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Abstract

Background

Healthcare providers currently calculate risk of the composite outcome of morbidity or mor-

tality associated with a coronary artery bypass grafting (CABG) surgery through manual

input of variables into a logistic regression-based risk calculator. This study indicates that

automated artificial intelligence (AI)-based techniques can instead calculate risk. Specifi-

cally, we present novel numerical embedding techniques that enable NLP (natural language

processing) models to achieve higher performance than the risk calculator using a single

preoperative surgical note.

Methods

The most recent preoperative surgical consult notes of 1,738 patients who received an iso-

lated CABG from July 1, 2014 to November 1, 2022 at a single institution were analyzed.

The primary outcome was the Society of Thoracic Surgeons defined composite outcome of

morbidity or mortality (MM). We tested three numerical-embedding techniques on the widely

used TextCNN classification model: 1a) Basic embedding, treat numbers as word tokens;

1b) Basic embedding with a dataloader that Replaces out-of-context (ROOC) numbers with

a tag, where context is defined as within a number of tokens of specified keywords; 2) Scale-

Num, an embedding technique that scales in-context numbers via a learned sigmoid-linear-

log function; and 3) AttnToNum, a ScaleNum-derivative that updates the ScaleNum embed-

dings via multi-headed attention applied to local context. Predictive performance was mea-

sured via area under the receiver operating characteristic curve (AUC) on holdout sets from

10 random-split experiments. For eXplainable-AI (X-AI), we calculate SHapley Additive

exPlanation (SHAP) values at an ngram resolution (SHAP-N). While the analyses focus on

TextCNN, we execute an analogous performance pipeline with a long short-term memory

(LSTM) model to test if the numerical embedding advantage is robust to model architecture.
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Results

A total of 567 (32.6%) patients had MM following CABG. The embedding performances are

as follows with the TextCNN architecture: 1a) Basic, mean AUC 0.788 [95% CI (confidence

interval): 0.768–0.809]; 1b) ROOC, 0.801 [CI: 0.788–0.815]; 2) ScaleNum, 0.808 [CI:

0.785–0.821]; and 3) AttnToNum, 0.821 [CI: 0.806–0.834]. The LSTM architecture pro-

duced a similar trend. Permutation tests indicate that AttnToNum outperforms the other

embedding techniques, though not statistically significant verse ScaleNum (p-value of .07).

SHAP-N analyses indicate that the model learns to associate low blood urine nitrate (BUN)

and creatinine values with survival. A correlation analysis of the attention-updated numerical

embeddings indicates that AttnToNum learns to incorporate both number magnitude and

local context to derive semantic similarities.

Conclusion

This research presents both quantitative and clinical novel contributions. Quantitatively, we

contribute two new embedding techniques: AttnToNum and ScaleNum. Both can embed

strictly positive and bounded numerical values, and both surpass basic embeddings in pre-

dictive performance. The results suggest AttnToNum outperforms ScaleNum. With regards

to clinical research, we show that AI methods can predict outcomes after CABG using a sin-

gle preoperative note at a performance that matches or surpasses the current risk calcula-

tor. These findings reveal the potential role of NLP in automated registry reporting and

quality improvement.

Introduction

Artificial intelligence (AI) in healthcare has demonstrated utility in predictive analytics, imag-

ing interpretation, data extraction, and reducing workload inefficiencies [1–4]; including AI

applications specific to cardiac surgery [2, 3, 5–16]. Important drawbacks of AI include the

need for large datasets, the potential for error especially in high-risk situations, the possibility

of privacy violations and abuse, a lack of trust and understanding of AI among physicians and

patients [1, 4, 5, 7, 17], and the need for use case transparency for patient consent.

The Society of Thoracic Surgeons (STS) risk models have served as a credible gold standard

for cardiac surgical quality reporting for decades [4, 18, 19]. The STS risk calculator, which is a

logistic regression model, achieves an AUC performance of approximately 0.76, with a 95% CI

of (0.73, 0.79) [20]. Since some of the STS risk calculator inputs are manually extracted from

unstructured data, these models require significant manual data extraction and entry. An auto-

mated AI would allow providers to spend more time on clinical duties.

Recent studies that utilize structured EHR data to predict coronary artery bypass grafting

(CABG)-associated risk achieve similar [21] or superior [22, 23] performance to the STS risk

calculator and identify high-risk predictors [21, 24]. We hypothesize that neural network mod-

els can complement these analyses by extracting information from unstructured data, such as

patient notes. Whether more condensed data inputs such as a clinical note can serve to develop

well performing risk models has yet to be explored [4, 10–16].

