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Abstract

The versatile uses of Copper(II) Fluoride (CuF2) are well known; these include its usage as

a precursor in chemical synthesis as well as its contribution to the creation of sophisticated

materials and electronics. There are interesting opportunities to study the interactions

between these elements because of their unique crystal structure, which contains copper

ions and fluoride anions. Its potential in optoelectronic devices and conductive qualities also

make it a viable material for next-generation technologies. To better understand the struc-

tural properties of CuF2 and how they affect its entropy, we present new Zagreb indices in

this study and use them to calculate entropy measures. We also build a regression model to

clarify the relationship between the calculated indices and entropy levels. The findings of

our investigation offer significant understanding regarding the ability of the suggested

Zagreb indices to extract meaningful content and their correlation with entropy in the context

of CuF2. This information is important for understanding CuF2 alloys and for exploring

related complex materials.

1 Introduction

Graph theory is a branch of mathematics that deals with the study of graphs, which are mathe-

matical structures used to model pairwise relations between objects. Within the realm of graph

theory, a graph is a structure made up of nodes, also called vertices, and edges, which are the

connecting lines. The number of vertices incident with a vertex u is called its degree and is

denoted by Λu [1]. A graph’s size can be determined by counting its edges, and its order can be

determined by counting its vertices. These basic ideas serve as the foundation for the analytical

framework that is utilized to comprehend and investigate the wide range of characteristics and

behaviors that graphs display. Graph theory offers a powerful toolkit for analyzing intricate

network topologies and relationships with these fundamental ideas [2].

Topological indices are quantitative tools that provide a way to describe the complex topo-

logical structures that are intrinsic to each graph [3]. The principal benefit of utilizing these

topological indices is their ability to reveal a wide range of characteristics related to molecules,
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chemical compounds, and networks without requiring a thorough understanding of their

structural details. These indices are highly significant, particularly in the fields of drug design,

QSAR studies, and chemical substance property prediction [4]. They simplify the candidate

screening and optimization process, which makes them invaluable in both academic and pro-

fessional settings. Beyond graph theory, topological indices are extremely useful for exploring

and analyzing complicated systems and networks in an effective manner.

The topological index is a mathematical function: Top : F ! R, whereR represents the set

of real numbers and F represents a simple graph. This fundamental concepts asserts that

TopðF 1Þ is identical to TopðF 2Þ if two graphs, F 1 and F 2, are isomorphic [5]. These topologi-

cal indices cover a broad spectrum of numerical forms that capture the structural information

of a graph, such as polynomials, matrices, relational tables, and other numerical representa-

tions [6, 7]. Nadeem et al. [8] discussed the topological aspects of metal-organic structures.

Ahmad et al. [9, 10] analyzed the theoretical study of the energy of phenylene and anthra-

cene. Koam et al. [11] computed the valency-based topological descriptor for Hexagon Star

Networks. It’s also crucial to remember that topological indices do not only describe elemen-

tary graphs. Beyond the domain of simple graphs, they find use in a variety of mathematical

structures, including polynomials, matrices, and relational tables. This makes them adaptable

instruments for assessing and characterizing a wide range of complex systems and networks.

The variety of topological indices makes them more useful for analyzing intricate networks

and systems. The bibliometric evaluation of the keywords connected to the Topological Index

that we conducted is shown in Fig 1.

The Zagreb indices have attracted a lot of attention from the academic community because

of their wide range of applications [12]. Of them, the Forgotten Index is a notable variant from

Fig 1. Applying bibliometrics to analyze the frequency (topological index) of a keyword across published works.

https://doi.org/10.1371/journal.pone.0300757.g001
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the first class [13, 14]. This study introduced two novel types of indices, the Bi-Zagreb and Tri-

Zagreb indices, using an innovative approach. These indices maintain a 1 : 1 ratio in their cal-

culation. In this context, the degree of a vertex y 2 V(G) in graph G is represented as Λy.

Another method that was considered was combining two different topological indices in a

fractional ratio [15].

