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Abstract

Multi-stage attacks are one of the most critical security threats in the current cyberspace. To

accurately identify multi-stage attacks, this paper proposes an anomaly-based multi-stage

attack detection method. It constructs a Multi-Stage Profile (MSP) by modeling the stable

system’s normal state to detect attack behaviors. Initially, the method employs Doc2Vec to

vectorize alert messages generated by the intrusion detection systems (IDS), extracting

profound inter-message correlations. Subsequently, Hidden Markov Models (HMM) are

employed to model the normal system state, constructing an MSP, with relevant HMM

parameters dynamically acquired via clustering algorithms. Finally, the detection of attacks

is achieved by determining the anomaly threshold through the generation probability (GP).

To evaluate the performance of the proposed method, experiments were conducted using

three public datasets and compared with three advanced multi-stage attack detection meth-

ods. The experimental results demonstrate that our method achieves an accuracy of over

99% and precision of 100% in multi-stage attack detection. This confirms the effectiveness

of our method in adapting to different attack scenarios and ultimately completing attack

detection.

Section 1: Introduction

In cyberspace, network attacks have consistently been one of the most pressing security con-

cerns. Intrusion Detection Systems (IDS) can mitigate this issue to a certain extent, but multi-

stage attacks (MSA) [1] remain highly destructive. MSA is a complex attack paradigm consist-

ing of multiple individual attack steps. Unlike single-step attacks, MSA often has well-defined

attack objectives (mostly high-value targets, such as core corporate assets) and results in sub-

stantial damage (as seen in the 2017 WannaCry incident). Advanced persistent threat (APT)

attacks are one of the prominent attack methods in this category [2].

IDS can provide alert information for individual steps within MSA, and this alert informa-

tion can be used for aggregation, inference, and prediction to counter the threats posed by

MSA. Analyzing MSA using IDS alert information has been a hot topic in recent years. Some

researchers have employed log correlation analysis methods to recreate MSA attack scenarios.
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The key lies in analyzing the cause-and-effect relationships between alert information before

and after, thus establishing the correlation between alert information [3, 4]. This approach aids

in reconstructing the complete attack path and attack scenario of MSA. Other researchers have

used machine learning and artificial intelligence methods to mine the knowledge embedded in

alert information and utilize this knowledge to detect, infer, and predict MSA. Algorithms

employed include Hidden Markov Model (HMM), Support Vector Machine, Decision Trees,

Bayesian Networks, and Deep Neural Networks, among others [5–10]. However, both of these

approaches have their limitations. Firstly, they depend on prior knowledge, i.e., knowledge of

known attack paradigms. For log correlation-based methods, prior knowledge is required to

extract and analyze the relationships between alert messages, and for learning-based methods,

prior knowledge is necessary to build models. Secondly, the information contained in alerts is

often protocol-specific, discrete, and low-level. These two shortcomings significantly impact

the detection capabilities of the models.

An example can better illustrate the aforementioned limitations. In the 2018 attack on the

global SWIFT system initiated by APT38 [11], attackers initially launched spear-phishing or

watering hole attacks to target specific objectives, completing the initial penetration. They then

moved laterally within the penetrated network, seeking opportunities to gain SWIFT system

terminal privileges, ultimately altering SWIFT transaction information to execute the attack,

as illustrated in Fig 1.

In this three-stage APT attack example, attackers do not strictly adhere to this sequence of

attack actions. For instance, attackers may, after laterally moving within the target network

(see③ in Fig 1) from the first victim (see② in Fig 1), return to the first step to identify new

victims (see① in Fig 1). Such deviations from known attack processes can introduce disrup-

tions to prior knowledge, thereby affecting the accuracy of correlation analysis and attack

detection.

To overcome the mentioned limitations, and drawing inspiration from [12–14], this paper

introduces an anomaly-based multi-stage attack detection method. In contrast to attack behav-

iors, the system’s normal behavior is inherently more stable and reliable. Therefore, leveraging

the concept of “staging,” we model the system’s normal behavior in stages without the need for

prior knowledge. Firstly, we process alert texts using the Doc2Vec method, transforming them

into alert vectors. Subsequently, conducting cluster analysis on alert vectors to segment the

system’s normal state into several stages. Following that, utilizing HMM algorithms to con-

struct the system’s Multi-Stage Profile (MSP) and utilizing MSP to determine whether the sys-

tem is under attack. Compared to previous methods, our approach can extract deep-seated

Fig 1. An example of an APT attack.

https://doi.org/10.1371/journal.pone.0300821.g001
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information from alerts, analyze the relationships between alert entries, and accomplish model

building without the need for prior knowledge using unsupervised clustering methods.

The main contributions of this paper are as follows:

• An original concept of Multi-Stage Profile (MSP) was introduced. Borrowing from the idea

of dividing attacks into multiple stages, the paper performs staged modeling of a system’s

normal state. This enhances the model’s adaptability and generalization to different network

environments and attack types, improving its overall adaptability and generalization.

• To accommodate various attack scenarios, a novel method for adaptive acquisition stages is

proposed. This method utilizes Doc2Vec to deeply extract information from alert messages,

preserving the interrelations between alerts more effectively. Subsequently, it clusters vector-

ized alert information, grouping semantically similar alerts into the same stage. This method

demonstrates adaptability to various attack scenarios.

