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Abstract

Recognizing postures in multi-person dance scenarios presents challenges due to mutual

body part obstruction and varying distortions across different dance actions. These chal-

lenges include differences in proximity and size, demanding precision in capturing fine

details to convey action expressiveness. Robustness in recognition becomes crucial in com-

plex real-world environments. To tackle these issues, our study introduces a novel

approach, i.e., Multi-Person Dance Tiered Posture Recognition with Cross Progressive

Multi-Resolution Representation Integration (CPMRI) and Tiered Posture Recognition

(TPR) modules. The CPMRI module seamlessly merges high-level features, rich in seman-

tic information, with low-level features that provide precise spatial details. Leveraging a

cross progressive approach, it retains semantic understanding while enhancing spatial pre-

cision, bolstering the network’s feature representation capabilities. Through innovative fea-

ture concatenation techniques, it efficiently blends high-resolution and low-resolution

features, forming a comprehensive multi-resolution representation. This approach signifi-

cantly improves posture recognition robustness, especially in intricate dance postures

involving scale variations. The TPR module classifies body key points into core torso joints

and extremity joints based on distinct distortion characteristics. Employing a three-tier tiered

network, it progressively refines posture recognition. By addressing the optimal matching

problem between torso and extremity joints, the module ensures accurate connections,

refining the precision of body key point locations. Experimental evaluations against state-of-

the-art methods using MSCOCO2017 and a custom Chinese dance dataset validate our

approach’s effectiveness. Evaluation metrics including Object Keypoint Similarity (OKS)-

based Average Precision (AP), mean Average Precision (mAP), and Average Recall (AR)

underscore the efficacy of the proposed method.

1. Introduction

Dance is one of the essential forms of cultural expression. In a typical dance class, there are

often many students, making it challenging for teachers to accurately assess students’ real-time
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mastery of dance actions and emotional expressions Therefore, applying information technol-

ogy to estimate the teaching status of dancers can significantly enhance the implementation of

tailored teaching methods. As technology and culture become increasingly integrated, the rec-

ognition of posture in dance images is becoming an important application area for computer

vision technology. It has a wide range of applications, including correcting the actions of pro-

fessional dancers, self-guided dance instruction, sports analysis, competition judging, enter-

tainment, game design, augmented reality (AR), virtual reality (VR), and various human-

computer interaction scenarios.

Currently, there are two main categories of multi-person posture recognition methods: top-

down and bottom-up. In the top-down approach, the image is first processed by an object

detector to locate human bounding boxes. Then, the single-person posture recognition model

is performed on each detected bounding box to estimate key points. Finally, these key points

are connected to form the posture recognition results. Chen et al. [1] proposed the CPN (Cas-

caded Pyramid Network) method, which utilizes feature pyramids and RefineNet to recognize

key points. Fang et al. [2] introduced the RMPE (Regional Multi-person Pose Estimation)

method for posture recognition. Newell et al. [3] proposed the Hourglass network to combine

features at different scales. Sun et al. [4] introduced the HRNet (High-Resolution Network),

which uses high-resolution features for human posture recognition. On the other hand, bot-

tom-up methods are divided into key point detection and clustering. These approaches use

single-person posture recognition algorithms to detect all key points in the image and then

cluster the keypoints of different individuals together to perform multi-person posture recog-

nition. Typical representatives of this category include OpenPose [5], Deepcut [6], HigherHR-

Net [7], and Pifpaf [8].

Each of these two categories has its own advantages and disadvantages. Top-down methods

break down posture recognition into two steps: object detection and single-person posture rec-

ognition, which results in higher accuracy due to relying on robust object detection and pos-

ture recognition algorithms. However, they are sensitive to the quality of object detection

bounding boxes, and even state-of-the-art (SOTA) object detectors may introduce errors in

terms of redundant bounding boxes, missed detections, or false positives. In contrast, bottom-

up methods are faster as they do not rely on object detectors for bounding box detection. How-

ever, they face challenges when aggregating key points in the presence of obstructions, and

when individuals are in close proximity, it can lead to ambiguities in clustering the key points,

resulting in lower posture recognition accuracy. In addition, existing human posture recogni-

tion methods primarily target traditional datasets with simple poses such as standing or walk-

ing. However, dance actions are complex, diverse, and highly continuous, often involving

strong obstructions, lighting changes, and variations in camera angles. These factors increase

the difficulty of accurately estimating dance actions using traditional methods.

To address these challenges, we propose a multi-person dance tiered posture recognition

with cross progressive multi-resolution representation integration, as shown in Fig 1. The

algorithm employs a top-down framework and begins with YOLOv8 for detecting dancers’

bounding boxes. To address the issue of rapidly changing scales in dance pose skeleton key

points, it uses HRNet as the backbone network and introduces a Cross Progressive Multi-reso-

lution Representation Integration (CPMRI) module. The CPMRI module fuses high and low-

level multi-scale features to improve the robustness of posture recognition in response to scale

variations. Furthermore, this paper addresses issues related to severe distortion and obstruc-

tion in dance poses by designing a Tiered Posture Recognition (TPR) module based on the

geometrical relations between key points, enabling tiered key point estimation for accurate

dancer key point positions. Finally, the proposed method’s effectiveness is verified on both

public and custom dance datasets.
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In the field of multi-person pose recognition, our contributions can be summarized as

follows:

1) Classification of multi-person pose recognition methods: In the related work section, we

have categorized existing multi-person pose recognition techniques into different classes,

including top-down, bottom-up, and other approaches. This classification provides a system-

atic overview that is valuable for researchers and practitioners in this domain.

2) Application of YOLOv8 for dance posture recognition: We have employed YOLOv8, a

state-of-the-art model known for its balance between accuracy and efficiency, as the human

detector within the top-down framework. This marks the first instance of YOLOv8 being used

specifically for dance posture recognition.

3) Development of CPMRI module: We propose the CPMRI module, a novel approach for

integrating multi-resolution features. This module fuses high-level semantic features with low-

level spatial details, resulting in enhanced feature representation for pose recognition.

4) Creation of TPR module: The TPR module is designed to enhance the recognition of

dancer’s body key points by considering the geometrical relations between them. This module

improves pose recognition accuracy through structured partitioning and matching processes.

5) Validation and performance improvement: The proposed method has been validated on

both open and custom datasets, using various evaluation metrics. The results show significant

improvements in the robustness and accuracy of multi-person dance pose recognition.

Fig 1. Multi-person dance tiered posture recognition with cross progressive multi-resolution representation

integration.

https://doi.org/10.1371/journal.pone.0300837.g001
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2. Related works

Human posture recognition is a fundamental component and a hot topic in computer vision

research, serving as the basis for tasks such as action recognition, human-computer interac-

tion, and pose tracking [9]. It involves locating and identifying key points or body parts on an

individual, focusing on the problem of finding body parts’ positions. By locating key points in

the skeletal model of the human body from images or videos, it enables pose analysis or the

search for specific postures or actions within the target object based on the relationships

between key points [10].