To answer this question, we evaluated several embedding techniques with convolutional

neural network (CNN) and LSTM models for predicting post-CABG outcomes using a single

preoperative surgical consult note, including a novel attention-based technique to embed
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numerical tokens. Our results indicate that low parameter-count neural networks can achieve

superior predictive performance to the current risk calculator standard, given utilization of the

novel numerical embeddings and calibration of model output to a desired class-separation

threshold.

Materials and methods

Data

Isolated CABG procedures performed from July 1, 2014 to November 1, 2022 at a single center

were identified. These notes were all entered within 30 days of CABG. The notes consisted of

inpatient consult notes with a “history of present illness” section. If multiple notes existed, the

most recent to CABG was the only note included. According to a sample of our data, about

5.4% of the patient population is on-pump. This study was deemed exempt from review by the

institutional review Board (IRB Pro00122587), the committee that oversees research ethics at

the Medical University of South Carolina.

The notes occasionally listed symptoms in a bulleted format, but often did not. Important

metrics recorded in the notes included creatinine and blood urine nitrate (BUN) values, com-

monly in the format of “BUN 24.0 (H)” or “creatinine .7 (L)”. The healthcare professional tran-

scribed low (L) for the BUN value if it was less than or equal to 20 and high (H) otherwise. The

analogous cutoff for creatinine was 1.0.

Primary outcome

The primary outcome was the STS-defined composite outcome of operative mortality or

major morbidity (MM). Operative mortality is defined by the STS as mortality occurring

within 30 days of surgery or as an inpatient during the index hospitalization. Major morbidi-

ties included postoperative stroke, acute renal failure, cardiac reoperation, deep sternal wound

infection, and prolonged ventilation.

Predictive performance experiments

We ran 10 experiments of our machine learning pipeline. Each experiment left a random 15%

(261 samples) of the data for a holdout set, and then split the remaining notes 85%/15%

(1,254/222) for training and validation. The splits were stratified to ensure a similar ratio of

MM subjects between the training, validation, and holdout sets. For each experiment, the

model was fit on the 1,254 training samples. The same 10 split sets were employed to compare

different embedding techniques and models to ensure consistent comparisons.

For each experiment, we calibrate the validation set probability of MM predictions to the

observed MM rate via a linear regression to obtain a calibration slope and intercept. Specifi-

cally, the validation set subjects are grouped according to MM prediction, binned at 0.1 resolu-

tion, and the mean MM rate serves as the dependent variable. The fit linear regression model

is then applied to calibrate holdout set predictions. The performance was measured by AUC

on the holdout sets for each of the 10 experiments. Standard textual preprocessing was per-

formed, such as regular expressions to remove dates.

Convolutional neural networks

Our base CNN architecture is TextCNN [25]. Previous research indicates that TextCNN

shows comparable classification performance on small medical datasets to much larger models

such as BERT [10, 26], but with orders of magnitude less memory, thereby enabling faster pro-

totyping and experimentation.
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The hyperparameters are as follows: learning rate of 3.5−4, batch size of 64, 44 kernels per

convolutional filter layer, embed dimension of 50, 4 filter layers of sizes (1, 2, 3, 5), 100 epochs,

0.5 dropout applied to the final fully connected layer, and a length cut off of 3,000 tokens with

0 padding for smaller notes. This results in a total of 176 = 44x4 convolutional filters.

Long Short-Term Memory (LSTM) neural networks

The base LSTM architecture consists of the same architecture as the presented TextCNN,

except the convolutional layer is replaced with a bi-directional LSTM (Bi-LSTM) layer. We

refer to this model as TextLSTM. Similar to TextCNN, a max pool is applied temporally before

the classification layer. However, the max pool is applied across the bi-LSTM’s cell output

states instead of convolutional filter activations.

We configure the TextLSTM architecture to have the same layer dimensions as TextCNN,

except the convolutional layer is replaced with a Bi-LSTM. The LSTM hidden dimension is 88,

which means the output dimension of the Bi-LSTM is 176 by 3000 (sequence length), and this

is reduced to 176 after the max pool; dropout is 0.0; and the number of epochs is 50 instead of

100 as we found the LSTM model overfits more readily and that dropout does not provide reg-

ularization. Note that the hidden dimension size of 88 was chosen so that the classification

layer would be of the same dimension as TextCNN’s classification layer, 176.