• An original concept of Generating Probability (GP) is introduced, used to calculate the prob-

ability of an alert sequence occurring. We employ GP to establish anomaly thresholds,

enabling attack detection.

• Comparative experiments conducted on three different datasets (DARPA2000, ISC-

XIDS2012, CIC-IDS2017): Extensive experimental results illustrate that this method achieves

an accuracy of over 99% in detecting multi-stage attacks across various datasets, outperform-

ing the latest methods.

The remaining structure of this paper is organized as follows: Section 2 presents a literature

review related to multi-stage attack detection. In Section 3, we detail the design process of the

proposed anomaly-based multi-stage attack detection method. Section 4 includes an evalua-

tion of the model, including a comparison with the latest multi-stage attack detection methods.

Finally, Section 5 offers a summary of the paper.

Section 2: Related works

In recent years, various methods have been proposed to address issues related to multi-stage

attack detection, with Bayesian models and HMM being the primary approaches for detecting

multi-stage attacks. Ren et al. [15] introduced a multi-stage attack detection method based on

Bayesian models, which divides the detection process into two stages. Firstly, it employs Bayes-

ian networks to automatically extract correlations and constraints between alerts, testing dif-

ferent features to find the most accurate descriptors for attack stages. Then, based on the

selected features, it extracts attack scenarios from the alert stream. Marchetti et al. [16] pro-

posed the use of Bayesian models to calculate alert correlations, identify whether alerts belong

to the same attack scenario, and generate an alert correlation graph. However, these methods

reconstruct attack scenarios through alert correlations, requiring a significant amount of prior

knowledge and increasing the complexity of maintaining a secure system. Moreover, these

methods merely replicate attack scenarios and do not detect the stages at which attacks occur.

As early as 2003, HMM was employed to address the issue of MSA detection. HMM is a

dual stochastic process [17], and in the field of statistical machine learning, it is considered

one of the most suitable techniques for multi-stage attacks detection. The main reason for this

is its mathematically tractable form for analyzing input-output relationships and generating

transition probability matrices based on training datasets. D. Ourston et al. [18] utilized HMM

for detecting multi-stage attacks and compared it with two other classical machine learning

algorithms, decision trees, and neural networks. The results showed that HMM outperforms

decision trees and significantly surpasses neural networks in multi-stage attacks detection.
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Chen et al. [19] proposed the introduction of HMM in the cloud for attack sequence detection,

defining the detection of multi-stage attacks as a state-based classification model. Holgado

et al. [20] provided a more detailed introduction to how HMM can be applied to multi-stage

attacks. They defined states based on Common Vulnerabilities and Exposures (CVE) statistics,

combining multi-stage attack data with the CVE database. They explained how to construct

HMM using supervised and unsupervised learning methods, namely using the Baum-Welch

algorithm or statistical frequency methods to train model parameters. The Viterbi algorithm

and forward-backward algorithm can be used to determine the most likely attack stages. Surat-

kar et al. [21] introduced an HMM-based Host Intrusion Detection System (HIDS) model that

consists of an anomaly detection module built using Long Short-Term Memory (LSTM) and

multiple HMM modules for multi-stage attack detection. Due to the significant impact of

HMM parameters on detection performance, Chadza et al. [22] designed an effective detection

framework combining transfer learning and HMM. They trained HMM on labeled data and

transferred the learned parameters to new tasks. Unlike other discrete modeling techniques,

HMM excel in hidden states and transitions, thereby eliminating the need for complete infor-

mation before attack detection.

Furthermore, With the advancement of big data technology [23], some deep learning meth-

ods have been applied to multi-stage attack detection. Deep learning approaches can overcome

some limitations of traditional shallow machine learning, capturing deep-seated features

within the data [24], and enhancing detection performance [10]. Vinayakumar et al. [25]

introduced a deep learning framework for detecting zombie networks, which operates at the

application layer of DNS services. This framework works by distinguishing between normal

behavior and zombie network behavior. Sudheera et al. [26] conducted research on multi-

stage attacks and proposed a distributed multi-stage attack detection method. Their work

addressed the spatiotemporal challenges of zombie network attacks. They used alert-level and

pattern-level information as features and employed machine learning methods to identify vari-

ous attack stages within generated alerts. Xu et al. [27] designed an LSTM network based on

multiple feature layers. They introduced a stage feature layer to store and compute historical

data to identify different stages of multi-stage attacks with varying durations. Then, they used

a time series feature layer to link independent attack stages and analyze whether the current

data is within a certain attack cycle. However, these methods struggle to detect unknown attack

paradigms and have lower detection effectiveness for new attack behaviors.

In the method proposed in this paper, we leverage the relative stability of the system’s nor-

mal state to construct an MSP of the normal state. This MSP allows us to label alerts that do

not conform to the normal state as attacks, thereby achieving multi-stage attack detection. The

method introduced in this paper can directly build statistical detection models from the raw

data of alerts without the need for additional expert knowledge or specific attributes. Addition-

ally, it can detect the specific stages at which alerts occur, while also addressing the limitation

of traditional methods in detecting unknown attack paradigms.

