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Germany, 5 Klinik für Anästhesiologie, Operative Intensivmedizin und Schmerztherapie, Universitätsklinikum
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Abstract

Introduction

An increasing amount of longitudinal health data is available on critically ill septic patients in

the age of digital medicine, including daily sequential organ failure assessment (SOFA)

score measurements. Thus, the assessment in sepsis focuses increasingly on the evalua-

tion of the individual disease’s trajectory. Machine learning (ML) algorithms may provide a

promising approach here to improve the evaluation of daily SOFA score dynamics. We

tested whether ML algorithms can outperform the conventional ΔSOFA score regarding the

accuracy of 30-day mortality prediction.
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Methods

We used the multicentric SepsisDataNet.NRW study cohort that prospectively enrolled 252

sepsis patients between 03/2018 and 09/2019 for training ML algorithms, i.e. support vector

machine (SVM) with polynomial kernel and artificial neural network (aNN). We used the

Amsterdam UMC database covering 1,790 sepsis patients for external and independent

validation.

Results

Both SVM (AUC 0.84; 95% CI: 0.71–0.96) and aNN (AUC 0.82; 95% CI: 0.69–0.95) assess-

ing the SOFA scores of the first seven days led to a more accurate prognosis of 30-day mor-

tality compared to the ΔSOFA score between day 1 and 7 (AUC 0.73; 95% CI: 0.65–0.80; p

= 0.02 and p = 0.05, respectively). These differences were even more prominent the shorter

the time interval considered. Using the SOFA scores of day 1 to 3 SVM (AUC 0.82; 95% CI:

0.68 0.95) and aNN (AUC 0.80; 95% CI: 0.660.93) led to a more accurate prognosis of 30-

day mortality compared to the ΔSOFA score (AUC 0.66; 95% CI: 0.58–0.74; p < 0.01 and p

< 0.01, respectively). Strikingly, all these findings could be confirmed in the independent

external validation cohort.

Conclusions

The ML-based algorithms using daily SOFA scores markedly improved the accuracy of mor-

tality compared to the conventional ΔSOFA score. Therefore, this approach could provide a

promising and automated approach to assess the individual disease trajectory in sepsis.

These findings reflect the potential of incorporating ML algorithms as robust and generaliz-

able support tools on intensive care units.

Introduction

The sequential organ failure assessment (SOFA) score has been widely used in the evaluation

of critical ill patients since its development in the early 1990s. As one of the most commonly

used scoring systems in clinical practice on intensive care units (ICUs), the SOFA score has

been demonstrated as an effective tool for evaluating the prognosis of patients suffering from

sepsis [1, 2]. With the Sepsis-3 definition, the SOFA score became a key element in identifying

sepsis and is now a major criterion in diagnosing sepsis [3]. Furthermore, it objectively

describes the degree of a sepsis-associated organ dysfunction, helping to evaluate disease sever-

ity and progression [4].

The daily assessment of patients’ organ dysfunction by using the SOFA score in the ICU

represents a valuable outcome indicator [4]. In addition, it is increasingly used to determine

the efficacy of novel therapeutic agents, and is accepted by the European Medicines Agency as

an endpoint in exploratory trials [5]. Daily SOFA scores are more and more routinely docu-

mented as longitudinal health records in sepsis patients, offering robust information about the

disease trajectory and therapeutic success. However, the evaluation of longitudinal SOFA

score data should be performed in a standardized manner supporting generalizability.

The trajectory of the SOFA score can be described by several approaches of which the

ΔSOFA is the most popular [2]. The change between the SOFA score at ICU admission and a
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day in the further course is most frequently used. In this context, the ΔSOFA score between

day 1 and 7 was able to predict the 28-day prognosis of sepsis patients [6]. However, using the

ΔSOFA also has potential limitations as it does not sufficiently reflect the baseline severity and

neglects the alterations of the days between the delta, which may limit the generalizability of

ΔSOFA prediction models [7, 8].

Machine learning (ML) has also been utilized with increasing frequency in the field of med-

icine in recent years, and is regarded as a robust and effective method, especially in reflecting

individual disease trajectories [9–12]. Several studies have convincingly demonstrated that ML

models can outperform traditional clinical scoring approaches, including the prediction of

mortality risk in septic patients [13, 14]. Thus, implementing ML algorithms in assessing the

longitudinal measurement of the SOFA score may help to overcome several limitations inher-

ent in the ΔSOFA approach. The assessment of longitudinal data, including the daily SOFA

score, by using ML algorithms no longer represents a technical challenge in the digital age of

medicine, with the widespread availability of electronic health records. Thus, ML-based mod-

els to evaluate longitudinal SOFA score data could offer a promising opportunity to apply

computational approaches beyond existing conventional ΔSOFA models that are translatable

into clinical routine.