Embedding numerical information

Encoding numerical information is a challenging task in natural language processing [27].

Even advanced models treat numbers as text and encode them in a similar manner. This

means that closely related numbers (i.e. 1.7 and 1.8) appear as 2 separate tokens, where similar-

ity in the model output results from similarity in the semantic space. This poses a challenge for

models that are trained on small datasets that may have few or no training samples with a hold-

out sample’s numerical value.

As a first step, we experiment with replacing uninformative numbers with a tag. Basic

exploratory analyses on the dataset indicated that blood urine nitrate (BUN) and creatinine

values listed in the notes strongly correlated with MM. Due to the nature of how the physicians

transcribe notes, BUN/creatinine values are listed within close range to the key-terms “BUN”

or “creatinine”. A common format is “[BUN|creatinine] [numerical value] ([H|L])”, where

(H) means the physician labeled the value as high and (L) as low. We define context as tokens

within 2 tokens to the right, or 1 token to the left of either BUN or creatinine. These are hyper-

parameters that can be adjusted.

Out-of-context numbers (OOC) are numerical tokens outside 2 tokens to the right or 1

token to the left. OOC numbers are replaced with the token “_INUM_” or “_lgnum_”, if they

are less than or greater than 1000, respectively (Fig 1). This substitution removes sporadic

numerical tokens, thereby reducing the embedding matrix dimensionality while retaining

BUN and creatinine signal.

We ran experiments with three embedding techniques: 1a) Basic embedding, treat numbers

as word tokens; 1b) Basic embedding with a dataloader that Replaces Out-Of-Context num-

bers with a tag (ROOC); 2) ScaleNum, an embedding technique that scales in-context numbers

via a sigmoid of a learned linear-log function; 3) AttnToNum, a ScaleNum-derivative that

updates the ScaleNum embeddings via multi-headed attention applied to local context (Fig 1).

ScaleNum

ScaleNum is an embedding technique we developed for numbers that are within context of the

tokens “BUN” or “creatinine”. ScaleNum scales the number to a multi-dimensional vector via
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function, g(x). g(x) first clamps the number between 1 and 1,000, followed by the log function,

then a linear layer from dimension 1 to embedding dimension (50), and a sigmoid:

yj ¼ gj xð Þ ¼ s aj � log clamp x; 1; 1000½ �ð Þð Þ þ bj
� �

y ¼ g xð Þ ¼ s a� log clamp x; 1; 1000½ �ð Þ þ bð Þð Þ

Where y, a, and b are vectors of size embedding dimension.

As BUN and creatinine values are frequently greater than 1 and always less than 1000, the

clamp removes little numerical information while ensuring stability if there is a number out-

side this range. Note that g(x) is equivalent to xaeb/(xaeb + 1) since ealog(x)+b = xaeb; where xaeb

is element-wise multiplied. The model learns multiple g(x) transformations, and then adds the

resultant embeddings together. For this research, the model learns 5 g(x) transformations.

dg xð Þ ¼
X5

1

gk xð Þ

AttnToNum

AttnToNum employs multi-headed self-attention between ScaleNum’s dg xð Þ embeddings and

the token embeddings within context to generate context-aware number embeddings (Fig 1).

This research uses 5 attention heads, with a head dimension of 50/5 = 10.

e xð Þ ¼ multi attn dgðxÞ
� �

Embedding-comparison permutation tests

Permutation tests were used to verify if a given numeric-embedding technique statistically sig-

nificantly improves performance. The 4 techniques are Basic, Basic with Replace Out-Of-Con-

text numbers (ROOC), ScaleNum, and AttnToNum, for a total of 6 comparisons: (1)

AttnToNum vs ScaleNum, (2) AttnToNum vs ROOC, (3) ROOC vs Basic, (4) ScaleNum vs

ROOC, (5) ScaleNum vs Basic, and (6) ROOC vs Basic. For each comparison, a length-10

AUC gap vector, gv, is calculated as the difference between a given model’s holdout AUC

Fig 1. Embedding pipeline for the example text “Cl 93.0 (L) 03/04/18 creatinine 5.2 (H) 03/05/18”, for the

TextCNN architecture model with AttnToNum embeddings, 10th run. The numerical values correspond to the first

dimension of the dimension-50 embeddings.

https://doi.org/10.1371/journal.pone.0300796.g001
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values, A, and a reference model’s holdout AUC values, T.

gv ¼ A � T

The sum of the elements of gv is stored as the true gap value:

t ¼ sum gvð Þ

For each of 35,000 iterations, we generate a length-10 vector composed of random samples

from 2 values [1, –1], sn, and take the dot product of sn with gv to obtain a mock gap value, m.