Topological indices were first developed and applied in many different fields. Wiener, H.,

[16] first introduced them to study the boiling temperatures of paraffin [17]. An investigation

of the entropy measures of polycyclic hydroxychloroquine, for example, was carried out by

Manzoor, S., et al. [18]. This work was done with a focus on the drug’s possible application in

the treatment of COVID-19. Different graph entropy metrics, such as Urelement and Higher-

Order Graphlets, were investigated by Huang et al. [19]. Hayat et al. [20] discussed the

valency-based molecular descriptors for hydrocarbons. The entropy measurements of three

different kinds of PAHs (Polycyclic Aromatic Hydrocarbons) were examined by Julietraja, K.,

et al. [21]. Mondal et al. [22] used a variety of indices to investigate the topological properties

of graphene. Silicon carbide Si2C3 − I[p, q] double and strong double graph indices were exam-

ined by Sardar and colleagues [23]. Hayat and Imran [24] analyze the topological properties of

nanocones. Entropy in relation to the Remdesivir system was the main topic of the study con-

ducted by Feng et al. [25]. Hayat et al. [26] determined the predictive potential of distance-

spectral descriptors for benzenoid hydrocarbons. Correlation and simple linear regression

were covered by Zou and colleagues [27] in their study. The notion of entropy in edge-

weighted graphs was first established by Chen et al. [28] in 2014. The entropy of an edge-

weighted graph is described by Eq 1.

EUðGÞ ¼ �
X

x%2EðGÞ

Cðx
0
%0Þ

P
x%2EðGÞCðx%Þ

log
Cðx

0
%0Þ

P
x%2EðGÞCðx%Þ

" #

ð1Þ

The edge weight within G is graphically depicted as C(ξ %) in this graph.

2 Molecular structure of Copper(II) Fluoride

CuF2 is the chemical formula for Copper(II) Fluoride, also known as Cupric Fluoride. It con-

sists of fluoride (F) ions and copper (Cu) ions in the +2 oxidation state. In the usual crystal lat-

tice structure of Copper(II) Fluoride, fluoride ions surround copper ions, and vice versa. A

coordination polymer, in which each Copper ion is coordinated with a certain number of fluo-

ride ions, is a more accurate description of the crystal structure. The unique crystalline form of

Copper(II) Fluoride determines the precise arrangement of atoms in the crystal lattice. It is

possible for Copper(II) Fluoride to exist in many polymorphs, which means that it can adopt

various crystal forms depending on the temperature and pressure. To meet the coordination

preferences of Copper(II) ions, each copper ion in the crystal is surrounded by a specific num-

ber of fluoride ions. X-ray crystallography, a method for examining the arrangement of atoms

within a crystal, can be used to identify the precise geometric arrangement and spacing

between atoms see Fig 2.

The monoclinic crystal structure of Copper(II) Fluoride is characterized by rectangular

prisms with a parallelogram base [29, 30]. The Jahn-Teller effect in d9 Copper(II) causes a dis-

torted octahedral [4 + 2] coordination, which gives rise to the peculiar geometry. Each copper

ion in this configuration is surrounded by four nearby fluoride ions at a distance of 1.93Å,

while two further fluoride ions are located at a greater distance of 2.27Å. This deformation

resembles the rutile structure of the d4 compound chromium(II) fluoride, or CrF2 [31, 32].

These structural distortions are brought on by the Jahn-Teller phenomenon, which also affects
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how the ions are arranged in space in copper(II) fluoride, giving it its unique crystal structure

see Fig 3.

The crystal structure of CuF2 consists 12mn edges, where m, n� 1 representation of the

growth of the crystal structure of CuF2 horizontally and vertically respectively. More pre-

ciously, the total number of edges whose end verities have degrees (1, 3) are 2m + 2n + 2, the

total number of edges whose end verities have degrees (2, 3) are 4m + 4n − 8, and the total

number of edges whose end verities have degrees (3, 3) are 12mn − 6m − 6n + 6. Also, there

are three types of edges E1, E2 and E3 in the crystal structure of CuF2 based on the degree of the

vertices shown in Table 1.

Fig 2. Unit cell of the anhydrous form for CuF2.

https://doi.org/10.1371/journal.pone.0300757.g002

PLOS ONE On characterization of entropy measure using logarithmic regression model for Copper(II) Fluoride

PLOS ONE | https://doi.org/10.1371/journal.pone.0300757 March 26, 2024 4 / 34

https://doi.org/10.1371/journal.pone.0300757.g002
https://doi.org/10.1371/journal.pone.0300757


3 Computation of topological indices and entropy measures

Considering the previously indicated background, we carefully carried out the calculations for

distinct topological indices. We carefully followed the guidelines provided for each index,

accounting for the distinct features of the structures under investigation. The meticulous com-

putation of these indices provided priceless information about how different parts interact,

how their connections are arranged, and how complicated the systems under investigation are.

Fig 3. Crystal packing in the anhydrous form for CuF2.

https://doi.org/10.1371/journal.pone.0300757.g003

Table 1. Edge partitioning of Copper(II) Fluoride.