As a critical foundation of human posture recognition tasks, human body modeling signifi-

cantly influences the final outcome of posture recognition [11]. Human body models used in

posture recognition can be categorized into three types: silhouette-based, skeleton-based, and

volumetric-based. Silhouette-based and skeleton-based models are typically used in two-dimen-

sional human posture recognition tasks, while volumetric-based models are commonly

employed in three-dimensional human posture recognition tasks. Silhouette-based models pro-

vide coarse width and contour information of extremities and the torso and were widely used in

early posture recognition tasks. Skeleton-based human key point models represent the human

pose graphically, and the number of key points can be flexibly chosen based on the task and

dataset requirements. Common key point counts include 9, 14, 15, 16, 17, 18, 25, and 33.

Fig 2 shows 15-point, 18-point, and 25-point human body skeleton key point models, with

the 18-point model offering more refinement for head key points and the 25-point model

including further refinement for foot keypoints. Skeletal models include correlated key points

(such as right shoulder, right elbow, and right hand), where each coordinate corresponds to a

key point in the human skeleton. It’s worth noting that human body models for 2D and 3D

posture recognition have their own advantages and disadvantages. Volumetric-based models

can more accurately describe human pose and spatial location, while silhouette and skeleton-

based models have lower computational requirements and are suitable for scenarios with real-

time demands.

In response to the real-time requirements of practical applications, some methods have

emerged that project 3D human body models into 2D representations. These methods, such as

using character modeling and animation models to outline the human silhouette to express

non-rigid distortions of articulated limbs [12], or projecting character models and animation

Fig 2. Human skeleton keypoints model. (a) 15 key points. (b) 18 key points. (c) 25 key points.

https://doi.org/10.1371/journal.pone.0300837.g002
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models into 2D-constructed outlines that can be further trained as deformable structures [13],

have advanced the development of 2D human pose recognition.

Traditional posture recognition methods can be divided into two stages: object detection

and pose recognition. In the object detection stage, methods based on segmentation and

matching, gradient information, or statistical learning are typically used. However, these meth-

ods face challenges in separating the object from the background in complex scenes, are sus-

ceptible to the influence of prior information, and require significant time and effort to

construct training sample libraries and classifiers [14]. In the pose estimation stage, both

model-based and non-model-based methods are commonly employed, but they often encoun-

ter issues such as the propagation of errors from the object detection stage, heavy reliance on

artificially imposed constraints, and low efficiency [15].

In recent years, deep learning-based methods for human posture recognition have been

proposed, greatly alleviating the drawbacks of traditional methods, which relied heavily on

manually annotated features and had low accuracy [16]. Through algorithm and network

model improvements, deep learning-based human posture recognition methods have demon-

strated increasingly promising experimental results and have gradually become the main-

stream approach in this field.

Compared to single-person posture recognition, multi-person posture recognition faces

additional challenges, including issues related to the correct detection of key points due to

crowded and occluded scenes and the difficulty in establishing effective connections between

correlated key points [17]. Multi-person posture recognition aims to recognize and locate key

points for all individuals in an image, making it a fundamental research topic for various visual

applications such as human action recognition and human-computer interaction.

The models for multi-person posture recognition can be categorized into top-down, bot-

tom-up, and a few other methods that do not belong to these two categories. Top-down meth-

ods first locate individuals using detectors and then predict key point positions using single-

person pose estimation methods. Bottom-up methods first identify identity-agnostic semantic

entities (consisting of individual key points and body part segmentation labels) and then

group them into human instances. Generally, top-down networks offer higher precision, while

bottom-up networks provide better real-time performance. The multi-person posture recogni-

tion process is illustrated in Fig 3.

2.1 Top-down methods

In the top-down pipeline as shown in Fig 3(A), it consists of a detector and a single-person

posture recognizer. These components are responsible for acquiring human bounding boxes

and predicting the key point positions within those boxes. Several works have focused on the

design and improvement of modules within the posture recognition network. Xiao et al. [18]

introduced a simple and effective structure into the ResNet backbone network, adding decon-

volution layers to generate high-resolution heatmaps. To better locate key point positions,

Wang et al. [19] introduced a two-stage model based on graphs, known as Graph-PCNN. It

includes a localization subnetwork for obtaining rough key point positions and a graphical

pose refinement module for precise key point localization. Cai et al. [20] introduced a multi-

level network with Residual Step Networks (RSN) modules for learning fine local representa-

tions through effective internal feature fusion strategies. In situations with multiple people in a

single image, body part obstruction and overlap inevitably occur. Therefore, in the top-down

methods, human detection and identification have become challenging. To address this, Iqbal

et al. [21] constructed a joint detector based on Faster R-CNN to estimate joint candidates.

They constructed a fully connected graph of candidate key points detected in the image, then
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used integer linear programming to solve the association problem between joints and individ-

uals, even in cases of severe obstruction. Papandreou et al. [22] proposed a two-stage architec-

ture, featuring a faster R-CNN human detector to create bounding boxes for candidate

individuals and a key point estimator that predicts key point positions using a form of heatmap

offset aggregation. This method performs well in scenarios with obstruction and clutter. To

mitigate obstruction issues, Chen et al. [1] introduced a Cascaded Pyramid Network (CPN)

with two parts: GlobalNet (a feature pyramid network for predicting occluded key points) and

RefineNet (a network that combines features from all levels of GlobalNet with key point min-

ing losses). Experimental results show that CPN excels in predicting occluded key points. Su

et al. [23] designed two modules, the Channel Shuffle Module (CSM) and the Spatial Channel-

Wise Attention Residual Bottleneck (SCARB), to enhance channel-wise and spatial informa-

tion for improved multi-person posture recognition in occluded scenes. Qiu et al. [24] pro-

posed a novel OPEC network framework, introducing an image-guided progressive GCN

module that provides a comprehensive understanding of image context, contextual cues, and

pose structure, thereby estimating occluded joints from an inferential perspective. Rafi et al.

[25] introduced a key point correspondence framework that uses temporal information from

the previous frame in occluded scenarios to recover missing poses. They employed self-super-

vised training to enhance posture recognition results on sparsely annotated video datasets.