This is equivalent to randomly flipping the sign of each element of gv, and taking the sum:

m ¼ sn � gv

The true gap, t, is compared against the 35,000 mock gaps, m, to obtain 1-sided and 2-side

p-values:

p1 ¼ sum t � mð Þ þ 1ð Þ=1e4

p2 ¼ sum t � abs mð Þð Þ þ 1ð Þ=1e4

Embedding correlations

To test the hypothesis that the model learns to incorporate both number magnitude and local

context to derive a numerical semantic space, we calculate the correlations between pre-convo-

lution embeddings associated with the numerical embeddings for a series of BUN and creati-

nine values. For example: the correlation between the numerical embeddings for “BUN 10.0

(L)” and “creatinine 4.0 (H)”. The pipeline to generate the embedding correlations is as

follows:

1. Generate 2 phrases, each in the format of “[BUN|creatinine] [value] ([L|H])”. If the BUN

value is higher than 20, it is labeled as High (H) and low (L) otherwise. For creatinine, this

cutoff was 1.0

2. Pass each phrase to the TextCNN model’s embedding layers to obtain the pre-attention and

post-attention embeddings for each phrase. The specific TextCNN instance is selected

based on the experiment with the best performance.

3. Extract the embedding vector that corresponds to the number token ([value]) for each

phrase, and then calculate the correlation coefficient between the two vectors.

ngram importance with SHAP-N

We employ an ngram-resolution version of SHapley Additive ExPlanations (SHAP) analysis

to identify individual ngram contributions to sample predictions. We term this analysis as

SHAP-Ngram resolution (SHAP-N). These contributions can be directly calculated from the

TextCNN architecture.

Via the SHAP approach, the aim is to find the simplified, sample-specific, additive model

that equals the original model for a given sample, s.

logits ¼ gs ¼ �0 þ

X

F

�f ;s ð1Þ
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Each ϕf,s equals the relative logit contribution associated with feature f for sample s, where

relative contribution is defined as the logit contribution for s from feature f, minus the mean

logit contribution for feature f in the dataset:

�f ;s ¼ logits;f � mf ð2Þ

Finally, ϕ0 equals the sum of the mean logit contributions. Note that ϕ0 is sample-indepen-

dent:

�0 ¼

X

F

mf ð3Þ

In the TextCNN architecture, each convolutional filter contributes only one activation per

sample due to the sample-wide max pool after the convolutional layer, and this activation is

multiplied with a single coefficient in the fully connected layer. These scaled activations, one

per convolutional filter, are additively combined to create a logit [25]. Therefore, the logit for a

sample can be calculated as:

logits ¼ w0 þ

X

F

wf as;f ð4Þ

Where “F” is the number of filters, and each filter has one and only one logit contribution per

sample.

Eq 4 can be reformulated as Eq 1 by subtracting the mean value for each filter:

logits ¼ w0 þ

X

F

wfmf þ

X

F

wf as;f � mf
� �

¼ �0 þ

X

F

�f ;s

ð5Þ

Where ϕ0 = w0 + ∑F wf μf, and ϕf,s = wf (as, f − μf) Therefore, the SHAP value for each filter, f,
and sample, s, combination equals wf (as, f − μf).

The ϕf, s values directly indicate the importance of each passing ngram if each filter has a

distinct ngram. However, 2 common scenarios violate this assumption: (1) the same ngram

passes multiple max pools, and (2) sub-ngrams of a passing ngram will pass other max pools.

For both scenarios, we add the SHAP values together: ϕn,s = ∑F∊n ϕf,s, where n represents the

ngram, and F∊n represents the ngrams that equal n, or are sub-ngrams of n. If n only passes

one max pool and has no sub-ngrams passing other filters, then ϕn,s = ϕf,s. Therefore, Eq 5 can

be reformulated as follows, where we define the importance value for ngram, n, and subject, s,
as ϕn,s, and N is the number of ngrams:

logits ¼ �0 þ

X

N

�n;s ð6Þ

Finally, Zhao et al [28] set-union the overlapping ngrams and sum together the associated

ϕn,s values to create a new set of N’ features:

logits ¼ �0 þ

X

N0

�n0;s ð7Þ
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However, we found that this leads to a smoothing effect of long overlaps that are hard to

interpret on our dataset. Therefore, we leave the resolution at the ngram level (Eq 6), and refer

to the importances, ϕn,s as SHAP-N (SHAP-Ngram) values.