Therefore, we tested the hypothesis that ML-based analysis of daily SOFA scores covering

the first seven days after sepsis diagnosis leads to a more accurate prediction of 30-day mortal-

ity than using the conventional ΔSOFA approach.

Materials and methods

Study design and conceptual overview

In this study, we analyzed two independent non-overlapping intensive care cohorts. The first

was the prospectively enrolled, multicentric study cohort that was used to train (derivation

cohort) the ML algorithms to predict 30-day mortality using daily SOFA scores between day 1

and 7. The second was the retrospective monocentric database that was used as a validation

cohort. The ML-based algorithms were each compared to the ΔSOFA score of day 1 to 7, as

described by Karakike [6]. In addition, shortened time intervals were additionally examined

between day 1 and 3 as well as day 1 and 5, and compared with the respective ΔSOFA score.

Study cohorts

The first cohort consisted of prospectively enrolled critically ill adult septic patients fulfilling

the Sepsis-3 criteria as part of the multicentric SepsisDataNet.NRW study (German clinical

trial registry: DRKS00018871, http://www.sepsisdatanet.nrw). These patients were recruited

over a two-year period between March 1, 2018, and December 31, 2019 in the ICUs of seven

German university hospitals. After ethical approval (Ruhr-University Bochum, registry num-

ber 5047–14), 252 patients were included in this study following the acquisition of written

informed consent. Subsequently, these patients were considered for the final analysis using the

clinical parameters listed in the ethical approval and study protocol. The study protocol of the

SepsisDataNet.NRW cohort allowed patients to be included up to 72 h after sepsis diagnosis.

Since the SOFA score from day 1 is of major importance in our work, we only considered

patients in our analysis, who were included into the prospective cohort on day one of sepsis

diagnosis (Fig 1).

Study data were used to calculate the daily SOFA score and assessment of 30-day mortality.

The SOFA score was calculated by a local independent physician at each site and validated

against an automatically derived SOFA score based on the documentation in the study data-

base. In case of non-matching scores, the SOFA score was additionally determined by a second
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independent physician, in order to clarify the inconsistency. All methods were performed fol-

lowing the relevant guidelines and regulations. All research has been performed in accordance

with the Declaration of Helsinki.

The validation cohort consisted of a large retrospective database of intensive care admis-

sions from the Amsterdam UMC between January 1, 2003, and December 31, 2016 (last access

date: September 14, 2020). This is a publicly accessible database that, following privacy and

ethics audits, provides anonymized patient data for research purposes [15]. Septic patients

were identified in this database as described by Komorowski et al. [16]. Only ‘urgent’ patients

in need of antibiotic treatment and a SOFA score of 2 or more were considered as septic

patients. ‘Non-urgent’ patients, patients without antibiotic treatment or with SOFA score < 2

on day 1 were excluded. Age< 18 years at the time of ICU admission, non-documented

30-day survival status, insufficient data collection for the calculation of the SOFA score or

readmission to the ICU within the study period led to exclusion in both cohorts (Fig 1). The

number of missing values was <1% in the derivation cohort and about 8% in the validation

cohort. For missing values (except for SOFA score day 1, which led to exclusion if missing),

Fig 1. Flow charts for the identification of the final analysis cohort. a) 54 patients were excluded from 324 patients recruited to the SepsisDataNet.NRW study due to

onset of sepsis> 24h ago after recruitment, while another 4 patients were excluded due missing SOFA Score on day 1, which was essential for our approach. Finally, 14

patients were excluded due to missing 30d follow-up. The remaining 252 patients were included in the analysis. b) Of the 20,109 unique patients in the Amsterdam

UMCdb 14,165 were excluded because they were classified as ‘non-urgent.’ Furthermore, 4,150 patients were excluded because they did not meet the sepsis 3 criteria

and another 4 patients were excluded due to missing data. The resulting 1,790 patients were included in the analysis.

https://doi.org/10.1371/journal.pone.0300739.g001
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the last available SOFA score was carried forward to handle missing values. The patients in

both cohorts were anonymized. The authors had no access to information that could identify

individual participants.