Sheu et al. [26] developed a novel approach tailored for single-person pose estimation and

action recognition. This framework is particularly well-suited for fitness and mobility applica-

tions. It starts with a base network that generates an initial pose estimate, which is then refined

through the Intensive Feature Consistency (IFC) network. The IFC network applies high-level

constraints to both global body intensity correction and local body part adjustments, focusing

on maintaining long-term consistency in joint movements. This approach significantly

enhances posture recognition accuracy, as demonstrated through improvements on bench-

mark datasets. The IFC network not only achieves high precision in keypoint localization but

also maintains real-time processing capability on CPU platforms, showcasing a notable

advancement in the field of posture recognition. Zhang et al. [27] employed a adversarial

method to incorporate prior knowledge of human pose configurations into the training

Fig 3. Multi-person posture recognition process. (a) Top-down. (b) Bottom-up.

https://doi.org/10.1371/journal.pone.0300837.g003
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process of their model. They utilized a hierarchy of fully convolutional networks, acting as a

discriminator, to differentiate between authentic and artificial poses. This innovative approach

encourages the pose estimation network to generate poses that are perceived by the discrimi-

nator as genuine. Such a strategy proves particularly effective in complex scenarios, where the

pose network is driven to produce estimations that even the discriminator cannot distinguish

from real poses. This methodology not only enhances the accuracy of pose estimation but also

addresses the challenge of discerning between real and fabricated pose data, a common obsta-

cle in the field of human pose estimation.

More recently, transformer-based approaches have gained attention because the attention

modules within transformers can capture long-range dependencies and global evidence for

predicting key points, making them more powerful than CNNs (Convolutional Neural Net-

works). An early example of a transformer-based 2D human posture recognition model is

TransPose, which uses attention layers to predict keypoints’ heatmaps and learns fine-grained

evidence for human posture recognition in occluded scenes. Following TransPose, many exist-

ing CNN-based methods have excelled in visual representations. However, they lack the ability

to explicitly learn the constraints between key points. Li et al. [28] developed a pure trans-

former model called TokenPose, which uses token representations to capture constraint clues

and visual appearance relationships. Through this approach, TokenPose can explicitly capture

appearance cues and constraint clues through self-attention interactions.

2.2 Bottom-up methods

Unlike the top-down method, the bottom-up method first involves the detection of human

key points, extracting local features, and predicting candidate body joints, as shown in Fig 3

(B). Subsequently, these joint candidates are grouped to build a pose representation using part

association strategies. Pishchulin et al. [6] introduced a body part detector called DeepCut,

based on Fast R-CNN. It combines labeled parts using Integer Linear Programming (ILP).

However, DeepCut is computationally expensive. To address this, Insafutdinov et al. [29]

introduced DeeperCut, a robust body part detector that introduced new image-conditioned

pairwise terms between body parts, along with an incremental optimization strategy to

improve speed and robustness. Later, Cao et al. [5] developed a detector named OpenPose,

which is based on the CPM network. It predicts all candidate key point information with Part

Affinity Fields (PAF), encoding limb positions and directions as 2D vector fields.

In the top-down approach, OpenPose improved detection speed to some extent. Osokin

et al. [30] optimized OpenPose further and introduced Lightweight OpenPose. It utilized

MobileNet v1 for feature extraction and reduced computational load through weight sharing.

To address the issue of inadequate receptive fields, they adopted an optimized algorithm using

dilated convolutions. Based on the OpenPose framework, Zhu et al. [31] improved the Open-

Pose structure by introducing a redundant PAF mechanism to address the shortcomings of

the original PAF and enhance connections between joints in PAF, resulting in better perfor-

mance than the baseline method. To enhance the performance of the OpenPose algorithm

under conditions of low resolution or incomplete target acquisition, Kreiss et al. [8] intro-

duced a method called PifPaf for multi-person posture recognition. This method uses Part

Intensity Fields (PIF) to predict body part positions and PAF to associate body parts to deter-

mine individual complete human poses and grouping. The compound PAF encodes fine-

grained information. In low-resolution and occluded scenes, this method outperforms previ-

ous OpenPose-based methods. Inspired by OpenPose, Newell et al. [32] introduced the con-

cept of associative embedding, a novel approach to training supervised CNNs for detection

and grouping tasks. The network simultaneously outputs detection and part assignments,
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making it embeddable in other network architectures. Following associative embedding, Jin

et al. [33] introduced a new method called differentiable Hierarchical Graph Grouping (HGG)

for learning graph grouping in a bottom-up multi-person posture recognition task.

Furthermore, HGG is easily embeddable into mainstream bottom-up methods. It takes

human key point candidates as graph nodes and clusters key points in a multi-level graph neu-

ral network model. HGG modules are trainable end-to-end through key point detection net-

works and can monitor the grouping process in a hierarchical manner. Based on associative

embedding and HRNet, Cheng et al. [7] introduced an extension of HRNet called High-Reso-

lution Network (HigherHRNet). It learns scale-aware representations through a high-resolu-

tion feature pyramid and performs multi-resolution supervised training. During inference,

HigherHRNet with multi-resolution heatmap aggregation effectively generates multi-resolu-

tion and higher-resolution heatmaps for more accurate human posture recognition. Yu et al.

[34] proposed LiteHRNet, an efficient high-resolution network for human posture recogni-

tion. It introduced a lightweight unit called conditional channel weighting to replace costly

pointwise (1×1) convolutions in the unordered block. Channel weighting has a linear com-

plexity relative to the number of channels and lower time complexity than pointwise

convolutions.

Bottom-up methods also incorporate multi-task structures. Papandreou et al. [35] intro-

duced PersonLab, which combines posture recognition modules with human segmentation

modules for key point detection and association. PersonLab comprises short-range offset (for

refining heatmaps), mid-range offset (for predicting keypoints), and long-range offset (for

grouping keypoints into instances). In addition, Kocabas et al. [36] proposed a multi-task

learning model with a pose residual network called MultiPoseNet, capable of performing key

point prediction, human detection, and semantic segmentation tasks.

Accurate regression of key point positions requires learning representations that focus on

key point areas. Geng et al. [37] introduced a simple and effective method called decoupled

key point regression. It employs adaptive convolutions via pixel-wise spatial transformers to

activate pixels within key point regions and learn representations accordingly. Heatmap

regression is a prevalent choice in today’s human posture recognition methods. Ground-truth

heatmaps are typically constructed by covering all skeletal keypoints with 2D Gaussian kernels.

The standard deviation of these kernels is fixed. However, for bottom-up methods that need to

handle a wide range of human scale variations and label ambiguity, Luo et al. [38] introduced

scale-adaptive heatmap regression, which adaptively adjusts the standard deviation for each

keypoint. Due to high computational costs, it’s challenging to deploy state-of-the-art posture

recognition models on resource-constrained edge devices. The high-resolution branches of

HRNet are redundant for modes with low computation areas, and they can be removed to

improve efficiency and performance. Inspired by this discovery, Wang et al. [39] designed

LitePose, an efficient single-branch architecture for posture recognition and introduced two

simple methods to enhance LitePose’s capability, including fusing deconvolution heads and

large-kernel convolutions. Large-kernel convolutions significantly improve model capacity

and receptive field, while maintaining lower computational costs. Li et al. [40] proposed the

MRNet, focusing on the challenge posed by occlusion in monocular image-based posture rec-

ognition. This method introduces the concept of an occlusion level for human body parts, cal-

culated based on the occlusion ratio and orientation of these parts. To adapt to different levels

of visibility, MRNet establishes specific part detectors for each body part relative to its occlu-

sion level. This innovation allows for improved accuracy in posture recognition by effectively

addressing the common issue of body part occlusion in single-camera images. Cheng et al.