We calculate the final SHAP-N for an ngram as its average SHAP-N value across all the

samples in the dataset (holdout or validation):

�n ¼ 1

�

jSj

X

S

�n;s ð8Þ

We present the top SHAP-N values for the highest performant experiment, as well as the

SHAP-N values for ngrams that contain or consist of a BUN/creatinine token followed by a

number.

Results

A total of 1,738 patients who underwent isolated CABG during the study period had a preop-

erative surgical consult note within 30 days of surgery with a “history of present illness” section

and therefore met inclusion criteria. Of the 1,738 subjects, 567 (32.6%) had the STS-defined

outcome of operative mortality or major morbidity. Of the 567 MM patients, 515 had a major

morbidity only, 13 had only an operative mortality without major morbidity, and 39 experi-

enced both major morbidity and mortality.

Predictive performance experiments

For the TextCNN architecture, the classification performances are as follows (Fig 2):

1a) Basic: mean AUC of 0.788±1.23 x 10−3 (95% confidence interval (CI): 0.768–0.809)

1b) ROOC: 0.801±5.74 x 10−4 (CI: 0.788–0.815)

2) ScaleNum: .808±8.34 x 10−4 (CI: 0.785–0.821)

3) AttnToNum: 0.821±6.30 x 10−4 (CI: 0.806–0.834).

The holdout AUCs for the 10 experiments with TextCNN are shown in Table 1.

The TextLSTM architecture performances are as follows:

1a) Basic, mean AUC of 0.771±3.27 x 10−4 (CI: 0.770–0.791)

1b) ROOC, 0.798±5.59 x 10−4 (CI: 0.783–0.811)

2) ScaleNum, 0.817±6.10 x 10−4 (CI: 0.798–0.829)

3) AttnToNum, 0.825±8.06 x 10−4 (CI: 0.809–0.843).

The holdout AUCs for the 10 experiments with TextLSTM are shown in Table 2.

The parameter counts for the TextCNN models are shown in Table 3. TextLSTM has the

same parameter counts for most layers, except “Post-Embed Layers” has 98,737 parameters.

Which results in a total parameter count increase of 74,184 (98,737–24,553).

For TextCNN with AttnToNum embeddings, the mean calibration slope across the 10

experiment runs is 0.930±0.079, and the mean calibration intercept is 0.056±0.035.

For TextLSTM with AttnToNum embeddings, the mean calibration slope across the 10

experiment runs is 1.007±0.090, and the mean calibration intercept is 0.011±0.042.
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Fig 2. Holdout AUCs for the 10 experiment splits.

https://doi.org/10.1371/journal.pone.0300796.g002
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Embedding-comparison permutation tests

For TextCNN and TextLSTM, the permutation tests produced nearly identical 2-sided p-val-

ues as shown in Table 4.

Embedding correlations

Pre-attention (ScaleNum) and post-attention (AttnToNum) embedding correlations are

shown in Fig 3. The embeddings are obtained from the AttnToNum embedding layer in exper-

iment 10’s TextCNN.

As an illustrative example, Table 5 utilizes the same TextCNN instance to obtain correla-

tions between number embeddings for similar phrases in each stage of the AttnToNum

embedding.

Table 1. TextCNN Holdout AUCs. Holdout AUCs for TextCNN Experiments.

Experiment 1 2 3 4 5 6 7 8 9 10

Basic 0.766 0.767 0.742 0.738 0.798 0.800 0.799 0.815 0.797 0.854

ROOC 0.813 0.796 0.782 0.758 0.832 0.813 0.802 0.805 0.778 0.834

ScaleNum 0.825 0.798 0.799 0.741 0.813 0.815 0.826 0.828 0.789 0.845

AttnToNum 0.804 0.843 0.800 0.782 0.829 0.816 0.843 0.833 0.795 0.860

https://doi.org/10.1371/journal.pone.0300796.t001

Table 2. TextLSTM holdout AUCs. Holdout AUCs for TextLSTM experiments.