Section 3: Anomaly based multi-stage attack detection method

3.1 Method model overview

The overall architecture of the method proposed in this paper, as shown in Fig 2, consists of

four steps: network data acquisition (phase 1), alert preprocessing (phase 2), establishment of

MSP (phase 3), and attack detection (phase 4).

Firstly, in phase 1, First, in Phase 1, we designed an automated data acquisition method to

obtain alert information from network traffic. Deployed IDS in the network continuously ana-

lyze traffic data captured from the network environment and generate alerts when suspicious
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packets are detected based on predefined rules. IDS may not detect complete multi-stage

attacks, but when attackers attempt to infiltrate through multiple attack stages, IDS may cap-

ture individual attack actions and issue corresponding alerts. In Phase 1, the system primarily

faced performance pressure stemming from IDS traffic analysis, and therefore, we adopted an

offline analysis strategy to avoid impacting the overall system performance.

However, it is worth noting that IDS systems generate a significant number of false posi-

tives. These alerts result from the inability of the alert generation rules to distinctly differentiate

between normal and malicious activities within the network, and thus, do not represent genu-

ine security threats [28]. Nevertheless, these non-attack stage alerts often carry information

about the system’s activity patterns, serving as a means to describe the system’s normal state.

Alerts generated by IDS are stored in the Alerts Database, which encompasses alert data from

the system’s normal state (referred to as non-attack stage alerts) and alert data from multi-

stage attack states (referred to as attack stage alerts in this paper).

In phase 2, we introduce a method for alert preprocessing with the goal of transforming the

text-style alert data generated in Phase 1 into data that can be used by machine learning algo-

rithms. Since HMM cannot directly process alert information, we convert the alert data from

the Alerts Database into vectors using the Doc2Vec algorithm. This allows us to extract deep-

seated information from the alerts and analyze the associations between alert entries for fur-

ther processing. The performance overhead in Phase 2 primarily stems from the training of

the Doc2Vec model. Therefore, similar to Phase 1, we adopt an offline training strategy in

Phase 2.

Then, the proposed MSP is constructed in Phase 3. We initially use a clustering approach to

automatically obtain the stage division of normal alert vectors, which is then mapped to hid-

den states in the HMM to complete the construction of MSP based on HMM. Training the

clustering model and HMM introduces a significant performance overhead in this phase.

Therefore, similar to previous phases, we also employ an offline training approach.

Finally, in Phase 4, we perform online detection of alert data using the constructed MSP.

The probability generated by the MSP is used as the basis for determining anomalies. This

probability is compared to a predefined threshold to decide whether the sequence is anoma-

lous. If it is, then the alert is marked as an attack stage alert. In contrast to Phases 1, 2, and 3,

the detection process in Phase 4 is conducted online, using the MSP model obtained in the off-

line training of Phase 3. Online detection is nearly real-time, and it imposes relatively low per-

formance overhead.

To provide a better understanding, we summarize the formula symbols and their descrip-

tions used in various stages of the model in Table 1.

Fig 2. Anomaly-based multi-stage attack detection framework.

https://doi.org/10.1371/journal.pone.0300821.g002
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3.2 Alert preprocessing

The semantic description of alerts can be seen as a sequence of statements, and if the context

of two alert descriptions is similar, it can be considered that they have similar semantics. In

multi-stage attacks, the attacker’s actions are intentional, and the alerts from attack stages also

exhibit certain characteristics. Similar attack methods result in similar alert information.

Therefore, by learning alert semantic representations from a large number of alert sequences,

it is possible to effectively represent alerts.

In order to extract the semantic description of alerts and use it for further computation, we

need to represent them in vectorized form. There are various methods for vectorizing semantic

descriptions, such as the Bag-of-Words model [29], One-hot Encoding [30], and others. How-

ever, these methods do not capture the relationships between words in the alert information,

and their sparse representation can lead to the curse of dimensionality. Word2Vec [31, 32]

addresses the dimensionality issue but loses sequence information by averaging word vectors.

When using Word2Vec to compute text similarity, keyword extraction algorithms may not

perform accurately. To address these issues, the alert preprocessing model proposed in this

paper utilizes the Doc2Vec model to transform alert descriptions into low-dimensional contin-

uous values, mapping semantically similar alert descriptions to nearby positions in the vector

space, thus extracting semantic knowledge from the alert descriptions.

The Doc2Vec model is capable of representing variable-length sentences, paragraphs, or

documents as fixed-length vectors. This model not only utilizes the semantic information of

Table 1. Symbol table.

Symbol Description

{a1, a2, . . ., an} Alarm sequence, where ai indicates the i-th alert in the sequence

w1, w2, . . ., wT The training term obtained from the alert sequence, T represents the number of

training words

argmax Mean logarithmic probability

log p(wt|wt−z, . . ., wt + z) Represents the probability of output wt−z, . . ., wt + z given the input sequence wt

W Word vector

D Paragraph vector, which represents the tag vector for each alert

h = contact(W, D) It is constructed by word vector and paragraph vector

U, b softmax parameters

yi The non-normalized logarithmic probability of the output word

S = {s1, s2, . . ., sN} A set of states, representing a cluster containing N different states, which are

represented as attack phases or clusters (represented as clusters in this article)