Data extraction and preprocessing

Hospital information system data were extracted for each patient, including the parameters for

calculating the SOFA score. If multiple SOFA score assessments were available per 24-h

period, according to our predefined data processing approach, the worst value (highest SOFA

score value) per day was used for the study analysis.

Calculation of the SOFA score

The components of the SOFA score (central nervous system, renal, liver, cardiovascular, respi-

ratory and coagulation) for each 24 h period were calculated for the first seven days. We strictly

followed the general guidelines and proposals for calculating the SOFA score as described by

Lambden et al. [17]. Regarding sedated patients, the last pre-intubation Glasgow Coma Score

was carried forward throughout sedation. If the Glasgow Coma Score prior to sedation was

unknown, a value of 15/15 was recorded and carried forward to all following days ensuing

intubation. The last available SOFA score was carried forward until day 7 in case of death or

ICU discharge before day 7. We calculated the ΔSOFA score using the previously described

procedure as ΔSOFA = (SOFA day x—SOFA day 1) * 100 / SOFA day 1, where day x was either

day 3, 5, or 7 [6].

Development of the classification model

The SOFA scores for each of the first seven days after the diagnosis of sepsis were used as fea-

tures to develop and compare different classification models based on the prospective deriva-

tion cohort. All models aimed to predict the 30-day survival of the sepsis patients included.

Although additional variables would have likely improved mortality prediction accuracy, all

ML-based models were limited to the use of the summarized value of the SOFA score (i.e the

total sum) as an input variable to allow a direct comparison with the ΔSOFA approach and

maintaining simplicity.

Various ML algorithms were compared to optimize the prediction model. We used logistic

regression, linear discriminant analysis, random forest, support vector machines (SVM) with

linear kernel, SVM with polynomial kernel, artificial neural networks (aNN) and aNN with

feature extraction using a principal component analysis.

The models were trained with a five times repeated 10-fold cross-validation approach to

reduce bias and prevent overfitting [18]. The distributions of the AUC within the cross-valida-

tion are plotted as histograms for all models in S1 File. The area under the receiver operator

characteristic curve (AUROC) was used as the optimization criterion for the optimization of

hyperparameters. The mean AUROCs after cross validation and its 95% confidence intervals

(CIs) were used to compare the different classification models. Each model was validated

using the retrospective validation cohort (Fig 2). In addition, each of the classification algo-

rithms was trained using only the SOFA scores of days 1 to 5 as features (classification model

with five features) as well as the SOFA scores of days 1 to 3 (classification model with three fea-

tures). The procedure for these models with smaller feature subsets was the same as for those

with the SOFA scores of the first seven days. All developed classifier models and instructions

on how to apply them can be accessed in S2 File.
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Statistics

Continuous variables are presented as means ± standard deviation in the case of normal distri-

bution and as median and interquartile range (25th; 75th percentile) in the case of non-nor-

mally distributed variables. The AUROCs of the different classification models were compared

using the method described by Hanley et al. [19]. This method was chosen for its suitability in

evaluating paired outcomes, a relevant consideration in our study where models were applied

to the same dataset. Hanley’s approach accounts for the pairing of results, providing a robust

assessment of differences in discriminatory performance among various models. In a second

step, a receiver operator characteristic (ROC) analysis of 30-day mortality was used to define

ΔSOFA cutoff values with the Youden Index to discriminate between predicted survivors and

predicted deaths for each time period assessed. Regarding the ML models, the cutoff was set at

0.5. If the predicted probability of mortality within 30 days was greater than 0.5, the patient

was classified as deceased. Survival analysis were graphically assessed by Kaplan-Meier curves.

The sensitivity, specificity, and the positive and negative predictive value were calculated for

each algorithm. Reclassification analyses using net reclassification improvement (NRI) and

Fig 2. Flow of the data extracted from the ICIS databases. Firstly, the raw data was extracted and the SOFA scores per day for the first seven days were

calculated. These scores were used as features in the machine learning (ML) process. The ML algorithms were trained and then tested. The test results, in the

form of receiver operator characteristics (ROCs) were evaluated and statistically compared to the ΔSOFA score. The same workflow was done for the data

extracted from the validation cohort with the exception of the ML training process. The ROCs yielded from this validation cohort were compared to those from

the derivation cohort.

https://doi.org/10.1371/journal.pone.0300739.g002
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integrated discrimination improvement (IDI) were used to assess the added value of ML-

based algorithms compared to the corresponding ΔSOFA score [20]. The retrospective design

did not involve a priori sample size calculation, but post hoc considerations were informed by

our experience and assessment. Sample size planning, crucial for training machine learning

algorithms, employed a multiple regression analysis with a maximum of 7 variables in the final

model (trajectory of SOFA Score between day 1 to 7). Assuming an 80% power, 5% signifi-

cance level, and a Cohen’s f2 effect size of 0.35, a sample size of up to 68 septic patients is con-

sidered appropriate, as determined using R version 4.3.1 (R Core Team, 2023) and the “PWR”

package version 1.3–0 (Champely, 2020). While machine learning methods typically demand a

larger sample size than linear regression, we consider our sample size of 252 septic patients to

be adequate.