[41] introduced a dual anatomical approach to address the challenge of scale variation in

human pose estimation, particularly for small-scale individuals. Firstly, they propose multi-
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scale training as a means to enhance the network’s ability to handle variations in scale, coupled

with single-scale testing to specifically improve performance on small-scale persons. Secondly,

they innovated by introducing the concept of dual anatomical centers, focusing on the head

and body as pivotal points for prediction. This allows for more accurate and reliable human

pose predictions, especially beneficial for small-scale persons. This dual-pronged strategy

marks a significant advancement in the field, providing a robust solution to the perennial issue

of scale variation in human pose estimation tasks.

2.3 Other methods

In the realm of multi-person posture recognition, there exist a few methods that do not fit

neatly into either the top-down or bottom-up categories. These methods can be categorized

based on their characteristics into single-stage networks, top-down and bottom-up hybrid net-

works, and generative adversarial posture recognition networks. This section provides an

introduction to some of these approaches, namely the Single-Stage Multi-Person Pose

Machine (SPM), the typical hybrid network Hourglass, Deeply Learned Compositional Models

(DLCM), and Generative Partition Networks (GPN).

SPM [42]: Addressing the resource-intensive and non-real-time nature of two-stage meth-

ods, SPM introduced a single-stage solution to human posture recognition. It offers a trade-off

between speed and precision when compared to two-stage methods. SPM employs Structured

Pose Representation (SPR) to link body position information with corresponding key point

information. SPR encodes key point locations by considering robust and critical key points as

central points. To tackle the long-distance offset issue between key points and central points

caused by significant body actions, a layered SPR model is used. Additionally, the layered SPR

model uses the short-distance positional information between closely located key points in

adjacent layers to identify key point locations.

Single-stage and multi-stage bottom-up methods each have their advantages and draw-

backs. Single-stage methods harness the end-to-end network’s ability to map input images to

human poses, offering faster computation speeds compared to multi-stage methods. In con-

trast, multi-stage networks predict human poses in multiple stages and introduce intermediate

supervision to address gradient vanishing issues, resulting in higher precision compared to

single-stage methods.

2) Hourglass [3]: This method aims to address the challenge of processing and integrating

features at all scales for capturing various spatial relationships related to the body. Hourglass

proposes stacking multiple Hourglass modules with skip connections to form the network

architecture. It employs plug-and-play supervision, which effectively conducts a bottom-up

operation on the target individual before proceeding with the top-down operation. The bot-

tom-up process downsizes the image from high resolution to low resolution, and the top-

down process restores the image from low resolution to high resolution by combining features

at multiple resolutions. It’s important to note that Hourglass is primarily used for single-per-

son posture recognition, and for multi-person tasks, multiple instances of the image need to be

cropped to ensure that the target individuals are centered in the images.

3) DLCM [43]: DLCM improves upon existing compositional models by utilizing Hour-

glass to obtain paired key point pose predictions. It offers a two-stage processing approach

with top-down inference and bottom-up refinement, better describing complex compositional

relationships between different body parts. DLCM is capable of resolving ambiguities present

in bottom-up pose predictions, resulting in more precise posture recognitions.

4) GPN [44]: GPN addresses the issues of high complexity, low joint detection and recom-

bination accuracy in previous multi-person posture recognition methods. It introduces a new
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generative partition strategy, creating partitions for multiple nodes from global candidate

nodes and simultaneously inferring the joint positions for specific instances. GPN employs

Hourglass as its backbone network and uses a joint detector and dense regressor for posture

recognition. The joint detector sequentially examines all human entities in the input data,

resulting in lower joint detection complexity and robustness against early detection errors

compared to the top-down approach. The dense regressor produces human detection with key

point partitions. GPN exhibits robustness against obstruction, overlap, distortion, and signifi-

cant motion variations, and it offers notable advantages in terms of precision and speed in pos-

ture recognition.

5) Hybrid Parallel Network (HPnet) [45]: This hybrid model combines convolutional and

transformer models to address the limitations of existing hybrid human posture recognition

models, which often suffer from mutual conflicts between sequential self-attention and convo-

lution modules. By parallelizing these modules, HPnet effectively leverages their complemen-

tary capabilities. The self-attention branch models long-range dependencies to enhance

semantic representation, while the convolution branch focuses on high-precision localization.

Additionally, a cross-branches attention module is introduced to further mitigate conflicts and

synchronize features across both branches. HPnet shows remarkable performance on COCO

validation and test-dev sets, achieving both high-precision keypoint localization and consistent

overall performance, placing it on par with state-of-the-art human posture recognition

models.

3. Materials and methods

In this paper, we introduce a novel multi-person dance posture recognition system that inte-

grates cross progressive multi-resolution representations, as depicted in Fig 1. The system uti-

lizes a top-down approach, commencing with the YOLOv8 algorithm for detecting dancers’

bounding boxes. To tackle the challenge of varying scales in dance pose skeletons, HRNet is

employed as the backbone network, complemented by the CPMRI module. This module effec-

tively fuses high and low-level multi-scale features, enhancing the robustness of posture recog-

nition against scale variations. Additionally, the TPR module is introduced to address the

issues of severe distortion and obstruction in dance poses. The TPR module, grounded in the

geometrical relationships between key points, facilitates tiered key point estimation, thereby

ensuring accurate localization of dancer key points. The following sections will provide a

detailed introduction.

3.1 human body bounding box detection using YOLOV8

In this paper, an end-to-end algorithm is employed for human body detection, i.e., it utilizes

the YOLOv8 detector [46] to extract bounding boxes around the dancers’ bodies. RGB images

are fed into the YOLOv8 model to obtain corresponding bounding boxes for human body pos-

ture recognition.

The YOLOv8 model, released by Ultralytics in 2023, represents the latest model in the

YOLO series. It is a one-stage object detection method designed to efficiently locate and iden-

tify objects in images. Object detection methods are primarily categorized into two types: two-

stage detection methods, with Faster R-CNN [47] as a representative, and one-stage detection

methods, with the YOLO series as an example. Two-stage detection algorithms involve two

steps: the first step generates candidate boxes that may contain objects, followed by confidence

analysis for each candidate box to select the best ones, and finally, classification and regression

prediction for each candidate box. On the other hand, one-stage detection methods utilize

CNNs to directly extract image features, generate feature vector maps, and then directly
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produce all anchor boxes for classification and regression prediction. Consequently, one-stage

detection methods offer faster detection speeds and are more suitable for real-time

applications.