V = {v1, v2, . . ., vM} The observation set contains M different alerts

π = (πi = P(i1 = si)), i = 1,

2, . . ., N
Initial state probability vector

A state transition matrix

B Observation probability matrix

λ = (A, B, π) HMM model with parameters A,B,π
di Represents the number of states i in the sequence

Dt Represents the number of the entire sequence

K Number of clustering centers

dij The distance between the sample and the cluster center

E ERF error function

S(i) Average profile coefficient

stagei Indicates whether the alarm of the i sample is in the attack phase

https://doi.org/10.1371/journal.pone.0300821.t001
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words but also incorporates information about the context and sequence of words [33]. The

vectorization method used in this paper is based on the PV-DM (Distributed Memory Model

of Paragraph Vector) model, which is derived from the skip-gram model by adding paragraph

vectors. Specifically, given an alert sequence [a1, a2, . . ., an] and the training word W1, W2, . . .,

WT, the objective of the word vector model is to maximize the average log probability, as

described in Eq (1)

argmax ¼
1

T

XT� z

t¼z

log pðwtjwt� z; . . . ;wtþzÞ; ð1Þ

Where T represents the number of training words, z represents the window size, and log p(Wt|

Wt−z, . . ., Wt+z) represents the probability of output Wt given input sequence Wt−z, . . ., Wt+z,

where:

pðwtjwt� z; . . . ;wtþzÞ ¼
eywt
P

ieyi
; ð2Þ

Each yi is the unnormalized log probability of the output word, computed as:

y ¼ bþ Uhðwt� z; . . . ;wtþz;W;DÞ; ð3Þ

Where U and b are softmax parameters, and h is constructed jointly from word vectors W and

paragraph vectors D.

PV-DM has two key stages:

1. “Training Phase”: Training word vectors, weights, and paragraph vectors based on observed

alert information.

2. “Inference Phase”: Adding additional columns to the paragraph vectors and obtaining para-

graph vectors for new alert information while keeping the weights fixed using gradient

descent.

Fig 3 illustrates the process of transforming alert information into vectors. Firstly, the alert

information is tokenized, and word vectors W (representing individual words) and paragraph

vectors D (representing each alert as a contextual vector) are trained. The network model

parameters are updated using the cross-entropy loss function and gradient descent. Finally,

Fig 3. Example of alert information transformed into vectors.

https://doi.org/10.1371/journal.pone.0300821.g003
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the concatenation of word vectors and paragraph vectors serves as the embedding vector for

each alert.

3.3 Multi-stage profile

3.3.1 HMM. HMM is widely applied in attack detection, and literature [18–22] has pro-

vided substantial evidence of the effectiveness of HMM in attack detection. HMM has unique

advantages in stage modeling, as alert sequence data can be effectively matched with the HMM

representation. Therefore, this paper constructs MSP based on HMM.

An HMM can be described by five elements: the set of possible states, the set of possible

observations, the initial state probability vector, the state transition probability matrix, and the

observation probability matrix. When applying HMM to multi-stage attack detection, each ele-

ment is represented as follows:

1. The set of states, denoted as S = {s1, s2, . . ., sN}, consists of N distinct states, and the state at

the time t is defined as it 2 S. In the context of multi-stage attack detection, the states repre-

sent attack stages or clusters.

2. The set of observations, denoted as V = {v1, v2, . . ., vM}, consists of M distinct alerts, and the

observation at the time t is defined as ot 2 V. In the context of multi-stage attack detection,

the alerts generated by IDS are defined as observations.

3. Initial state probability vector π = (πi), where πi = P(i1 = si), i = 1, 2, . . ., N represents the

probability of being in state si at time t = 1.

4. State transition matrix A

A ¼

a11 a12 . . . a1N

a21 a22 . . . a2N

. . . . . . . . . . . .

aN1 aN2 . . . aNN

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð4Þ

Where aij = P(it+1 = sj|it = si), i = 1, 2, . . ., N;j = 1, 2, . . ., N represents the probability of tran-

sitioning from state si at time t to state si at time t + 1, given that the system is in state si at

time t.

5. Observation probability matrix B

B ¼

b11 b12 . . . b1M

b21 b22 . . . b2M

. . . . . . . . . . . .

bN1 bN2 . . . bNM

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

; ð5Þ

Where bjk = P(ot = vk|it = sj), k = 1, 2, . . ., M;j = 1, 2, . . ., N represents the probability of gen-

erating observation vk given that the system is in state sj at time t.

In the model construction phase, we use the learning problem of HMM to establish an

HMM λ = (A, B, π) that conforms to the normal state based on non-attack stage alert informa-

tion. Since there are no multiple stages that match HMM states in the alert information of the

normal system state, we cluster the vectorized non-attack stage alerts, with the clusters
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analogized to the hidden states of the HMM. This is because similar alerts are often clustered

into the same cluster, which can be viewed as a stage. After determining the hidden states,

model parameters are estimated, and the MSP is constructed.