The statistical analyses as well as the learning, testing and validation of the ML algorithms

were performed using the software R (R version 3.5.3; The R Foundation for Statistical Com-

puting; http://www.R-project.org). A two-sided p-value < 0.05 was considered statistically sig-

nificant. The CIs were calculated with 95% coverage.

Results

Cohort description

A total of 252 septic patients from seven ICUs were included in our study for final analysis

(Fig 1, S1 Table). The cohort consisted of 160 male patients (64%) and the mean age was 65 (±
14) years. The median SOFA score at study inclusion was 8 (IQR: 5–11). The independent vali-

dation cohort consisted of 1,790 patients admitted to the ICU of the Amsterdam UMC. Males

comprised 1085 of 1790 subjects (60%) and 58% (1041 of 1790) of all patients were aged

between 50 and 79 years. An overview of further baseline characteristics is provided in Table 1

and S1 Table.

Performance of ΔSOFA score for the prediction of mortality in the

derivation cohort

We generated a ROC for the derivation cohort (Fig 2) to validate the ΔSOFA algorithm pro-

posed by Karakike et al. [6]. Here, the ΔSOFA score between day 1 and 7 (ΔSOFA7) yielded an

AUROC of 0.727 (95% CI: 0.654–0.800) (Table 2). The AUROCs for shorter time periods were

0.695 (95% CI: 0.620–0.770) for Δ of day 1 to day 5 (ΔSOFA5) and 0.661 (95% CI: 0.584–

0.738) for Δ of day 1 to 3 (ΔSOFA3) (Table 2). As a side note, the isolated examination of the

SOFA score on the first day yielded an AUROC of 0.76 (95%-CI: 0.70–0.82) for predicting

30-day mortality.

Machine learning algorithms’ performance in the derivation cohort

We trained and tested seven ML algorithms for three time spans. We selected an aNN and a

SVM with polynomial kernel for further analysis. Both ML algorithms showed significantly

higher AUROCs over seven days than the ΔSOFA7 score. On the other hand, there was no signif-

icant difference between the two ML algorithms with the aNN showing an AUROC of 0.822

(95% CI: 0.692–0.951) and the SVM algorithm yielding 0.837 as AUROC (95% CI: 0.712–0.963;

Table 2). The predictive power of the ML algorithms for shorter timespans remained stable

(AUROC of the SVM was 0.824 for five days and 0.816 for three days; Table 2). Both ML algo-

rithms significantly outperformed the ΔSOFA7, ΔSOFA5 and ΔSOFA3 for all three time-intervals

assessed (Table 2). The performance results of all ML-based models are provided as S2 Table. An

insight into the feature importance of the aNN and SVM models, as well as two example cases
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with a breakdown of the prediction process, can be found in S3 File. Sensitivity and specificity

regarding the performance of the aNN and SVM models can be found in S3 Table.

Comparison and performance of the machine learning classification

models in the validation cohort

Both ML algorithms reproduced similar AUROCs in the validation cohort compared to the

derivation cohort for seven days (aNN: AUROC = 0.817, p = 0.88, SVM: AUROC = 0.819,

Table 1. Base characteristics of the derivation and validation cohort.

Derivation cohort (n = 252) Validation cohort (n = 1790)

Age yrs. (IQR) 66 (56; 76) n/a*
• 18–39 yrs., n (%) 19 (8) 306 (17)

• 40–49 yrs., n (%) 16 (6) 233 (13)

• 50–59 yrs., n (%) 47 (19) 322 (18)

• 60–69 yrs., n (%) 69 (27) 393 (22)

• 70–79 yrs., n (%) 61 (24) 326 (18)

• 80+ yrs., n (%) 40 (16) 214 (12)

Male sex, n (%) 160 (64) 1085 (60)

Admission SOFA Score (IQR) 8 (5; 11) 8 (5; 10)

• Central nervous system 1 (0; 4) 2 (0; 4)