Λu, Λv Frequency(F) Set of Edges

(1,3) 2m + 2n + 2 E1

(2,3) 4m + 4n − 8 E2

(3,3) 12mn − 6m − 6n + 6 E3

https://doi.org/10.1371/journal.pone.0300757.t001
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The results of these computations greatly aided in our thorough examination, allowing us to

gain a deeper understanding of the basic ideas and characteristics present in the structures we

are examining.

The Bi-Zagreb index using Table 1 is computed as follows:

BMðGÞ ¼
X

yz2EðGÞ

ððLy þ LzÞ þ ðLy � LzÞÞ

BMðGÞ ¼ ð7Þð2mþ 2nþ 2Þ þ ð11Þð4mþ 4n � 8Þ þ ð13Þð12mn � 6m � 6nþ 6Þ

¼ 180mn � 32m � 32nþ 16:

The Tri-Zagreb index using Table 1 is computed as follows:

TMðGÞ ¼
X

yz2EðGÞ

ððL
2

y þ L
2

zÞ þ ðLy � LzÞÞ

TMðGÞ ¼ ð13Þð2mþ 2nþ 2Þ þ ð19Þð4mþ 4n � 8Þ þ ð27Þð12mn � 6m � 6nþ 6Þ

¼ 324mn � 60m � 60nþ 36:

The Geometric- Tri- Zagreb index using Table 1 is computed as follows:

GTMðGÞ ¼
X

yz2EðGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q

ðL
2

y þ L
2

zÞ þ ðLy � LzÞ

GTMðGÞ ¼
ffiffiffi
3
p

13

� �

ð2mþ 2nþ 2Þ þ
ffiffi
6
p

19

� �
ð4mþ 4n � 8Þ þ

ffiffiffi
9
p

27

� �

ð12mn � 6m � 6nþ 6Þ

¼ 1:3333mnþ 0:1155mþ 0:1155n � 0:09825:

The Geometric-Bi- Zagreb index using Table 1 is computed as follows:

GBMðGÞ ¼
X

yz2EðGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q

ðLy þ LzÞ þ ðLy � LzÞ

GBMðGÞ ¼
ffiffiffi
3
p

7

� �

ð2mþ 2nþ 2Þ þ

ffiffiffi
6
p

11

� �

ð4mþ 4n � 8Þ þ

ffiffiffi
9
p

15

� �

ð12mn � 6m � 6nþ 6Þ

¼ 2:4mnþ 0:1856mþ 0:1856n � 0:0866:

The Geometric-Harmonic index using Table 1 is computed as follows:

GHðGÞ ¼
X

yz2EðGÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q
ðLy þ LzÞ

2

GHðGÞ ¼
ffiffiffi
3
p
ð4Þ

2

� �

ð2mþ 2nþ 2Þ þ

ffiffiffi
6
p
ð5Þ

2

� �

ð4mþ 4n � 8Þ

þ

ffiffiffi
9
p
ð6Þ

2

� �

ð12mn � 6m � 6nþ 6Þ

¼ 108mn � 22:577m � 22:577nþ 11:9384:
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The Harmonic- Tri-Zagreb index using Table 1 is computed as follows::

HTMðGÞ ¼
X

yz2EðGÞ

2

ðL
2

y þ L
2

zÞ þ ðLy � LzÞðLy þ LzÞ

HTMðGÞ ¼
2

52

� �

ð2mþ 2nþ 2Þ þ
2

95

� �

ð4mþ 4n � 8Þ

þ
2

162

� �

ð12mn � 6m � 6nþ 6Þ

¼
4

27
mnþ

2903

33345
mþ

2903

33345
n �

581

33345
:

The Harmonic- Bi- Zagreb index using Table 1 is computed as follows:

HBMðGÞ ¼
X

yz2EðGÞ

2

ðLy þ LzÞ þ ðLy � LzÞððLy þ LzÞÞ

HBMðGÞ ¼
2

28

� �

ð2mþ 2nþ 2Þ þ
2

55

� �

ð4mþ 4n � 8Þ þ
2

90

� �

ð12mn � 6m � 6nþ 6Þ

¼
4

15
mnþ

179

1155
mþ

179

1155
n �

17

1155
:

The Harmonic-Geometric index using Table 1 is computed as follows:

HGðGÞ ¼
X

yz2EðGÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q
ððLy þ LzÞÞ

HGðGÞ ¼
2
ffiffiffi
3
p
ð4Þ

 !

ð2mþ 2nþ 2Þ þ
2
ffiffiffi
6
p
ð5Þ

 !

ð4mþ 4n � 8Þ

þ
2
ffiffiffi
9
p
ð6Þ

 !