This paper assumes that the process of clustering alerts into different clusters in multi-stage

attacks follows the assumption of homogenous Markovity. The homogenous Markovity

assumption posits that the hidden Markov chain’s state at any given time t depends only on its

state at the previous time step, independent of other time steps’ states and observations, and

also independent of time t, which can be expressed as:

Pðstjst� 1; at� 1; . . . ; s1; a1Þ ¼ Pðstjst� 1Þ; t ¼ 1; 2; 3; . . . ; k; ð6Þ

Where st represents the state at time t.
If there are k clusters for non-attack stage alerts, then the HMM has k hidden states, i.e., {s1,

s2, . . ., sk}. The initial state probability vector describes the probabilities of the model being in

different states initially, and the state transition matrix describes the probabilities of transitions

between states. Calculating probabilities based on frequency, for the initial state probability

vector π = (π1, π2, . . ., πN), πi = di/D, where di represents the count of states being i in the

sequence, and D represents the total count of the sequence.

3.3.2 Determining the hidden states of HMM. Basically, similar alerts are positioned

close to each other in the vector space, making it possible to utilize clustering algorithms to

assist HMM modeling. Clustering algorithms are widely employed in anomaly detection [34].

In our approach, we use clustering algorithms to group alerts with similar semantic represen-

tations into the same cluster, while alerts with significantly different semantic representations

are dispersed into separate clusters. Based on the dataset’s characteristics, we employ the

K-Means algorithm for alert clustering. Initially, k cluster centers are randomly selected, and

then, by minimizing the error function through computing the distance between samples and

cluster centers, the cluster centers are iteratively updated until the algorithm converges. In our

work, we use the Euclidean distance as the distance metric, and the specific calculation formula

is as follows:

dij ¼ ð
Xm

k¼1

jxki � mkjj
2
Þ

1
2; ð7Þ

Where xi represents the i-th sample, μj represents the j-th cluster center vector, and m repre-

sents the dimension of the sample. The error function is defined as the square error.

E ¼
XK

k¼1

X

x2Ci

k x � mi k
2

2
; ð8Þ

Where K is the number of clusters, and Ci represents the i-th cluster.

However, one drawback of the K-Means algorithm is that it cannot automatically deter-

mine the optimal number of clusters. To address this issue, in this paper, we employ the aver-

age silhouette score method to select an appropriate number of clusters. The average silhouette

score method combines intra-cluster cohesion and inter-cluster separation, providing a more

accurate assessment of clustering quality. Its objective is to minimize the intra-cluster distance
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while maximizing the inter-cluster distance.

SðiÞ ¼
bðiÞ � aðiÞ

maxfaðiÞ; bðiÞg
¼

1 �
aðiÞ
bðiÞ

0

bðiÞ
aðiÞ � 1

;

;

;

aðiÞ < bðiÞ

aðiÞ ¼ bðiÞ

aðiÞ > bðiÞ

8
>>>>>><

>>>>>>:

ð9Þ

Where a(i) represents the average dissimilarity of sample i to other points within the same

cluster. Smaller a(i) values indicate lower dissimilarity of sample i within its cluster, suggesting

that sample i should belong more to that cluster. b(i) represents the minimum average dissimi-

larity of sample i to points in other clusters, where b(i) = min{bi1, bi2, . . ., biK}, with larger b(i)
values indicating that sample i is less likely to belong to other clusters. After computing the sil-

houette score for all samples, taking the average yields the average silhouette score, which falls

within the range of [−1, 1]. Larger silhouette scores indicate that samples within clusters are

closer, while distances between samples from different clusters are greater, resulting in a better

clustering effect.

3.4 Attack detection

3.4.1 Threshold determination. In the attack detection phase, our work begins by deter-

mining the decision threshold. For threshold determination, we make an assumption that if an

alert is generated during an attack stage, it must exhibit differences from alerts during non-

attack stages. In this case, we introduce the concept of Generative Probability (GP), which rep-

resents the strength of an alert’s fit to the MSP. Algorithm 1 describes the process of using GP

to determine the detection threshold. Firstly, the alert sequence in the attack stage is input into

the trained MSP model. Then, GP is calculated through probability computation. The distribu-

tion of GP is statistically analyzed, and the average GP is calculated and set as the threshold.

Algorithm 1: Determining the Threshold
Require: Attack Phase Alert Sequence A = [a1, a2, . . ., an] � alerts
Ensure: Threshold Value θ
1: GP_count = {}, total_alerts = len(A)
2: for each value ai in A do
3: GPi = MSP(ai)
4: if GPi not in GP_count then
5: GP_count[GPi] = 1
6: else
7: GP_count[GPi] + = 1
8: end if
9: end for

10: y ¼

Pn
i¼0
ðGPi � GP count½GPi�Þ

total alerts
11: return θ

3.4.2 Attack determination. We use the probability calculation problem from HMM’s

three problems to compute the GP of an alert fitting the MSP. When GP is greater than the set

threshold, it indicates that the alert is likely to occur in the MSP, classifying it as a non-attack

stage alert. When GP is less than the set threshold, it suggests that the alert is less likely to

occur in the MSP, classifying it as an attack stage alert, indicating the presence of a multi-stage
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attack.

Stagei ¼
0 ;

1 ;

ai � y

ai < y

;

8
<

:
ð10Þ

Where αi represents the probability that sample i fits the MSP, and θ is the set threshold.

When Stagei = 0, it indicates that sample i is a non-attack stage alert. When Stagei = 1, it signi-

fies that sample i is an attack stage alert.