• Renal 1 (0; 3) 0 (0; 0)

• Liver 0 (0; 0) 0 (0; 0)

• Coagulation 0 (0; 0) 0 (0; 1)

• Cardiovascular 3 (0; 4) 4 (1; 4)

• Respiratory 2 (1; 3) 2 1; 3)

Mechanical ventilation, n (%) 186 (90) 1618 (89)

ICU length of stay, days (IQR) 7.5 (2.9; 14.9) 3.9 (1.8; 9.4)

Comorbid condition, n (%)

• Alcoholism 16 (9)

• Hypertension 123 (70)

• Chronic kidney disease 40 (23)

• COPD 26 (15)

• Other lung disease 17 (10)

• Diabetes mellitus 53 (30)

• Obesity 49 (28)

• Cardiovascular disease 69 (39)

• Malignancy 40 (23)

• Nicotine dependence 38 (22)

• Dialysis 10 (6)

• Organ transplantation 27 (15)

Laboratory value, day 1 (IQR)

• C-reactive protein, mg/dl 16.3 (9.3; 26.6)

• Procalcitonin, ng/ml 3.0 (0.5; 12:3)

• Lactate, mmol/l 1.4 (1.9; 2.2)

• White blood cells, n/μl 14 (9; 19)

30-day mortality, n (%) 76 (30) 462 (26)

Data are presented as n (%); median, IQR (25th, 75th percentile)

*Due to data protection laws, age is not accessible in the Amsterdam UMC database

https://doi.org/10.1371/journal.pone.0300739.t001

PLOS ONE Assessing SOFA score trajectories in sepsis using machine learning

PLOS ONE | https://doi.org/10.1371/journal.pone.0300739 March 28, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0300739.t001
https://doi.org/10.1371/journal.pone.0300739


p = 0.59, Table 3). Equivalently, AUROCs of 0.799 and 798 (aNN and SVM) and 0.766 and

0.776 (aNN and SVM) were shown for five days and three days, respectively. In like manner,

the ΔSOFA algorithm also showed similar AUROCs in the validation cohort to the derivation

cohort (AUROC = 0.689, p = 0.34 at day 7, 0.673, p = 0.59 at day 5 and 0.642, p = 0.65 at day 3;

Table 2.)

Performance of ΔSOFA compared to artificial neural networks regarding

prediction accuracy

Regarding possible improvements in patient discrimination, we compared the ΔSOFA to the

aNN in further detail. Considering the NRI and integrated IDI, we observed a significant

improvement in the prediction accuracy for all time periods observed. The aNN7 versus

ΔSOFA7 showed a category-free NRI of 30.6%, resulting in the correct reclassification of

nearly 1/3 of patients via ML (NRI 30.6%, 95% CI (17.8–43.2%), p< 0.01, IDI 0.361, p< 0.01).

This significant improvement was reproduced for the time period between day 1 and 5 (NRI

21.5%, 95% CI (7.4–34.6%), p< 0.01, IDI 0.244, p< 0.01), and day 1 and 3 (NRI 29.6%, 95%

CI (16.2–42.4%), p< 0.01, IDI 0.302, p< 0.01). A further subset of the NRI is provided in

Table 3.

Analysis of the Kaplan-Meier curves confirmed the improvement, particularly regarding

the prediction of survivors. Whereas according to ΔSOFA7, 111 of 252 cases were expected to

die within 30 days, in fact, 176 patients were still alive at that time point. This corresponds to a

proportion of 54% of the cases in which death was incorrectly estimated. Using the aNN, mor-

tality could be predicted significantly more accurately, with only 17% of all cases predicted to

die still alive after 30 days (Fig 3). Kaplan Meier curves for ΔSOFA5 vs. aNN5 and ΔSOFA3 vs.

aNN3 are available in S4 File.

Table 2. Areas under the receiver operator characteristic curve (AUROC) of the ΔSOFA score and the machine learning (ML) classifier models for the derivation

and validation cohort.