Experiment 1 2 3 4 5 6 7 8 9 10

Basic 0.789 0.748 0.770 0.760 0.804 0.778 0.789 0.787 0.785 0.805

ROOC 0.797 0.773 0.789 0.761 0.827 0.827 0.821 0.784 0.781 0.815

ScaleNum 0.830 0.808 0.816 0.765 0.813 0.842 0.830 0.840 0.790 0.838

AttnToNum 0.846 0.834 0.802 0.774 0.827 0.836 0.826 0.816 0.807 0.881

https://doi.org/10.1371/journal.pone.0300796.t002

Table 3. Parameter counts. The parameter counts for the TextCNN layers. TextLSTM has the same parameter counts, except “Post-Embed Layers” has 98,737 parameters

instead of 24,553 for a difference of 74,184 parameters.

Number Embed Type Embed Number Embedding Attention Post-Embed Layers (CNN) Total

Basic 550,550 (11,011x50) 0 0 24,553 575,103

ROOC 475,900 (9,518x50) 0 0 24,533 500,453

ScaleNum 470,400 (9,408x50) 600 0 24,553 495,553

AttnToNum 470,400 (9,408x50) 600 10,200 24,553 505,753

https://doi.org/10.1371/journal.pone.0300796.t003

Table 4. Permutation tests. Permutation tests with TextCNN and TextLSTM.

TextCNN TextLSTM

Experiment p p

AttnToNum vs ScaleNum 0.067 0.066

AttnToNum vs ROOC 0.012 0.012

AttnToNum vs Basic 0.0038 0.0036

ScaleNum vs ROOC 0.18 0.18

ScaleNum vs Basic 0.022 0.022

ROOC vs Basic 0.106 0.112

https://doi.org/10.1371/journal.pone.0300796.t004
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Fig 3. BUN & creatinine embedding correlations. The bottom subplot of BUN vs creatinine values extracted from the text reveal why some

embeddings are nearly identical, such as “creatinine 4.0 (H)” & “creatinine 8.0 (H)”.

https://doi.org/10.1371/journal.pone.0300796.g003

PLOS ONE Neural networks with novel numerical embeddings predict CABG outcomes from a single note

PLOS ONE | https://doi.org/10.1371/journal.pone.0300796 April 25, 2024 11 / 17

https://doi.org/10.1371/journal.pone.0300796.g003
https://doi.org/10.1371/journal.pone.0300796


ngram importance with SHAP-N

The top 10 features of importance for the best performing experiment for AttnToNum with

TextCNN, experiment 10, are shown in Table 6.

Fig 4 shows a plot of SHAP-N values for different numerical values of BUN and creatinine.

The SHAP-N values are associated with trigrams that follow the pattern of “[BUN|creatinine]

Table 5. Embedding stage and correlation. Embedding correlations between extracted numbers in each step of the AttnToNum pipeline: i.e. correlations between the

embeddings for 3.4 and 3.5, and between 25.0 and 3.8. Note that 3.4 is a low BUN value, 3.8 is a high creatinine value, and 25.0 is a high BUN value.

Phrases ROOCρ ScaleNum ρ AttnToNum ρ
“BUN 3.4 (L)”, “Creatinine 3.8 (H)” 1.0 0.999 -0.876

“BUN 3.4 (L)”, “Creatinine 3.8 (L)” 1.0 0.999 -0.638

“BUN 25.0 (H)”, “Creatinine 3.8 (H)” 1.0 0.961 0.983

“BUN 25.0 (H)”, “Creatinine 3.8 (L)” 1.0 0.961 0.671

https://doi.org/10.1371/journal.pone.0300796.t005

Table 6. Features of importance. Top 10 features of importance for experiment 10, the best performing experiment

for AttnToNum with TextCNN. The “_date_” tag replaced dates.

SHAP ngram

0.241 Creatinine 4.7 (H) _date_ glucose

0.208 4.7 (H) _date_ Creatinine 4.7

0.189 Creatinine 4.7 (H) _date_ BUN

0.188 Creatinine 4.5 (H) _date_ BUN

0.184 Creatinine 2.5 (H) _date_ glucose

0.181 Creatinine 3.6 (H) _date_-bun

0.179 Creatinine 7.4 (H) _date_-bun

0.151 Creatinine 2.3 (H) _date_-bun

0.150 _date_ Creatinine 4.7

0.149 _date_ Creatinine 4.5

https://doi.org/10.1371/journal.pone.0300796.t006

Fig 4. Top to bottom: Experiment 10, SHAP-N values associated with (a) creatinine and (b) BUN values extracted

from ngrams (“BUN 1.1 (L)”). Note: the embeddings are context-based, the values will not always be the same for each

ngram. The presented SHAP values correspond to trigrams that follow the format of “[BUN|creatinine] [value] ([L|

H])”.

https://doi.org/10.1371/journal.pone.0300796.g004
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[value] ([L|H])”. The specific model instance is the TextCNN model trained during experi-

ment 10.