Section 4: Experiments and results analysis

In this section, we first introduced the model evaluation criteria in Section 4.1. Then, in Sec-

tion 4.2, we provided an introduction to the datasets used in the experiments and described

the multi-stage attacks included in them. Section 4.3 covered the hyperparameters involved in

our experiments. Finally, in Section 4.4, we reported the results of our experiments.

4.1 Evaluation indicators

In the evaluation task, the most commonly used model evaluation metrics are accuracy, preci-

sion, recall, and F1-score. These metrics provide comprehensive insights into the model’s per-

formance, particularly in classification tasks. Therefore, this paper selects these four metrics as

the model evaluation criteria, and these metrics are calculated using the following formulas.

accuracy ¼
TPþ TN

TP þ TN þ FP þ FN
; ð11Þ

precision ¼
TP

TP þ FP
; ð12Þ

recall ¼
TP

TP þ FN
; ð13Þ

F1 score ¼
2 ∗ precision ∗ recall
precisionþ recall

; ð14Þ

Here, TP represents the number of attack stage alerts correctly identified as attacks, TN rep-

resents the number of non-attack stage alerts correctly identified as normal, FP represents the

number of non-attack stage alerts incorrectly identified as attacks, and FN represents the num-

ber of attack stage alerts incorrectly identified as normal. Accuracy reflects the overall accuracy

of identification, precision reflects the proportion of correctly identified attack alerts among

those detected as attacks, recall reflects how many attack stage alerts were detected, and the

F1-score is the harmonic mean of precision and recall, reflecting the model’s overall

performance.

4.2 Dataset introduction

The datasets relevant to multi-stage attack detection include DARPA2000, ISCXIDS2012,

CTU-13, DEFCON21 CTF, and CICIDS2017, among others. In these datasets, DARPA2000

[35] contains specific scenarios with multi-stage attack samples, making it one of the most

commonly used datasets in related research. Compared to two other datasets in the same

series, DARPA1998 and DARPA1999, this dataset eliminates many generation errors and
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biases. It includes two attack scenarios, LLSDDOS1.0 and LLSDDOS2.0, with five attack

stages. The ISCXIDS2012 [36] dataset consists of real network traffic and encompasses com-

plete multi-stage attacks with six stages, making it a common dataset for multi-stage attack

detection research. The CICIDS2017 [37] dataset is a supplement to the ISCXIDS2012 dataset

and has also seen extensive use in recent related research. The data were collected continuously

for five days from Monday to Friday and have been labeled.

Numerous related studies have conducted experimental validation on these three datasets,

making them suitable for quantitative comparisons between different methods. Specifically, on

the DARPA2000 dataset, we primarily used LLSDDOS1.0 because it generates a more signifi-

cant number of alerts compared to LLSDDOS2.0, allowing for more comprehensive training

and validation of our method. On the CICIDS2017 dataset, we selected the Thursday morning

dataset, which includes three types of web attacks from the same attacker: Brute Force, Cross-

Site Scripting (XSS) attacks, and SQL injection attacks, composing a multi-stage web attack

scenario.

The detection method proposed in this paper takes alerts generated by the Snort intrusion

detection system as input. Therefore, the original network data in pcap packet files needs to be

converted into alert data through methods such as replay. In this paper, the three datasets were

replayed using the Tcpreplay tool, and Snort v2.9.7(with default rules) was used to detect the

replayed traffic data and generate alert data. During data preprocessing, alerts in the non-

attack stages were labeled as 0, while alerts in the attack stages were labeled as 1. Table 2 dis-

plays the statistics of alert data used in our experiments.

4.3 Experimental settings

The experimental setup for this study is as follows:

First, the experiments were conducted on a Windows 10 platform with an Intel(R) Core

(TM) i5-7300HQ CPU @ 2.50GHz processor and 8GB of RAM. The development environ-

ment utilized Python 3.8, Keras 2.4.0, and TensorFlow 2.3.0.

Table 2. Statistics of the alert data used in the experiments.

Dataset Stage Number of packets Number of alerts Label

DARPA2000 s1 785 42 1

s2 148 2788 1

s3 530 65 1

s4 526 6 1

s5 34533 34846 1

o 355547 139031 0

ISCX2012 s1 78333 124 1

s2 20582 528 1

s3 87900 41 1

s4 10103 525 1

s5 398621 464 1

s6 698149 323 1

o 4469461 3726 0

CICIDS2017 s1 1507 741 1

s2 652 169 1

s3 79 96 1

o 168186 1106 0

https://doi.org/10.1371/journal.pone.0300821.t002
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Then, the network traffic data were replayed by Tcpreplay(version 4.2.6) and the alert texts

were obtained by Snort(version 2.9.7) with default intrusion detection rules. The alert texts

were interpreted with PV-DM by Doc2Vec before building MSP. Scikit-learn(version 1.0.2)

and hmmlearn(version 0.2.3) were adopted in the process of building MSP. Hyper-parameters

in the experiments are summarized in Table 3.

4.4 Analysis of experimental results

A series of experiments were conducted sequentially to effectively evaluate the method pro-

posed in this paper, with each module being trained in turn. First, the alert pre-processing

stage trains the alert vectorization model. Then, the MSP is constructed, and non-attack phase

alert data undergo clustering. To obtain the optimal value of k, this paper uses the average sil-

houette coefficient method to select an appropriate k value, as shown in Figs 4–6.