ð12mn � 6m � 6nþ 6Þ

¼ 1:3333mnþ 0:56391mþ 0:56391n � 0:06235:

The Bi- Zagreb- Harmonic index using Table 1 is computed as follows:

BMHðGÞ ¼
X

yz2EðGÞ

ðLy þ LzÞ þ ðLy � LzÞðLy þ LzÞ

2

BMHðGÞ ¼
28

2

� �

ð2mþ 2nþ 2Þ þ
55

2

� �

ð4mþ 4n � 8Þ þ
90

2

� �

ð12mn � 6m � 6nþ 6Þ

¼ 540mn � 132m � 132nþ 78:

The Bi- Zagreb Geometric index using Table 1 is computed as follows:

BMGðGÞ ¼
X

yz2EðGÞ

ðLy þ LzÞ þ ðLy � LzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q

BMGðGÞ ¼
7
ffiffiffi
3
p

� �

ð2mþ 2nþ 2Þ þ
11
ffiffiffi
6
p

� �

ð4mþ 4n � 8Þ þ
15
ffiffiffi
9
p

� �

ð12mn � 6m � 6nþ 6Þ

¼ 60mn � 3:954m � 3:954nþ 2:158:
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The Tri- Zagreb Harmonic index using Table 1 is computed as follows:

TMHðGÞ ¼
X

yz2EðGÞ

ðL
2

y þ L
2

zÞ þ ðLy � LzÞðLy þ LzÞ

2

TMHðGÞ ¼
52

2

� �

ð2mþ 2nþ 2Þ þ
95

2

� �

ð4mþ 4n � 8Þ þ
162

2

� �

ð12mn � 6m � 6nþ 6Þ

¼ 972mn � 244m � 244nþ 158:

The Tri- Zagreb Geometric index using Table 1 is computed as follows:

TMGðGÞ ¼
X

yz2EðGÞ

ðL
2

y þ L
2

zÞ þ ðLy � LzÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLy � LzÞ

q

TMGðGÞ ¼
13
ffiffiffi
3
p

� �

ð2mþ 2nþ 2Þ þ
19
ffiffiffi
6
p

� �

ð4mþ 4n � 8Þ þ
27
ffiffiffi
9
p

� �

ð12mn � 6m � 6nþ 6Þ

¼ 108mn � 7:962m � 7:962nþ 6:956:

As numerical descriptors in the field of graph theory, topological indices are mostly used to

explain the structural features of molecules. They are essential to understanding the behavior

and operation of biological and chemical systems. Researchers are better equipped to under-

stand the system they are studying because of the accurate calculation of these numerical

indexes. Our emphasis on degree-based indices customized for CuF2 makes this method very

beneficial. To provide a thorough examination of system features, we have also included

Table 2, which examines the performance of these degree-based indices at various values of m
and n. The data in Table 2 clearly shows that the indices show an increase in tandem with the

increases in m and n values. For more details see Figs 4–8 for a graphic depiction of this

pattern.

As the topological indices go from [1, 1] to [6, 6], their values show a clear and consistent

increasing trend. As illustrated by the growing index values, this tendency reflects a propor-

tional rise in disorder or unpredictability within the system as it grows in complexity or scale.

This observation supports the concept that larger systems often contain a greater number of

microstates, resulting in higher topological index values.

Table 2. Numerical comparative evaluation of distinct computed indices.

Index [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6]

BM(G) 132 608 1444 2640 4196 6112

TM(G) 240 1092 2592 4740 7536 10980

GH(G) 74.7844 353.6304 848.4764 1559.3224 2486.1684 3629.0144

GBM(G) 2.6846 10.2558 22.627 39.7982 61.7694 88.5406

GTM(G) 1.46605 5.6970 12.5945 22.1586 34.3893 49.2866

HG(G) 2.3987 7.5264 15.3207 25.7816 38.9091 54.7032

HBM(G) 0.5619 1.6719 3.3152 5.4918 8.2017 111.4450

HTM(G) 0.3048 0.9234 1.8383 3.0494 4.5569 6.3606

BMG(G) 54.25 226.342 518.434 930.526 1462.618 2114.71

BMH(G) 354 1710 4146 7662 12258 17934

TMG(G) 99.032 407.108 931.184 1671.26 2627.336 3799.412

TMH(G) 642 3070 7442 13758 22018 32222

https://doi.org/10.1371/journal.pone.0300757.t002
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Entropy measures are widely used in data analysis, thermodynamics, and information the-

ory, and they are useful tools for quantifying the degree of uncertainty or information con-

tained in a dataset. They are critical in unraveling the complexities and dispersion of data,

providing researchers with critical insights into the system under investigation. We computed

a variety of standard entropy metrics in a methodical manner. This analytical method helped

us to gain a more complete knowledge of the underlying data and identify the patterns driving

information flow inside the graph. The extensive use of entropy analysis was critical in reveal-

ing the intricate structure and complexities of the edge-weighted graph.