Attention visualizations

We present attention weights for each of the 5 attention heads for the best-performing model,

TextCNN with AttnToNum embeddings from experiment 10, for the phrases: “_date_ creati-

nine 6.3 (H)”, “_date_ creatinine 6.3 (L)”, “_date_ BUN 6.3 (H)”, and “_date_ BUN 6.3 (L)”

(Table 7).

Discussion

This study demonstrates the ability of artificial intelligence (AI) to predict the MM outcome

after CABG using a small sample of the unstructured data in the EHR, a preoperative surgical

consult note. The presented techniques surpass the baseline Society of Thoracic Surgeons

(STS) model, which is among the most credible traditional risk assessment models [4, 18, 19].

According to a recent meta-analysis, the STS risk calculator achieves an AUC performance of

0.76, with a 95% CI of (0.73, 0.79) [20]. In addition, some of the STS risk calculator inputs are

Table 7. Attention weights. The attention weights for TextCNN (AttnToNum embeddings) of the 10th experiment for phrases of the template: “_date_ (BUN|creatinine)
6.3 (H|L).” The 2nd head focuses on the number’s magnitude if the physician labeled the test as high, (H). The 4th and 5th heads focus on physician label and _date_, respec-

tively. The 3rd head focuses on test label if the label is low, (L). The 1st head focuses on metric if the metric is creatinine.

Head _date_ creatinine 6.3 (H)

1 0.01 0.99 0.0 0.0

2 0.0 0.0 1.0 0.0

3 1.0 0.0 0.0 0.0

4 0.0 0.0 0.0 1.0

5 1.0 0.0 0.0 0.0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Head _date_ creatinine 6.3 (L)

1 0.01 0.98 0.0 0.01

2 0.0 0.0 0.03 0.97

3 0.0 0.0 0.0 1.0

4 0.0 0.0 0.0 1.0

5 0.99 0.0 0.0 0.01

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Head _date_ BUN 6.3 (H)

1 0.99 0.0 0.0 0.0

2 0.0 0.0 1.0 0.0

3 1.0 0.0 0.0 0.0

4 0.0 0.0 0.0 1.0

5 1.0 0.0 0.0 0.0

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

Head _date_ BUN 6.3 (L)

1 0.43 0.0 0.00 0.57

2 0.0 0.03 0.03 0.97

3 0.0 0.0 0.0 1.0

4 0.0 0.0 0.0 1.0

5 0.99 0.0 0.0 0.01

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

https://doi.org/10.1371/journal.pone.0300796.t007
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manually extracted from unstructured data. An automated AI enables providers to spend

more time on clinical duties.

Several recent analyses identify CABG-associated risk from structured EHR data [21–24].

Two of the analyses achieve similar or superior performance to our analysis with AUCs of

0.811 [22] and 0.831 [23] for post-CABG mortality and bleeding. These previous results and

this own study’s performance indicates that there is relevant signal in both structured and

unstructured EHR data, we hypothesize that a model that combines both will surpass models

trained on either modality alone.

Our pipeline embeds numerical magnitude. In comparison, standard tokenization treats

similar magnitude numbers as two unique tokens. If the sample size is large, this may not be

an issue since the model can learn the semantic space through training set encounters with

similar context or exact exposures to the numbers. Small sample sizes do not provide as thor-

ough a semantic space, and therefore the model may not learn to treat similar magnitude num-

bers in a similar manner nor encounter as many numbers in training. This numerical scaling

capability to treat similar magnitude numbers in a similar manner is provided by ScaleNum.