Fig 4 shows the silhouette coefficient distribution for clustering data in the DARPA2000

attack scenario with different values of k. Each small graph represents a clustering result,

where the height of the shape indicates the number of alerts in the cluster, the width represents

the silhouette coefficient arrangement of alerts in the cluster (wider is better), and the dashed

line represents the average silhouette coefficient. Comparing k values from 2 to 9, it is observed

that when k is equal to 3, the distribution of clusters is relatively even, and the silhouette

Table 3. Hyperparameter configuration.

Hyperparameter Value Description

dm 1 Set Doc2Vec to use the PV-DM model.

size 200 Sentence vector dimension.

windows 10 Window size.

negative 10 Negative sampling ratio.

niter 10 Maximum iteration number of HMM.

tol 0.01 HMM convergence threshold.

https://doi.org/10.1371/journal.pone.0300821.t003

Fig 4. Silhouette coefficient distribution for different k values in the DARPA2000 dataset.

https://doi.org/10.1371/journal.pone.0300821.g004
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coefficients for each cluster are above the average silhouette coefficient. Therefore, k = 3 is cho-

sen as the number of clusters. Fig 5 displays the silhouette coefficient distribution for clustering

data in the ISCXIDS2012 attack scenario with different k values. It is observed that when k = 9,

the distribution of clusters is relatively even, making k = 9 the optimal number of clusters for

the ISCXIDS2012 attack scenario. Fig 6 illustrates the silhouette coefficient distribution for

clustering data in the CICIDS2017 attack scenario. For k values ranging from 3 to 9, some clus-

ters have silhouette coefficients lower than the average silhouette coefficient, except for k = 4,

Fig 6. Silhouette coefficient distribution for different k values in the CICIDS2012 dataset.

https://doi.org/10.1371/journal.pone.0300821.g006

Fig 5. Silhouette coefficient distribution for different k values in the ISCXIDS2012 dataset.

https://doi.org/10.1371/journal.pone.0300821.g005
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where more clusters have silhouette coefficients extending to the right and approaching 1.0.

Therefore, k = 4 is chosen as the optimal number of clusters for the CICIDS2017 dataset. The

selected k values for all three datasets are summarized in Table 4:

After obtaining the optimal cluster number k using the silhouette coefficient method, a

clustering model is built for non-attack phase alerts. Similar alerts are grouped into the same

cluster, and the clustered sequence is used as the hidden state sequence to construct the MSP.

In Fig 7, it represents the GP distribution of alerts in the attack phase for the DARPA2000,

ISCXIDS2012, and CICIDS2017 attack scenarios. In the DARPA2000 dataset, there are 37,747

attack phase alerts, of which 37,738 alerts have a GP of 0, accounting for 99.97% of the total

alerts. Nine alerts have a GP of 0.005. According to Algorithm 1, the attack detection threshold

for this attack scenario is set to 0. In the ISCXIDS2012 dataset, there are 2,005 attack phase

alerts, and all GPs are 0. Therefore, the attack detection threshold is set to 0. In the

CICIDS2017 dataset, there are 1,006 attack phase alerts, of which 998 alerts have a GP of 0,

accounting for 99.20% of the total alerts. Two alerts have a GP of 0.001, and six alerts have a

GP of 0.0236. According to Algorithm 1, the attack detection threshold for this attack scenario

is set to 0.0001 (approximately 0). These results confirm our earlier assumption. Therefore, we

set the attack detection threshold to 0, meaning that if the GP of an alert sequence is 0, it is

labeled as an attack phase alert; otherwise, it is labeled as a non-attack phase alert.

Furthermore, to further validate the performance of our method, we compared it with sev-

eral recent multi-stage detection methods [8, 14, 27]. Reference [8] introduced a multi-stage

attack detection method that builds a sequence-to-sequence model using an encoder-decoder

structure. Reference [14] proposed a detection method using pre-trained HMM. Reference

[27] presented a detection method based on a multi-feature-layer Long Short-Term Memory

(LSTM) network. For ease of reference, we will abbreviate these three methods as Seq2seq,

Pre-HMM, and LSTM, respectively. The experiments were run on the three datasets, and the

performance metrics are shown in Tables 5–7.

Table 4. k-Values selected for the three datasets.

Dataset k-Value

DARPA2000 3

ISCX2012 9

CICIDS2017 4

https://doi.org/10.1371/journal.pone.0300821.t004

Fig 7. The distribution of GP for attack phase alerts.

https://doi.org/10.1371/journal.pone.0300821.g007
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From Tables 5–7, it can be observed that on all three datasets, whether it is Accuracy, Preci-

sion, Recall, or the comprehensive F1-score, our method exhibited the best performance. On

the DARPA2000 dataset, our method achieved 99.2% Accuracy and 100% Precision, with an

F1-score of 98%, surpassing Pre-HMM, which also utilizes HMM. The deep learning methods

Seq2Seq and LSTM had F1-scores of 93% and 94.8%, slightly lower than our approach. On the

ISCXIDS2012 dataset, our method attained 100% across all four metrics. Seq2Seq and LSTM

both had F1-scores above 90%, with Seq2Seq performing better. Pre-HMM still exhibited the

poorest performance with an F1-score of only 60.9%. For the CICIDS2017 dataset, our method

achieved an F1-score of 98.1%, followed by Seq2Seq at 95.2%, LSTM at 89%, and Pre-HMM at

the lowest with 87.3%. According to our analysis, the main reasons for this result are as follows:

First, we use doc2vec to vectorize the alarm text, which is more conducive to capturing the

deep information of the alarm information and mining the internal correlation between each

other, so the performance is obviously better than the Pre-HMM using word2vec; Secondly,

our method is mainly to find abnormal conditions in the alarm sequence without specifically

detecting the attack stage, so the accuracy is high. Lastly, multi-stage attack detection is not

time-sensitive, which is why Seq2Seq outperforms LSTM on all datasets as a deep learning

method.