A key feature of YOLOv8 is its scalability. It is designed as a framework that supports all

previous versions of YOLO, making it easy to switch between different versions and compare

their performance. Apart from scalability, YOLOv8 incorporates several innovations that

make it widely applicable to object detection and image segmentation tasks, including a new

backbone network, new anchor-free network detection heads, and new loss functions.

YOLOv8 is also highly efficient, capable of running on both CPUs and GPUs. The backbone of

YOLOv8 is similar to YOLOv5, based on the CSP (Cross-Stage-Partial) concept, replacing the

C3 module with the C2f module. The C2f module combines C3 and ELAN, following the

approach introduced in YOLOv7. This modification allows YOLOv8 to obtain richer gradient

flow information while keeping its overall lightweight design. At the end of the backbone, it

still employs the popular SPPF (Spatial Pyramid Pooling Fast) module, which passes through

three 5x5 Maxpools in sequence and concatenates each layer. This ensures both accuracy at

different scales and lightweight object detection. In the neck section, YOLOv8 continues to use

the PAN-FPN (Path Aggregation Network-Feature Pyramid Network) feature fusion method

to enhance the fusion and utilization of information from different-scale feature layers.

YOLOv8’s architecture employs two upsampling layers, multiple C2f modules, and a final

decoupled head structure to form the neck module. The idea of head decoupling introduced in

YOLOx [48] is utilized for the final part of the neck section. It combines confidence and

regression boxes, achieving a new level of accuracy. For positive and negative sample alloca-

tion, the YOLOv8 method employs the TOOD (Task-Agnostic Object Detection) task-aligned

allocator, which selects positive samples based on the weighted scores of classification and

regression. The network architecture of YOLOv8 is depicted in Fig 4, and the detailed parame-

ter settings as show in Table 1.

3.2 Cross Progressive Multi-Resolution Representation Integration

(CPMRI) model

As the posture recognition task involves pixel-wise key point estimation, it is essential to utilize

both low-level and high-level features for locating key points at various scales. High-level fea-

tures are beneficial for locating key points at larger scales, while low-level features are crucial

for accurately estimating key points at smaller scales. To address the challenge of significant

scale variations in dance motion skeleton joints, we introduce a cross progressive multi-resolu-

tion representation integration model to enhance the robustness of posture recognition against

scale variations.

3.2.1. HRNet. This paper adopts the HRNet [4] as the backbone network, as illustrated in

Fig 5. The HRNet consists of four parallel sub-networks, with each sub-network following the

Fig 4. YOLOv8.

https://doi.org/10.1371/journal.pone.0300837.g004

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0300837 June 13, 2024 11 / 25

https://doi.org/10.1371/journal.pone.0300837.g004
https://doi.org/10.1371/journal.pone.0300837


Table 1. Detailed parameter settings of used YOLOV8.

Layers From N Module Arguments

0 -1 1 Conv [64,3,2]

1 -1 1 Conv [128,3,2]

2 -1 3 C2f [128,True]

3 -1 1 Conv [256,3,2]

4 -1 6 C2f [256,True]

5 -1 1 Conv [512,3,2]

6 -1 6 C2f [512,True]

7 -1 1 Conv [1024,3,2]

8 -1 3 C2f [1024,True]

9 -1 1 SPFF [1024,5]

10 -1 1 Upsample [‘None’,2,‘nearest’]

11 [–1,6] 1 Concat [1]

12 -1 3 C2f [512]

13 -1 1 Upsample [‘None’,2,‘nearest’]

14 [–1,4] 1 Concat [1]

15 -1 3 C2f [256]

16 -1 1 Conv [256,3,2]

17 [–1,12] 1 Concat [1]

18 -1 3 C2f [512]

19 -1 1 Conv [512,3,2]

20 [–1,9] 1 Concat [1]

21 -1 3 C2f [1024]

22 [15,18,21] 1 Detect [1]

https://doi.org/10.1371/journal.pone.0300837.t001

Fig 5. HRNET model.

https://doi.org/10.1371/journal.pone.0300837.g005
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ResNet module design principles, comprising four residual units. The HRNet network excels

at extracting multi-resolution features from input images, offering strong representation capa-

bilities. It has achieved remarkable results in various tasks, including object detection, recogni-

tion, image segmentation, and human key point estimation. However, in the context of

human key point estimation, HRNet does not fully leverage the multi-resolution features it

extracts. It only employs the high-resolution features for estimating key point heatmaps and

discards the other middle and low-resolution features, resulting in information loss during the

feature representation process and impacting the accuracy of key point estimation. Therefore,

to address the aforementioned issue, this paper proposes constructing a CPMRI module to

enhance the feature representation capabilities in posture recognition.

3.2.2. CPMRI module. In feature representation, low-resolution high-level features con-

tain rich semantic information but relatively coarse positional information, while high-resolu-

tion low-level features, although weaker in semantic content, provide accurate positional

information. Therefore, this paper proposes a CPMRI module to sequentially fuse high and

low-resolution features, enhancing the network’s feature representation capability. As shown

in Fig 6, the proposed CPMRI method processes the four different resolution feature maps

output by the last aggregation unit of the HRNet network using convolution, interpolation,

and deconvolution operations from high-resolution to low-resolution in a cross progressive

manner.

In this paper, the four feature maps output by the last aggregation unit of the HRNet net-

work are used as the input features X = (X1,X2,. . .Xm) for the CPMRI module, where m repre-

sents the number of corresponding resolutions of the input features (in this paper, m = 4). The

HRNet-W32 backbone network is employed, with channel numbers of multi-resolution fea-

tures in its four parallel sub-networks being 32, 6, 4, 128, and 256, respectively. For any feature

of the i-th resolution, a 3×3 convolution operation is first performed, followed by interpolation

and deconvolution operations to upsample the i-th resolution feature Xi−1 to the modified (i-
1)-th resolution feature X̂ i� 1:

X̂ i� 1 ¼ IntðconvðXiÞÞ þ DecðconvðXiÞÞ ð1Þ

In which, conv represents convolution operation, Int and Dec represent interpolation and

deconvolution operations.

Fig 6. CPMRI module.

https://doi.org/10.1371/journal.pone.0300837.g006
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Next, the modified (i-1)-th resolution feature X̂ i� 1 obtained through upsampling is

concatenated with the (i-1)-th resolution feature Xi−1, resulting in the fused (i-1)-th resolution

representation �X i� 1:

�X i� 1 ¼ concatðX̂ i� 1;Xi� 1Þ ð2Þ

Where concat denotes feature concatenation of X̂ i� 1 and Xi−1.

3.3 Tiered Posture Recognition (TPR) module using joint geometric

relationships

Given the significant distortions and severe obstructions in dance postures, this paper utilizes

the skeleton joints estimated in previous section to predict the joints. By analyzing the geomet-

rical relations between the joints, a TPR module is constructed for multi-level joint estimation,

enhancing the accuracy of dancer’s body joint posture recognition.