Derivation cohort Validation cohort

Algorithm AUROC 95 % CI Statistically different to

ΔSOFA

AUROC 95 % CI Statistically different to derivation

cohort

Day 1 to

7

ΔSOFA 0.727 0.654–0.800 N/A 0.689 0.659–

0.719

p = 0.34

SVM with polynomial

Kernel

0.837 0.712–0.963 p = 0.02* 0.819 0.768–

0.871

p = 0.59

aNN 0.822 0.692–0.951 p = 0.05* 0.817 0.766–

0.869

p = 0.88

Day 1 to

5

ΔSOFA 0.695 0.620–0.770 N/A 0.673 0.643–

0.703

p = 0.59

SVM with polynomial

Kernel

0.824 0.694–0.953 p < 0.01* 0.798 0.744–

0.851

p = 0.45

aNN 0.801 0.666–0.937 p = 0.04* 0.799 0.745–

0.852

p = 0.96

Day 1 to

3

ΔSOFA 0.661 0.584 – 0.738 N/A 0.642 0.612–

0.672

p = 0.65

SVM with polynomial

kernel

0.816 0.684–0.947 p < 0.01* 0.776 0.721–

0.832

p = 0.25

aNN 0.797 0.661–0.933 p < 0.01* 0.766 0.710–

0.823

p = 0.39

Both ML algorithms outperformed the ΔSOFA score for all time spans tested. All results could be reproduced in the validation cohort. Support Vector Machine: SVM,

artificial neural network: aNN.

https://doi.org/10.1371/journal.pone.0300739.t002
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Discussion

The main findings of this study are that: 1) ML-based algorithms outperformed the accuracy

regarding 30-day mortality prediction compared to the conventional ΔSOFA approach when

assessing daily SOFA score measurements. This advantage was even more evident when

shorter time intervals were applied (i.e. ICU day 1 to 3). 2) ML-based algorithms achieved a

comparably robust performance in the independent external validation cohort in contrast to

the ΔSOFA, suggesting an easier generalizability and translatability.

Using ML algorithms for the prediction of patient prognosis

With the progress of digitalization, a wide range of patient-related information has been col-

lected on ICUs over time, generating clinical big data considering the entire length of the ICU

stay. These longitudinal data seem particularly well suited to describe the individual course of

a complex disease such as sepsis, thus, providing an important aspect towards precision medi-

cine in critically ill patients [21]. Here, recent research has clearly demonstrated that the inclu-

sion of multiple variables into ML-based prediction models in a complex and dynamical

disease such as sepsis had significant advantages, although several of the variables were either

difficult to analyze or not routinely used [22].

In this regard, building robust prediction models for general purpose has often previously

been neglected in favor of maximizing prognostic accuracy by implementing an intricate set of

Table 3. The AUROC, the net reclassification improvement (NRI) and the Integrated Discrimination Index (IDI) of the Δ SOFA approach vs. aNN are shown.

Values 95 % CI p-value

Day 1 to 7 AUROC

Δ SOFA 7d 0.727 (0.654–0.800) N/A

aNN 7d 0.822 (0.692–0.951) p = 0.05

NRI

Category-free NRI (%) 30.6 (17.8–43.2) p < 0.01

% of survivors correctly reclassified 26.6

% of deceased correctly reclassified 4.0

IDI 0.361 (0.244–0.483) p < 0.01

Day 1 to 5 AUROC

Δ SOFA 5d 0.695 (0.620–0.770) N/A

aNN 5d 0.801 (0.666–0.937) p = 0.04

NRI

Category-free NRI (%) 21.5 (7.4–34.6) p < 0.01

• % of survivors correctly reclassified 32.2

• % of deceased correctly reclassified -10.7

IDI 0.244 (0.127–0.358) p < 0.01

Day 1 to 3 AUROC

Δ SOFA 3d 0.661 (0.584–0.738) N/A

aNN 3d 0.797 (0.661–0.933) p < 0.01

NRI

Category-free NRI (%) 29.6 (16.2–42.4) p < 0.01

• % of survivors correctly reclassified 39.0

• % of deceased correctly reclassified -9.4

IDI 0.302 (0.188–0.407) p < 0.01

The NRI is further divided into the proportions of patients who were correctly reclassified as survivors or deceased. The aNN showed a significant improvement in

prediction for all time periods considered. This was achieved predominantly by obtaining a better discrimination of survivors using the ML algorithm.

https://doi.org/10.1371/journal.pone.0300739.t003
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input variables. Consequently, although ML and artificial intelligence for assessing complex

patient data has been available for years, the translation into new prediction-support tools, use-

able in clinical routine, is generally lacking. A major problem is the limited reproducibility in

an independent cohort, which hinders generalizability and translation. The high extent of

missing variables in the validation datasets, due to implementing uncommon and rare sets of

input variables, makes broad application across different ICU settings especially difficult. In

addition, physicians lack confidence in algorithms that use large, complicated datasets due to

the lack of comprehensibility [23, 24]. However, a certain level of trust in ML-based models by

potential users is an important factor that is often underestimated [25]. Our approach holds

the advantage that users merely need to input a clinically established variable–the SOFA

Score–into the ML model. The simplicity of this process ensures a certain degree of traceabil-

ity, given the low dimensionality and clarity of our input data. Consequently, we contend that

simpler AI approaches will gain greater acceptability and face fewer justifiable concerns.