Furthermore, to validate the analysis of performance overhead in different phases as dis-

cussed in Section 3.1, we conducted experiments and collected statistics on the time taken for

model training and detection in each phase. The results are presented in Fig 8.

Fig 8 illustrates the performance overhead of the proposed method on different datasets. As

analyzed in Section 3.1, the performance overhead of the method is mainly concentrated in

Table 5. Model evaluation results on the DARPA2000 dataset.

Method Accuracy Precision Recall F1-scores

Seq2seq 0.985 0.936 0.952 0.930

Pre-HMM 0.852 0.795 0.813 0.806

LSTM 0.950 0.930 0.925 0.948

MSP 0.992 1.0 0.961 0.980

https://doi.org/10.1371/journal.pone.0300821.t005

Table 6. Model evaluation results on the ISCXIDS2012 dataset.

Method Accuracy Precision Recall F1-scores

Seq2seq 0.987 0.994 0.936 0.979

Pre-HMM 0.625 0.594 0.659 0.609

LSTM 0.904 0.827 0.962 0.903

MSP 1.0 1.0 1.0 1.0

https://doi.org/10.1371/journal.pone.0300821.t006

Table 7. Model evaluation results on the CICIDS2012 dataset.

Method Accuracy Precision Recall F1-scores

Seq2seq 0.976 0.995 0.938 0.952

Pre-HMM 0.826 0.804 0.832 0.873

LSTM 0.903 0.947 0.962 0.890

MSP 0.995 1.0 0.962 0.981

https://doi.org/10.1371/journal.pone.0300821.t007
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the first three phases (phase1 to phase3), accounting for over 95% of the total performance

overhead on all three datasets. In contrast, phase4, the detection phase, incurs a time cost of

only 5%, 2%, and 3% of the overall time cost, respectively. The primary work in phase1 to

phase3 is conducted offline, and therefore, it does not impact the detection performance of the

proposed method. In phase4, the time required for detecting a single attack sequence is

approximately 7ms on the DARPA2000 dataset, around 6ms on the ISCXIDS2012 dataset, and

about 5ms on the CICIDS2017 dataset, almost achieving real-time detection.

Section 5: Conclusion

5.1 Summary

In this paper, we present an anomaly-based multi-stage attack detection method. By modeling

the normal state of a stable system and constructing an MSP, our aim is to detect attack behav-

iors. Our objective is to develop a model capable of detecting unknown pattern attacks, not

just common ones like DoS. Our approach starts by vectorizing alert information to better

capture the deep-seated information within alerts. Next, we process the vectorized data of

non-attack stage alerts, using clustering and HMM to build the MSP. Finally, we perform

detection on the alert data collected by IDS, using the alert’s fit to the MSP’s generated proba-

bility as the basis for judgment to determine if the alert belongs to an attack stage.

We conducted experiments using three publicly available datasets: DARPA2000, ISC-

XIDS2012, and CICIDS2017, and compared our method with three state-of-the-art multi-

stage attack detection methods: Seq2seq, Pre-HMM, and LSTM. The experimental results

demonstrate that our method performs better in detecting alerts in attack stages. For the ISC-

XIDS2012 dataset, our method can completely detect existing attack stage alerts, while achiev-

ing detection accuracy of over 99% on the other two datasets, with precision rates of 100%.

5.2 Future work

The method proposed in this paper can detect the presence of attack behavior and identify

which alert information characterizes the attack. However, it cannot recognize the specific

stage of the attack and reconstruct the attack scenario. Therefore, this method is not suitable

Fig 8. The performance overhead of different datasets at each phase.

https://doi.org/10.1371/journal.pone.0300821.g008
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for extracting attack scenarios. In future work, we will focus on more refined attack stage

detection and attack scenario extraction.

Furthermore, the selection of alert information generated by Snort has been a consistent

methodology. However, it should be noted that Snort does not have the ability to detect all

attack behaviors and generate alert information. The detection capability of Snort is highly

dependent on the rules used. Therefore, in our future research, we will attempt to use different

sets of Snort rules and consider their false positives in legitimate traffic.

In the research on multi-stage attack detection, most researchers have chosen Snort default

rules to generate alert information for different datasets [8, 14, 18], making their methods

reproducible and easy to compare. In fact, for network traffic, Snort’s default rules can only

capture a small portion of attacks (10%), and when additional rules are used, the proportion of

captured attacks increases to 80%, but this also reduces the accuracy from nearly 100% with

default rules to 1.5%. Hence, another task for our future endeavors is to develop more insight-

ful Snort rules, aiming to enhance data quality and, consequently, improve detection accuracy.
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