Fig 4. Graphical comparison between BM, TM.

https://doi.org/10.1371/journal.pone.0300757.g004
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When Gffi CuF2, the entropy of the Bi-Zagreb index can be determined by using Table 1

and Eq 2 into Eq 1.

ENTBMðGÞ ¼ logð180mn � 32m � 32nþ 16Þ �
ð2mþ 2nþ 2Þð7Þ logð7Þ
ð180mn � 32m � 32nþ 16Þ

�
ð4mþ 4n � 8Þð11Þ logð11Þ

ð180mn � 32m � 32nþ 16Þ
�
ð12mn � 6m � 6nþ 6Þð15Þ logð15Þ

ð180mn � 32m � 32nþ 16Þ

When Gffi CuF2, the entropy of the Tri-Zagreb index can be determined by using Table 1 and

Fig 5. Graphical comparison between GH, BMG, TMG.

https://doi.org/10.1371/journal.pone.0300757.g005
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Eq 2 into Eq 1.

ENTTMðGÞ ¼ logð324mn � 60m � 60nþ 36Þ �
ð2mþ 2nþ 2Þð13Þ logð13Þ

ð324mn � 60m � 60nþ 36Þ

�
ð4mþ 4n � 8Þð19Þ logð19Þ

ð324mn � 60m � 60nþ 36Þ
�
ð12mn � 6m � 6nþ 6Þð27Þ logð27Þ

ð324mn � 60m � 60nþ 36Þ

When Gffi CuF2, the entropy of the Geometric Tri-Zagreb index can be determined by using

Fig 6. Graphical comparison between GBM, GTM, HG.

https://doi.org/10.1371/journal.pone.0300757.g006
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Table 1 and Eq 2 into Eq 1.
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Fig 7. Graphical comparison between HBM, HTM.

https://doi.org/10.1371/journal.pone.0300757.g007
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When Gffi CuF2, the entropy of the Geometric Bi-Zagreb index can be determined by using

Table 1 and Eq 2 into Eq 1.

ENTGBMðGÞ ¼ logð2:4mnþ 0:1856mþ 0:1856n � 0:0866Þ
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Fig 8. Graphical comparison between BMH and TMH.

https://doi.org/10.1371/journal.pone.0300757.g008
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When Gffi CuF2, the entropy of the Geometric Harmonic index can be determined by using

Table 1 and Eq 2 into Eq 1.

ENTGHðGÞ ¼ logð108mn � 22:577m � 22:577nþ 11:938Þ
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When Gffi CuF2, the entropy of the Harmonic Tri- Zagreb index can be determined by using

Table 1 and Eq 2 into Eq 1.
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When Gffi CuF2, the entropy of the Harmonic Bi-Zagreb index can be determined by using

Table 1 and Eq 2 into Eq 1.

ENTHBMðGÞ ¼ logð0:26667mnþ 0:15498mþ 0:15498n � 0:014719Þ
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PLOS ONE On characterization of entropy measure using logarithmic regression model for Copper(II) Fluoride

PLOS ONE | https://doi.org/10.1371/journal.pone.0300757 March 26, 2024 14 / 34

https://doi.org/10.1371/journal.pone.0300757


Table 1 and Eq 2 into Eq 1.
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When Gffi CuF2, the entropy of the Bi-Zagreb Harmonic index can be determined by using

Table 1 and Eq 2 into Eq 1.
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When Gffi CuF2, the entropy of the Bi-Zagreb Geometric index can be determined by using

Table 1 and Eq 2 into Eq 1.
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Table 1 and Eq 2 into Eq 1.

ENTTMHðGÞ ¼ logð972mn � 244m � 244nþ 158Þ
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When Gffi CuF2, the entropy of the Tri-Zagreb Geometric index can be determined by using

Table 1 and Eq 2 into Eq 1.
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We have also included Table 3 to examine the differences in edge weight entropy across differ-

ent m and n values in order to undertake a thorough examination of the system’s characteris-

tics. Figs 9–12 provide graphical representations of these dynamics for ease of understanding.

Table 3. Comparative entropy analysis for various indices.