To begin with, based on the human body structure, the joints estimated in in previous sec-

tion are categorized into two types: the first type includes torso joints (jtorso) that connect dif-

ferent parts of the body with small distortions, such as shoulders, hips, and neck. The second

type comprises extremity joints (jextremity) with noticeable distortions, including wrist, elbow,

knee, and ankle joints. Subsequently, considering these two types of joints, the TPR model is

designed to aggregate all body joints into five parts, namely neck, left shoulder, right shoulder,

left hip, and right hip, as shown in Fig 7. These parts are used for joint prediction based on

geometrical relations.

As depicted in Fig 1, the designed cross progressive network consists of three tiers.

In the first tier, the CPMRI module designed in previous section predicts heatmaps for all

body joints and calculates the corresponding coordinate positions.

Subsequently, the heatmaps obtained in the first tier serve as input for the second tier of the

network. Given the characteristics of the relatively stable distortions of torso joints and the sig-

nificant distortions of extremity joints, the CPMRI module is used to predict the torso joints,

jtorso, primarily. This further divides body joints into five parts mainly led by torso joints, also

known as five classes (neck, left shoulder, right shoulder, left hip, right hip).

The third tier of the network is constructed by taking all the joints from the first tier and

the predicted five classes of torso joints from the tier stage as input. Simultaneously, consider-

ing the geometric correlations of the human body’s structure, the network assigns all body

joints to the five classes of torso joints based on intra-class relationships, thus establishing con-

nections between extremity joints and torso joints.

Since each category of torso joint can have multiple candidate extremity joints connected to

it, and likewise, each extremity joint can potentially be connected to any category of torso

joint. Therefore, for any given category of torso joint and extremity joint, let N1 and N2 be the

sets of candidate nodes for torso joint jtorso
1

and extremity joint jextremity
2 in part-c, respectively.

The optimal matching problem for all candidate node intra-category connections can be

defined as:

Zc ¼ fz
m;n
j1 ;j2 : j1; j2 2 f1; 2; . . .; Jg;m 2 f1; 2; . . .;N1g;

n 2 f1; 2; . . .;N2g; c 2 f1; 2; . . .; 5gg
ð3Þ

For any pair of connected joints (j1, j2), the problem of matching the connections between

joints is transformed into a bipartite graph matching subproblem, as per the shared common

node approach in the graphical model [49]. By solving the optimal matching problem for all

intra-category candidate joint connection sets, the optimal connection between torso joints
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and extremity joints is obtained, represented as:

zj1 ;j2 ¼ maxEmnz
m;n
j1 ;j2

ð4Þ

s:t:
X

N1

zm;nj1 ;j2
� 1;

X

N2

zm;nj1 ;j2
� 1 ð5Þ

In which, Emn is computed using the Part Affinity Fields for Part Association method [5] to

calculate the association probabilities between the joints.

Finally, the optimal matches connecting all torso joints and extremity joints form the final

estimation of the body’s posture.

3.4 Tiered loss function

Our tiered loss function consists of three components: the difference between all estimated key

points from the first tier of the network and the ground truth, the difference between the esti-

mated torso joints from the second tier of the network and the ground truth, and the differ-

ence between the estimated extremity joints from the third tier of the network and the ground

Fig 7. Geometrically-based keypoint segmentation.

https://doi.org/10.1371/journal.pone.0300837.g007
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truth. As shown in (6):

Tier loss ¼
1

3m0n0
Xn0

i¼1

Xm0

k¼1

ðjjHðjikÞ � GTðjikÞjj
2
þ jjHðjtorsoik Þ � GTðjtorsoik Þjj

2
þ jjHðjextremity

ik Þ

� GTðjextremity
ik Þjj

2
Þ ð6Þ

In which, n’ represents the number of training samples, and m’ represents the number of key

points. H(jik) represents the heatmap for the j-th key point of the i-th sample in the prediction,

with the corresponding ground truth denoted as GT(jik).

4. Experiments and results

4.1 Dataset

To validate the effectiveness of the proposed method, the experiments conducted in this study

include comparative analysis of single-person and multi-person dance posture recognition on

both the publicly available MSCOCO2017 dataset [50] and the dance dataset (comprising cus-

tom dance data and dance data downloaded from the internet). The MSCOCO2017 dataset

consists of 57,000 training data samples (COCO train2017), 5,000 validation data samples

(COCO val2017), and 20,000 test data samples (COCO test-dev2017). The custom dance data-

set comprises 20,000 dance posture samples, with 10,000 allocated for training and 10,000 for

testing purposes.

4.2 Evaluation metrics

To evaluate the effectiveness of the proposed method, we employ the OKS (Object Keypoint

Similarity)-based Average Precision (AP), mean Average Precision (mAP), and Average Recall

(AR) as evaluation metrics.

1) OKS: In the task of human key point evaluation, precision of the key points obtained by

the network is not calculated solely based on Euclidean distance. It incorporates new scale

information during calculation, resulting in a distance between two key points based on the

calculation results. The specific calculation of the OKS metric is as follows:

OKSp ¼

X

i
expf� d2

pi
=2S2

ps
2

i gdðvpi > 0Þ
X

i
dðvpi > 0Þ

ð7Þ

Where, p represents the id of a person in the ground truth, pi represents the i-th key point of

the p-th person, dpi represents the Euclidean distance between the detected key point i and the

i-th key point of the p-th person in the correct annotations, Sp represents the scale factor of the

p-th person in the correct annotations, σi represents the normalization factor of the i-th key-

point, vpi represents the visibility of the keypoint. vpi = 1 indicates that the key point is visible

and labeled, while vpi = 2 indicates that the key point is occluded but labeled.

2) AP: In the posture recognition task, both the AP and mAP metrics are calculated based

on the OKS metric. For single-person recognition, the AP is calculated as follows:

AP ¼

X

p
dðOKSp > TÞ
X

p
1

ð8Þ

If a threshold value T is given, the calculated result can be obtained through the OKS of all

images. For multi-person top-down recognition, the AP calculation remains the same as that

of single-person recognition, while for multi-person bottom-up recognition, the AP is
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calculated as follows:

AP ¼

X

m

X

p
dðOKSp > TÞ

X

m

X

p
1

ð9Þ

In calculation, M represents the number of persons in a given image, and N represents the

number of persons predicted. As there is no one-to-one correspondence between the predicted

N persons and the correct M persons, we need to calculate the OKS of each person in the cor-

rect annotations with the OKS of the N predicted persons. This results in an M×N matrix

where each row takes the maximum OKS value as the current OKS. Finally, for each person,

there is a scalar OKS, and by setting a threshold T, the AP is calculated for all persons in all

images.

