exist in other systems as well as in this plasma-channel networks.

Thus, reinforcement-learning models have a practical potential to work as a generalized

approximator which is appliable for other physical/chemical/biological systems. This study

will also contribute to recent progresses in such research activities.

Fig 9. Counts of visits among 20 agents at each node for various initial setting of r in configuration of pattern A. r = −10 for major edges except regions near the

entry and the goal, as indicated below. (a) Reward around the entry: rentry = −100, around the goal: rgoal = +100. (b) Reward around the entry: rentry = −11, around the

goal: rgoal = −7. (c) Reward around the entry: rentry = −11, around the goal: rgoal = −9.

https://doi.org/10.1371/journal.pone.0300842.g009
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From this comparison between plasma experiments and RL models, we can deduce another

perspective on the future potentials of plasma maze-solving technology. From Fig 4, the time

evolution of four bipolar pulses were completed within 100 μs, which can be estimated as a

rough elapsed time of maze-solving completion. Although enlargement of maze configurations

make this time longer, it is so rapid in comparison with typical calculation time of RL models

in a conventional personal computer (PC). If we design a compact plasma cell and an interface

board with PC, we can develop an analog/digital hybrid device for rapid calculation. As an

industrial application, a solver for logistic routing problem [25] will be designable after suffi-

cient model reconstruction.

Entropy comprehension in thermodynamics and information theory

In this study, we have taken Shannon entropy H into account for quantifying a route converg-

ing process. H is well matched to the research activities in information theory, including RL

models so far [18, 27, 28]. On the other hand, plasma is a kind of thermodynamical processes

in which input of heat and output of work exist. Thus, it is worth highlighting that H estimated

in this study can be linked to Boltzmann-Gibbs entropy S, as discussed in the following. It is

known that, in the thermodynamical point of view, H is equivalent to S [29–34], where S in the

total system never decreases as predicted in the Second Law of thermodynamics [35, 36].

In our experiments, as the discharge voltage was raised, the lengths of the plasma channel

increased. This configurational change corresponds to increased volume V with a constant

charged-particle density n. In a simple thermodynamical model, when the amount of sub-

stance N is changed by a factor of λ at a constant gas pressure and temperature, V, energy U,

and S in the system have extensivity like: λU(S, V, N) = U(λS, λV, λN) and λS(U, V, N) = S(λU,

λV, λN) [35]. We carefully note that this is valid when constituent particles are in equilibrium

over the whole volume, and our experiments in which the gas pressure was at several hundreds

of Pa are the cases within this criteria; if the pressure increases the level close to the atmo-

spheric pressure [37], viscous forces in gas flows are dominant over particle diffusions and

may break this principle. Within the criteria of homogeneous low pressure throughout the sys-

tem, the extensivity described here means that, for constant n, change of V is a reversible pro-

cess without irreversible parts since the extensivity of S is valid due to the reversibility. In fact,

when we change the discharge voltage very slowly, the variation of the plasma emission length

was reversible in the experiments.

This property verifies firm linkage between the observed H and the thermodynamical

entropy S; here, we note again that, in information theory, H is broadly defined using probabil-

ity distributions in which the summation of probabilities is unity, somewhat apart from ther-

modynamics. In the experiments, H decreased, unlike cases of reversible (with constant S) or

irreversible processes (with increasing S). This experimental fact is attributed to gradual system

transition from plasma free expansion to plasma restricted growth (with route findings). In

Fig 3, thermodynamically, longer the plasma length is, larger S should be linearly. However, in

comparison with the case of free expansion of plasma which would fill all the microchannels

equally at last, S in the restricted growth should be smaller as if S decreased. In other words, the

system in the initial phase of plasma ignition with larger H (or S) is different from that in the

final stage with successful route findings and smaller H (or S).

This reasonable linkage between H and S is also meaningful as an evidence of plasma capa-

bilities for maze-route findings as well as an example of physics-informed RL models. Maze

solving seems to be intelligent, despite of plasma appearances without high-level nonlinearity

or complexity like human brains. However, in a closer look at plasma, its feasible capability is

based on interactions among huge number of particles. Most of them might be random in the
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thermal equilibrium, but a few fraction of them may work as a nonlinear electronic device in

non-equilibrium components in the total multi-particle system. Plasma used here is

completely a thermodynamical open system, with a stationary state of constant outlook. Such

a system is frequently robust for work output, like biological livings [38], and this maze-solving

phenomenon by plasma channels can be listed in examples of functional open systems.

Conclusion

Maze-solving by plasma emissions was successful in experiments using dielectric microchan-

nels whose synthesized structure imitates a maze configuration, and a RL model reconfigured

the similar route-finding processes. Plasma was generated in AC surface dielectric barrier dis-

charges with a small portion of DC volume mode, where charge particles are indispensable for

progressive route extension. The RL model used here was typical, except that initial rewards

were set negatively around the entry and positively the goal of the maze, and route findings

were also successful. The rewards were distributed through the maze, which was roughly simi-

lar to the charged-particle transport in the experiments. Shannon entropy calculated from

route-finding processes well represented route converging, and consistent with thermodynam-

ical aspects, which is conclusive for consistency between experiments and RL model

calculations.
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