Index [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6]

ENTBM 2.4172 3.8348 4.6566 5.2378 5.6878 6.0550

ENTTM 2.4223 3.8359 4.6570 5.2379 5.6878 6.0548

ENTGH 2.3828 3.8180 4.6452 5.2292 5.6809 6.0492

ENTGBM 2.4792 3.8672 4.6790 5.2550 5.7017 6.0667

ENTGTM 2.4808 3.8678 4.6793 5.2550 5.7017 6.0667

ENTHG 2.3828 3.7825 4.6089 5.1960 5.6509 6.0222

ENTHBM 2.3396 3.7362 4.5666 5.1585 5.6177 5.9924

ENTHTM 2.3452 3.7431 4.5715 5.1617 5.6197 5.9937

ENTBMG 2.4793 3.8676 4.6794 5.2553 5.7020 6.0669

ENTBMH 2.3397 3.7964 4.6306 5.2181 5.6719 6.0416

ENTTMG 2.4807 3.8680 4.6796 5.2553 5.7020 6.0669

ENTTMH 2.3463 3.7973 4.6305 5.2179 5.6717 6.0409

https://doi.org/10.1371/journal.pone.0300757.t003
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4 Topology of the networks of indices and entropies

In this section, we have inferred two networks based on a similarity measure given in (2). This

similarity measure was introduced by Inber et al. in [33]. The similarity measure in (2) is based

on Pearson correlation and Euclidean distance. The main objective behind the construction of

such a measure was to capture the highly similar variables in a data set and infer a network

among them. This measure isolates the groups of features from each other which have weak

connections among them, while the variables having high similarity are grouped together mak-

ing a cluster. The obtained network is a disjoint graph consisting of clusters of highly similar

variables.

S ¼ signð$ðXÞÞ �
j$ðXÞj þ 1 �

logðnðXÞ þ 1Þ

maxðlogðnðXÞ þ 1ÞÞ

� �

2
;

ð2Þ

Fig 9. Graphical comparison between ENTBM, ENTTM, ENTGH.

https://doi.org/10.1371/journal.pone.0300757.g009
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In (2), X denotes the matrix of data, ϖ and ν are the correlation and distance functions defined

on the data matrix, respectively. The values lie from −1 to 1 where a value near 1 predicts

highly positively related objects while −1 shows high dissimilarity between the objects. sign
function is used to capture the sign of the relation between objects. This measure is imple-

mented in this paper to capture stronger variables in the set of indices and in the set of entro-

pies. To make the similarity measure stricter the obtained matrix is converted into an

adjacency matrix by taking a power transformation. This adjacency matrix is further utilized

in the ‘igraph’ package in R to construct a network. We have two data sets namely ‘Indices’ and

‘Entropy’ comprising of all the indices and all the entropies, respectively which are computed

above. Each data set is comprised of 12 variables and 8 observations. This work is done in R

using the libraries ‘readr’, ‘RColorBrewer’, ‘gplots’, ‘ggplot2’, ‘knitr’, ‘reshape2’, ‘WGCNA’.

WGCNA is a package that is specially designed to capture such kinds of networks and detect

modules in the field of systems biology, for details see [34].

Fig 10. Graphical comparison between ENTGBM, ENTGTM, ENTHG.

https://doi.org/10.1371/journal.pone.0300757.g010
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The main objective of the paper is to see whether the structure or the topology of the net-

work is preserved after taking entropies of the indices or not. It might show a good sign of con-

nectedness between variables of both data sets which could suggest good mathematical

connections among them. Figs 13 and 14 represent the heatmap of the similarity matrix and

adjacency matrix of the set ‘Indices’, respectively. The green cells in the heatmap show highly

similar variables while the red part shows low similarity.

Figs 15 and 16 show the heatmap of the similarity matrix and adjacency matrix of the data

set ‘Entropy’, respectively.

Next, these adjacency matrices are utilized to infer networks. Figs 17 and 18 show the net-

works of data sets ‘Indices’ and ‘Entropy’, respectively.

We can easily see in both networks the structure is the same which might be considered a

good sign to create mathematical models between variables of both data sets. In the next sec-

tion, such models have been developed by taking variables in the data set ‘Indices’ as indepen-

dent variables whereas the variables in the data set in ‘Entropy’ as dependent variables.