Despite the digital age of medicine, the 25-year-old SOFA is still a key element in the diag-

nosis and assessment of the severity of sepsis worldwide, without the need for technological

support [26]. Consequently, recent research groups also aimed to adopt the development of

ML-based algorithms into a more pragmatic approach and limited the input variables, for

example, to the six components of the SOFA score on day 1 [27]. By analyzing these variables

using artificial intelligence, their results yielded a promising prediction of 30-day mortality,

and these results were still understandable for most ICU physicians, thus, supporting their

clinical acceptance. We also deliberately chose a pragmatic approach in our study to minimize

the potential skepticism and did not enforce maximizing prognostic enrichment by using only

the daily SOFA scores as an input variable. Indeed, the ML-based algorithm outperformed the

Fig 3. Kaplan Meier curves, cross-tabulations and the proportion of patients who survived for the a) ΔSOFA score (day 1 and 7, cutoff via Youden

Index = 0.35) and b) artificial neural network (aNN) (day 1 till 7). Both models showed an adequate performance in detecting survivors. However, the

ΔSOFA score incorrectly predicted death within 30 days for a high number of cases. A total of 54% of the patients who were predicted as deceased

according to ΔSOFA score was still alive after 30 days. This percentage could be reduced to 18% by using the artificial neural network.

https://doi.org/10.1371/journal.pone.0300739.g003
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accuracy regarding 30-day mortality prediction compared to the conventional ΔSOFA without

requiring additional data input.

This superior performance of ML-based models is partially attributable to their ability to

learn the latent structure and complex relationships even from simple input datasets. This

includes temporary trends and undulations even from low-level input data, such as in our

study, solely using daily SOFA score measurements. Due to their internal ‘memory’ mecha-

nism, ML-based mortality prediction based on time series of the SOFA score can learn and

handle these dynamic and complex temporal patterns [28]. Such crucial information is

neglected in conventional models, especially when assessing only the boundary values (i.e.

start and end day) of a time interval, as it is the case in ΔSOFA.

The benefit of ML algorithms compared to ΔSOFA in clinical application

Reproducibility and generalizability is of relevance in the development of suitable tools for

translation into clinical routine. We validated the ML-based algorithms and ΔSOFA in an

independent external cohort; it resulted in no statistically significant difference to the deriva-

tion cohort. In addition to the outperformance of the ML algorithms regarding the AUC, espe-

cially the lack of ability in detecting survivors of ΔSOFA (i.e. low specificity) remained.

Accordingly, the issue concerning the reproducibility of Karakike et al.’s approach, as evident

in their own validation cohort, also became apparent in both of our cohorts, questioning the

widespread usability of the ΔSOFA approach for mortality prediction [6]. Our models were

trained in a derivation cohort with a very low density of missing values (< 1%), which rarely

occurs in the normal clinical setting. Strikingly, the ML models still showed robust perfor-

mance in the validation cohort with higher frequency of missing values (approx. 8%). This

indicates that our ML algorithms were indeed able to handle this higher degree of missing val-

ues by using our simple approach (last SOFA score carried forward) in a regular clinical

setting.

In addition to the reliability of the test, the time from diagnosis until robust prediction

results are available is of particular importance. It is desirable to receive a reliable feedback as

early as possible because the initiation of sepsis therapy is time-critical and contributes signifi-

cantly to the outcome [29]. However, the time period between day 1 and 7 needed for the

ΔSOFA score in critically ill patients is rather long to provide prognostic information on

patient outcome and, therefore, impractical. The ML appeared to be well suited for the evalua-

tion of longitudinal data [30] and previous studies showed that including SOFA score mea-

surements beyond day 5 of sepsis patients on ICU did not improve the accuracy to predict

mortality when creating multivariate models [31]. Therefore, we also assessed whether shorter

time spans also lead to robust results when using our ML approaches. Strikingly, the ML algo-

rithms still yielded sufficiently high AUROCs for five days and even for three days, which

could also be successfully reproduced in the validation cohort. By contrast, the ΔSOFA score

performed significantly worse for shorter time spans in our data, as supported in the literature

[6]. Impressively, ML algorithms demonstrated a more robust prediction of 30-day mortality

within three days from diagnosis compared to the ΔSOFA score over a seven-day period.