AP50 and AP75 represent the AP obtained at intersection over union (IoU) thresholds of

0.50 and 0.75, respectively. APM and APL represent the AP obtained for medium-sized and

large-sized targets. Medium-sized targets refer to those with an area greater than 322 but less

than 962, while large-sized targets have an area greater than 962.

3) mAP: mAP is another common metric in human posture recognition. It involves obtain-

ing multiple AP metrics by varying the manually set threshold T and then calculating the aver-

age of these AP values.

4) AR: For a specific dataset, the AR metric is calculated as:

AR ¼
TP

TPþ FN
ð10Þ

In which, TP (true positive) represents the correctly estimated samples, and FN (false negative)

represents the samples that were missed in the estimation, which were actually correct. AP and

AR are also known as precision and recall, and in the same dataset, AP and AR complement

each other. Higher AR values indicate lower FN, meaning fewer missed correct samples and

higher recall.

4.3 Experiment settings

The experiments in this paper were conducted on a server with Ubuntu 18.04 and four NVI-

DIA 2080Ti GPUs. The experiments utilized the Python programming language and the Ten-

sorflow deep learning framework. The HRNet-W32 network was chosen as the backbone

network, and input images were resized to 256×192. Image augmentation techniques were

applied, including random flips, rotations within ±45 degrees, and scale variations within

±35%. The network was optimized using the Adam method, with an initial learning rate of

0.001. The learning rate was decayed to 0.00001 between the 100-th and 130-th epochs, and

the network was trained for a total of 210 epochs.

To evaluate the proposed dance posture recognition method, it was compared to several

SOTA human pose estimation algorithms, including five top-down approaches (CPN, Simple-

Baseline, Mask-RCNN, RMPE, HRNet) and four bottom-up approaches (OpenPose, PifPaf,

Hourglass, HigherHRNet), they are described in detail in the related work section.

4.4 Ablation experiments

To better analyze the model we designed and reveal the performance of each component, we

systematically dissect the different parts of the method and perform comparative experiments

with the whole method. By removing individual modules from the overall method and
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conducting experiments comparing them to the method without those modules, we can assess

the impact of each module on pose estimation.

Table 2 presents the results of these ablation experiments and highlights the impact of two

crucial components of the proposed network: (1) CPMRI module and (2) TPR.

As shown in Table 2, when both important components of the proposed model are used

together (i.e., Model δ), the method achieves the highest mAP value. It results in a 1.83%

(76.29–74.46) mAP improvement in key point localization accuracy compared to the HRNet-

W32 baseline heatmap regression model. In the ablation experiments, Model β and Model γ,

which only add the proposed CPMRI and TPR modules on top of the HRNet-W32 model,

respectively, achieve mAP improvements of 0.75% (75.21–74.46) and 1.3% (75.76–74.46).

From Table 2, it is evident that the CPMRI module in Model β enhances multi-scale feature

representation by fusing the multi-resolution features from the HRNet network in a cross pro-

gressive way, which benefits key point estimation. Model γ incorporates the TPR module,

which designs a three-tier tiered network model based on the geometrical relations between

key points. This flexible approach handles different categories of torso and extremity key

points, solves the optimal matching problem of candidate key points connections within cate-

gories, and improves posture recognition accuracy by reasoning about occluded keypoints.

Figs 8 and 9 respectively show the training and testing curves of different ablation models.

It can be observed that the overall convergence speed follows the order of δ> γ> β> α, align-

ing with the mAP ranking presented in Table 2. Notably, the testing loss curves of models α, β,

and γ initially decrease and then exhibit a slight increase, suggesting the possibility of over-fit-

ting. This implies that these models may perform too well on the training data, to the extent of

learning noise and non-representative features, thereby diminishing their generalization abil-

ity on unseen test data. In contrast, our comprehensive model δ demonstrates a consistent

downward trend in both training and testing loss curves, indicating the proposed model’s

robust generalization capability.

4.5 Contrast experiments

4.5.1. MSCOCO2017 dataset. We first conducted a multi-person posture recognition

analysis on the COCO test-dev 2017 dataset, comparing the proposed method with nine main-

stream methods. To ensure a fair comparison with other methods, we utilized the object detec-

tor mentioned in [2] to extract human bounding boxes from the COCO dataset. After

obtaining these human detection boxes, we performed human posture recognition using the

proposed method. The experimental results are presented in Table 3, and visualizations of our

method’s results on the COCO test-dev 2017 dataset are shown in Fig 10.

From Table 3, we can observe that the proposed method achieved a 75.7 AP on the COCO

test-dev 2017 dataset when the input image size was set to 256 × 192, with HRNet-W32 as the

backbone network. In comparison, the single HRNet-W32 achieved a 74.4 AP, SimpleBaseline

achieved 73.7 AP, and Mask-RCNN achieved 63.1 AP. As shown in Table 3, the proposed

method outperformed five bottom-up methods, surpassing Openpose, Hourglass, Pifpaf,

Table 2. The results of the ablation experiments.

Models α β γ δ

Backbone √ √ √ √
CPMRI × √ × √

TPR × × √ √
mAP(%) 74.46 75.21 75.76 76.29

https://doi.org/10.1371/journal.pone.0300837.t002
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HigherHRNet-W48, and MRNet by 13.9, 10.2, 9, 5.2, and 2.7 points in terms of AP,

Fig 8. The training curve of the different ablation models.

https://doi.org/10.1371/journal.pone.0300837.g008

Fig 9. The testing curve of the different ablation models.

https://doi.org/10.1371/journal.pone.0300837.g009
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respectively. When compared to six top-down methods, the proposed method outperformed

Mask-RCNN, CPN, RM-PE, SimpleBaseline, HRNet-W32, and IFC by 12.6, 3.6, 3.4, 2.0, 1.3,

and 5.2 points in terms of AP, respectively. In summary, our method achieved favorable multi-

person posture recognition results across most evaluation metrics. This success can be attrib-

uted to our method’s focus on addressing issues related to variations in human body scale. We

introduced a cross progressive multi-resolution representation integration module to enhance

the method’s robustness to scale variations. Additionally, to tackle problems related to obstruc-

tion and pose distortions, we designed a tiered posture recognition module based on the geo-

metrical relations between key points, which improved the effectiveness of the posture

recognition algorithm. As a result, our method excels in scenarios with obstruction, significant

scale variations, and complex backgrounds, producing impressive posture recognition results,

as illustrated in Fig 10.

4.5.2.The custom dataset. To validate the universality of the proposed method, we con-

ducted human posture recognition on a self-built dance dataset. Since our custom dataset

Table 3. The results of the contarst experiments. Underlined denotes SOTA top-down approaches, italicized denotes SOTA bottom-up methods, and bold represents

the best result in each metric.