Fig 11. Graphical comparison between ENTHBM, ENTHTM, ENTBMG.

https://doi.org/10.1371/journal.pone.0300757.g011
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5 The logarithmic regression model

We utilized logarithmic regression analysis on our dataset to scrutinize the link between the

dependent and one or more interpreter variables. This method, known as logarithmic regres-

sion, is a nonlinear regression technique in which logarithmic functions are applied to either

the predictor variables or the dependent variable. We employed logarithmic transformations

to identify and model any complicated, nonlinear associations in the data. Using logarithmic

regression approaches, we obtained crucial insights into essential developments and configura-

tions that would have been difficult to identify using typical linear regression techniques. A

logarithmic regression model, represented by the following equation, is an effective tool for

discovering and interpreting detailed correlations in the dataset:

Y ¼ a logXþ b

Here,Y stands for the dependent variable, X for one or more interpreter variables, a and b are

Fig 12. Graphical comparison between ENTBMH, ENTTMG, ENTTMH.

https://doi.org/10.1371/journal.pone.0300757.g012
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Fig 13. Similarity index matrix.

https://doi.org/10.1371/journal.pone.0300757.g013

Fig 14. Adjacency index matrix.

https://doi.org/10.1371/journal.pone.0300757.g014
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Fig 15. Similarity entropy matrix.

https://doi.org/10.1371/journal.pone.0300757.g015

Fig 16. Adjacency entropy matrix.

https://doi.org/10.1371/journal.pone.0300757.g016
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Fig 17. Network indices.

https://doi.org/10.1371/journal.pone.0300757.g017

Fig 18. Network entropy.

https://doi.org/10.1371/journal.pone.0300757.g018
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estimated coefficients, and log stands for the natural logarithm function. This equation cap-

tures the essence of logarithmic regression, allowing us to model and investigate complicated

nonlinear dependencies in our data.

The logarithmic models and associated statistical parameters are presented in Tables 4–7.

A correlation coefficient (R) of one indicates a perfect linear relationship between the vari-

ables. When the independent variable(s) are fully responsible for all variations in the depen-

dent variable, the coefficient of determination (R − squared) is likewise equal to 1. The

standard error (SE) shows how well the fitted regression line matches the data points. Further-

more, the strong F − statistic emphasizes the regression model’s statistical relevance. A higher

F − statistic implies that the model’s independent variables work together more effectively to

explain fluctuations in the dependent variable. To put it another way, a model with a higher F-

statistic fits the data better than one with a lower F − statistic. The notions of Degrees of Free-

dom (df) and Sum of Squares (SS) are critical to comprehending the model’s components. The

sum of Squares (SS) is the percentage of the dependent variable’s variability that can be

explained by one or more independent variables in the model. It determines how closely the

data matches the logarithmic function. Degrees of Freedom (df), on the other hand, relate to

the number of adjustable values considered in the final calculation of a statistic. It denotes the

level of complexity of the model. The metrics SS and df are used to evaluate the goodness of fit

Table 4. Model for regression using logarithmic functions.

Model R R2 SE SS df F
ENTBM = 0.954 log(BM) − 2.266 1 1 0.018 14.221 1 45674.266

ENTTM = 0.955 log(TM) − 2.833 1 1 0.016 14.189 1 58453.766

ENTGH = 0.950 log(GH) − 1.742 1 1 0.019 14.413 1 41426.547

https://doi.org/10.1371/journal.pone.0300757.t004

Table 7. Model for regression using logarithmic functions.

Model R R2 SE SS df F
ENTBMH = 0.949 log(BMH) − 3.251 1 1 0.018 14.654 1 47110.880

ENTTMG = 0.984 log(TMG) − 2.046 1 1 0.003 13.874 1 1443293

ENTTMH = 0.949 log(TMH) − 3.808 1 1 0.017 14.614 1 52862.679

https://doi.org/10.1371/journal.pone.0300757.t007

Table 5. Model for regression using logarithmic functions.

Model R R2 SE SS df F
ENTGBM = 1.023 log(GBM) + 1.479 1 1 0.007 13.882 1 249949.8

ENTGTM = 1.019 log(GTM) + 2.094 1 1 0.003 13.871 1 1358532

ENTHG = 1.147 log(HG) + 1.437 1 0.9999 0.040 14.306 1 8744.978

https://doi.org/10.1371/journal.pone.0300757.t005

Table 6. Model for regression using logarithmic functions.

Model R R2 SE SS df F
ENTHBM = 1.191 log(HBM) + 3.090 1 0.999 0.046 14.447 1 6929.241

ENTHTM = 1.183 log(HTM) + 3.808 1 0.999 0.041 14.405 1 8396.669

ENTBMG = 0.982 log(BMG) − 1.449 1 1 0.006 13.882 1 353790.7

https://doi.org/10.1371/journal.pone.0300757.t006
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of a logarithmic regression model. These metrics provide information about the model’s com-

plexity and how well it compensates for fluctuations in the dependent variable. The graphical

comparisions show the goodness of fit visually, with observed and logarithmic values forming

well-fitting curves.