Furthermore, context is important: “BUN 12.0” and “creatinine 12.0” carry nearly opposite

meanings. We therefore developed AttnToNum, a localized attention technique that updates

the numerical embeddings by incorporating local context. The correlations between post-

attention embeddings confirm that context is learned, as shown in Table 5 (Embedding Stage

and Correlations) and Fig 3. Both Table 5 and Fig 3 indicate that similar magnitude numbers

can lead to post-attention embedding vectors with a negative correlation, even if the pre-atten-

tion correlation is close to 1 due to the similar magnitude. As a specific example, Table 5

shows that while ScaleNum outputs nearly identical numerical embeddings for 3.4 and 3.8 in

the phrases “BUN 3.4 (L)” and “creatinine 3.8 (H)”, AttnToNum outputs embeddings that cap-

ture the opposite meanings of these numbers (3.4 is a low BUN value, but a high creatinine

value) with embedding vectors in nearly opposite direction (correlation of -.876). Table 7

(Attention Weights) indicates that the multi-headed attention applies different heads to learn

context and magnitude. The 2nd attention head learns to focus on number magnitude if the

label is (H). The other heads focus on context. If the label is low (L), then the attention heads

do not focus on magnitude, suggesting that low BUN and creatinine values will have the same

or similar embedding vectors with other low but different BUN and creatinine values. As a fur-

ther confirmation, Fig 4 shows that the model (1) associated high BUN/creatinine values with

MM; and (2) can interpret which number magnitudes are relatively high dependent on

context.

In terms of performance, both AttnToNum and ScaleNum statistically significantly outper-

form basic tokenization. ScaleNum does not statistically significantly outperform Replacement

of Out-of-Context tokens (ROOC), and AttnToNum does not statistically significantly outper-

form ScaleNum. However, the mean AUC, confidence intervals, and simulation 2-sided p-val-

ues still indicate a performance difference (Fig 2). Therefore, this embedding technique may

benefit the medical research community as a baseline model to replace standard tokenization

under certain scenarios.

Despite the extra layers, AttnToNum and ScaleNum have ~15% less parameters than Basic,

see Table 3 (Parameter Counts). This results from the decrease in unique terms; numbers are

not tokenized for AttnToNum and ScaleNum. The term reduction leads to less rows of the

parametric-heavy embedding layer matrix. Most of this reduction results from the removal of

out-of-context numbers, as shown by the much lower parameter count for ROOC than Basic.

A slight increase in model complexity (~600 parameters, 0.1% increase) with the inclusion

of number embedding enables the model to capture numeric information by learning parame-

ters for a scaling function that outputs similar embeddings for similar magnitude numbers.
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The learned scaling function, g(x) = σ(a log(x) + b) = xaeb/(xaeb + 1), is similar to a sigmoid in

that it compresses numbers to a value between 0 and 1. However, in this case the sigmoid is

applied to a linear-log. The learned parameters adjust the rate of change, a, and when to start

increasing, b. Therefore, different parameters capture meaning from different scale numbers;

this multi-scale information is available for downstream layers through the summation of the

5 g(x) vectors into a single vector.

A more significant increase in model complexity via an attention layer (~10,000 parame-

ters, 2%) also led to a performance increase. We hypothesize that the attention mechanism

with local context informs the model which scale of the numerical embedding is relevant.

Despite an ability for LSTM models to embed long-range context, TextCNN and TextLSTM

achieved similar performance. We hypothesize that this results from a property of the notes

that related concepts are located close together, nullifying the long-term memory capabilities

of LSTM. For example, symptoms, findings, etc. are often listed in a bulleted format.

Finally, the SHAP-N values for numerical BUN and creatinine ngrams also cohered with

expertise knowledge, both high BUN and creatinine values are associated with MM.

In summary, this study represents promising evidence that AI-based automated approaches

can be capable of predicting CABG risk and may eventually replace traditional risk models.

We contribute 2 new embedding techniques for numerical values, AttnToNum and ScaleNum,

and straightforward steps to calculate TextCNN SHAP values for ngrams.

Limitations

We did not test transformer models, a class of models which includes BERT and other large

language models (LLM). Such comparative experiments would likely reveal key insights, but

the scope of this paper is already wide and the different techniques and prompts to train these

advanced models can form a large body of analyses. Therefore, we aim to analyze possible per-

formance benefits of including our numerical embeddings with LLMs in future research.

Our numerical embedding operates only on strictly positive numbers due to the log func-

tion. Another implementation could overcome this issue–for example, by clamping the mini-

mum value and adding an offset, or by using a scaling function that is not log.

The hardcoded context hyperparameters that specify the number of left and right tokens

correspond to an apriori injection of domain knowledge into the model. Ideally, these would

not be hyperparameters, but attention weights learned from the data. For small clinical data-

sets, this apriori guidance can boost performance. For large datasets with higher-dimension

embeddings, it may be possible to train more robust attention-transformations.

Reproducibility

Due to the sensitive PHI nature of the data, we release the code to train models on a simulated

dataset sampled from corpora provided by the Python NLTK library [29]. The code can be

found here.
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