Models Backbone Input size AP AP50 AP75 APM APL AR

CPN ResNet-Inception 384 × 288 72.1 91.4 80 68.7 77.2 78.5

SimpleBaseline ResNet-152 384 × 288 73.7 91.9 81.1 70.3 80.0 79.0

Mask-RCNN ResNet-50-FPN N/A 63.1 87.3 68.7 57.8 71.4 N/A

RMPE PyraNet 320 ×256 72.3 89.2 79.1 68.0 78.6 N/A

HRNet HRNet-W32 256 × 192 74.4 90.5 81.9 70.8 81.0 81.4

IFC BlazePose 384 × 288 70.5 89.2 79.0 68.3 79.6 78.1

Adversarial method Hourglass-8 256 × 192 73.1 90.2 81.5 71.2 80.8 79.4

OpenPose N/A N/A 61.8 84.9 67.5 57.1 68.2 66.5

PifPaf N/A N/A 66.7 N/A N/A 62.4 72.9 N/A

Hourglass Hourglass 512× 512 65.5 86.8 72.3 60.6 72.6 70.2

HigherHRNet HRNet-W48 640× 640 70.5 89.3 77.2 66.6 75.8 74.9

MRNet MRNet 320× 320 73.0 90.1 80.4 70.6 80.0 78.8

Dual anatomical approach HRNet-W48 640× 640 72.4 88.5 79.1 68.4 79.8 75.3

Our method HRNet-W32 256 × 192 75.7 92.8 82.8 71.9 81.4 79.7

https://doi.org/10.1371/journal.pone.0300837.t003

Fig 10. Visualized results in the MSCOCO2017 dataset.

https://doi.org/10.1371/journal.pone.0300837.g010
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lacks ground truth annotations, quantitative comparisons with other methods were not feasi-

ble. Therefore, in this context, we relied on qualitative analysis. Some of the experimental

results are shown in Figs 11 and 12.

In Fig 11, we present visual results of our method on five distinct single and single-person

ethnic dance datasets, including Tibetan dance, Dai dance, Han ethnic Yangge dance, Mongo-

lian dance, and Uighur dance. These dance forms have unique characteristics, and our qualita-

tive analysis demonstrates the effectiveness of our method. Specifically, in the Tibetan dance,

the presence of long skirts worn by the dancers causes obstruction, making it challenging to

accurately locate leg joint positions, even for the human eye. Moreover, the sleeves worn by

the dancers further obscure arm and leg joints, increasing the difficulty of posture recognition.

In such scenarios, our method utilizes geometrical relations between body joints to solve the

bipartite graph matching problem through the tiered posture recognition module, thereby pre-

dicting occluded key point positions and obtaining more accurate results. In addition, Dai

dance exhibits severe pose distortions, self-obstruction, and attire-related obstruction, which

pose challenges for key point estimation. In the Han ethnic Yangge dance, as shown in Fig 11,

props such as fans significantly obstruct the estimation of dancer poses. Furthermore, rapid

actions by the dancers can result in motion blur, making posture recognition more challeng-

ing. In Mongolian dance, the poses of the dancers are severely affected by self-obstruction and

attire-related obstruction, making it difficult to accurately locate leg joint positions even for

human observers. Lastly, in Uighur dance, the effects of lighting, attire, rapid actions, and

complex dynamics make dancer key point estimation challenging.

In summary, our method is designed to address challenges such as complex and varied

dance actions and severe pose distortions. We have developed a cross progressive multi-resolu-

tion representation integration module to enhance the representation of posture recognition

Fig 11. Visualized single-person results in the custom dataset.

https://doi.org/10.1371/journal.pone.0300837.g011
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features. Simultaneously, we have conducted an analysis of the geometrical relations among

human body key points and designed a tiered posture recognition module to infer occluded

key points. As illustrated in Fig 11, the proposed method consistently demonstrates its effec-

tiveness in estimating dancer poses under challenging conditions, including scenarios with

obstructions, substantial pose distortions, issues caused by varying lighting conditions, and

rapid actions. This substantiates the efficacy of the approach presented in this paper.

Fig 12 displays partial visual results of our method on five multi-person ethnic dance data-

sets. Multi-person dance posture recognition poses a greater challenge than single-person pos-

ture recognition, as it involves issues like changes in dancer attire, complex backgrounds, self-

obstruction, variations in viewpoint, and the unknown number of people involved. Specifi-

cally, in the Tibetan dance dataset, issues include obstruction due to long skirts, changes in

camera viewpoints, and rapid actions, making it difficult to accurately locate the body key

points of multiple dancers simultaneously. The Dai dance dataset presents challenges due to

dim stage lighting, complex and varied dancer actions, dramatic changes in dancer poses,

attire-related interference, mutual obstruction among dancers, and self-obstruction. These fac-

tors significantly increase the difficulty of estimating key points for multiple dancers. In the

Han ethnic Yangge dance dataset, large variations in pose, complex and varied dancer actions,

and changes in camera viewpoints add to the complexity of posture recognition. The Mongo-

lian dance dataset exhibits significant variations in pose scale, severe obstruction, and attire-

related obstruction, further complicating key point estimation for multiple dancers. Lastly, the

Uighur dance dataset presents challenges related to severe attire-related obstruction, complex

changes in dance actions, and other dynamic variations in the poses of multiple dancers.

In summary, our posture recognition method has demonstrated promising results in both

standard human pose estimation datasets and self-built single and multi-person dance data-

sets. However, we acknowledge that this method primarily addresses common characteristics

of dance actions, such as complex and dynamic actions, strong pose continuity, and issues

related to obstruction. Our future research will delve deeper into the diverse characteristics of

dance actions specific to different ethnic groups.

Fig 12. Visualized multi-person results in the custom dataset.

https://doi.org/10.1371/journal.pone.0300837.g012
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5. Conclusion

The CPMRI and TPR modules introduced in this study have notably advanced multi-person

dance posture recognition. By integrating high-level and low-level representations through

cross progressive fusion and addressing distortions with tiered posture recognition, these

modules significantly improve the robustness and accuracy of recognition, especially in chal-

lenging real-world scenarios. This approach not only captures the nuances of human poses

effectively but also sets a foundation for future advancements. Building upon these successes,

future work will focus on enhancing dataset quality, incorporating temporal context in posture

recognition, developing lightweight models for broader application, and exploring the poten-

tial of unsupervised learning models. These directions promise to further elevate the field of

dance posture recognition, expanding its applicability and efficiency. Despite our method’s

significant advancements in multi-person dance posture recognition through cross progressive

multi-resolution representation integration, challenges persist, including enhancing dataset

quality for better model generalization, incorporating temporal information for comprehen-

sive 2D posture analysis, developing lightweight models for edge computing, and leveraging

unsupervised learning to improve adaptability and reduce dependency on annotated data.

Statement

This study involves the collection and analysis of a custom dance dataset comprising 20,000

dance samples, divided equally between training and testing purposes. We hereby confirm that

our methods of data collection and analysis are in full compliance with the terms and condi-

tions stipulated by the data source.
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