When compared to ENTBM and ENTGH, the ENTTM F-value is much higher, indicating a

significant overall relevance of the model in explaining the variance in the dependent variable,

as seen in Table 4. R and R2 have same values. We can observe that the data points in Figs 19–

22 approximately fit the curve. This could imply that the model is well-fitting.

Comparing the ENTGTM to ENTGBM and ENTHG, the F-value for the ENTGTM regression

model is noticeably higher, indicating a significant overall relevance of the model in explaining

the variance in the dependent variable, as shown in Table 5. In ENTHG, R and R2 have slightly

different values from each other, but they are identical in ENTGBM and ENTGTM. When com-

pared to the graphical representation in Figs 23–26 the data points closely coincide with the

curve. According to this, the model appears to have a good fit by avoiding the issue of

overfitting.

Comparing the ENTBMG regression model to ENTHBM and ENTHTM, the F-value of

ENTBMG is much higher, indicating a significant overall relevance of the model in explaining

the variance in the dependent variable, as shown in Table 6. Furthermore, R and R2 have

slightly different values from each other. The graphical depiction in Figs 27–30, demonstrates

Fig 19. Graphical representation of the behavior of logarithmic regression (BM VS ENTBM).

https://doi.org/10.1371/journal.pone.0300757.g019
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Fig 20. Graphical representation of the behavior of logarithmic regression (TM VS ENTTM).

https://doi.org/10.1371/journal.pone.0300757.g020

Fig 21. Graphical representation of the behavior of logarithmic regression (GH VS ENTGH).

https://doi.org/10.1371/journal.pone.0300757.g021

PLOS ONE On characterization of entropy measure using logarithmic regression model for Copper(II) Fluoride

PLOS ONE | https://doi.org/10.1371/journal.pone.0300757 March 26, 2024 26 / 34

https://doi.org/10.1371/journal.pone.0300757.g020
https://doi.org/10.1371/journal.pone.0300757.g021
https://doi.org/10.1371/journal.pone.0300757


Fig 22. Graphical representation of the behavior of logarithmic regression (GBM VS ENTGBM).

https://doi.org/10.1371/journal.pone.0300757.g022

Fig 23. Graphical representation of the behavior of logarithmic regression (GTM VS ENTGTM).

https://doi.org/10.1371/journal.pone.0300757.g023
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Fig 24. Graphical representation of the behavior of logarithmic regression (HG VS ENTHG).

https://doi.org/10.1371/journal.pone.0300757.g024

Fig 25. Graphical representation of the behavior of logarithmic regression (HBM VS ENTHBM).

https://doi.org/10.1371/journal.pone.0300757.g025
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Fig 26. Graphical representation of the behavior of logarithmic regression (HTM VS ENTHTM).

https://doi.org/10.1371/journal.pone.0300757.g026

Fig 27. Graphical representation of the behavior of logarithmic regression (BMG VS ENTBMG).

https://doi.org/10.1371/journal.pone.0300757.g027
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Fig 28. Graphical representation of the behavior of logarithmic regression (BMH VS ENTBMH).

https://doi.org/10.1371/journal.pone.0300757.g028

Fig 29. Graphical representation of the behavior of logarithmic regression (TMG VS ENTTMG).

https://doi.org/10.1371/journal.pone.0300757.g029
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that the data points closely fit the curve. This demonstrates that the model has a good fit and

avoids the overfitting problem.

As shown in Table 7, the F-value for the ENTTMG regression model is significantly greater

than that of the ENTBMH and ENTTMH models, showing a strong overall significance of the

model in explaining the variance in the dependent variable. Additionally, the values of R and

R2 are the same. The graphical depiction demonstrates that the data points closely fit the curve.

This demonstrates that the model has a good fit and avoids the overfitting problem.

6 Conclusion

In our study, we introduced two novel versions of Zagreb descriptors: Bi-Zagreb and Tri-

Zagreb descriptors. Furthermore, we used a novel approach to build hybrid descriptors by

merging Geometric, Harmonic, Bi-Zagreb, and Tri-Zagreb indices. These unique descriptors

were thoroughly tested for their ability to predict the physicochemical properties of CuF2. We

used these indices to generate entropy measures and made an important discovery: the newly

developed hybrid descriptors beat their conventional equivalents. We conducted a compre-

hensive analysis that included logarithmic regression investigations to shed light on the inter-

action between these metrics and entropy. In conclusion, our research provides a significant

Fig 30. Graphical representation of the behavior of logarithmic regression (TMH VS ENTTMH).

https://doi.org/10.1371/journal.pone.0300757.g030
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step forward in the field of molecular descriptor analysis, with prospective applications in a

wide range of chemical research and analytical sciences.
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