Regarding this important aspect, a useful tool has been created with relevant clinical benefits,

since the physician can receive feedback on his/her therapy within a reduced period of time.

With further research and validation, approaches like ours, uniting manageable datasets with

the advanced opportunities of ML, could update the dynamic mortality prediction of sepsis

patients in real time. These models with simplified input do not have to be limited solely to the

SOFA score, but can be extended with other simple parameters, such as serum lactate concen-

tration and age, to further improve their predictive accuracy as other studies indicated [32]. A
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convincing advantage of this pragmatic approach is that these ‘simple’ ML algorithms can, even

now, be easily integrated into the existing ICIS systems on ICUs. However, an important aspect

that needs to be considered, is that the application of such ML-based support tools in clinical

routine is accompanied by significant regulations in many countries. At least in Europe, there is

a significant regulatory overhead, as ML-based support tools must adhere to the European Med-

ical Devices Regulation. This important regulatory aspect must be addressed before such a ML-

based support tools are allowed be implemented in clinical routine.

The ML-based algorithms and the ΔSOFA approach showed comparable probability esti-

mations regarding predicting 30-day survival in our cohort of septic patients, however,

ΔSOFA significantly overestimated the probability of death, as evident from Kaplan Meier

curves and NRI. The magnitude of error aside, the latter could contribute to a scenario in

which clinicians suffer from alarm fatigue and fail to identify critically ill patients, which is a

major concern regarding automatized early warning systems on ICUs [33]. The ML-based

algorithms can be easily automated, thus, they are also well suited to capitalize on the emerging

demand and availability of electronic health record data.

In this context, our findings illuminate the potential of ML-based prediction models to

enhance clinical decision-making by serving as early-warning systems. In accordance with

recent literature, we are confident that these intelligent support tools can empower attending

physicians to allocate their attention more effectively to patients at the highest risk, thereby

contributing to improved outcomes. Previous studies have compellingly demonstrated that

ML-based algorithms designed for sepsis prediction significantly enhance outcomes by

prompting early vigilance among attending physicians for high-risk patients [34]. Applied to

our work, this capability could facilitate a focused allocation of attention to patients requiring

therapeutic or diagnostic interventions, thereby alleviating the risk of crucial information

being overlooked—particularly in the data-dense environment of the ICU.

Another interesting finding is that the performance of the individual ML algorithms

showed minor differences. Therefore, based on our data and the pragmatic approach, complex

algorithms are not inevitably beneficial, since simple algorithms such as logistic regression also

delivered stable performance (S2 Table).

Limitations

A limitation of the present study is that that the number of patients in our derivation cohort,

specifically for training ML models, is relatively small. In our work, we deliberately chose the

approach of using the smaller, prospective cohort to train the ML models because of the con-

firmed sepsis diagnosis, the high number of complete datasets and confirmed follow-up. The

potential bias from overfitting the models was weighed against the potential selection bias in a

retrospective cohort, which is a common issue particularly in sepsis [35]. Since we used rather

simple input variables (i.e., SOFA score 1–7) and an independent validation cohort to detect

overfitting, we decided to train on the high quality but smaller dataset.

A potential bias in our ML models is the fact that a number of patients have deceased dur-

ing the time periods considered (i.e., 7, 5, and 3 days), which may have affected the learning

effect. Even if less than half of all deaths among the derivation cohort occurred within the first

7 days (S4 Table), after analysis of the feature importance a balanced ratio of the variables

within the models is present (S3 File) and the AUROC could be reproduced in the indepen-

dent validation cohort, it cannot be completely ruled out that this may have limited the perfor-

mance of our models.

Moreover, whereas the validation of 30-day survival prediction was largely consistent

between the retrospective and prospective datasets, there was more variability concerning
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some baseline parameters that should not be neglected. A possible reason for this might be

structural differences between the retro- and prospective datasets, for example, changes in

treatment or age cohort over time and different regional treatment patterns. Strikingly, our

trained ML models still performed robustly in the validation cohort even when considering

potential temporal changes (S5 Table). Thus, the strength of our approach is the generalizabil-

ity across institutions and even other similarly resourced countries.

While our study primarily centers on developing and evaluating mortality predictive mod-

els, we recognize the importance of investigating their real-world impact on clinical decision-

making and patient care. Accurate mortality prediction may have the potential to guide timely

interventions, personalized treatments, and resource optimization, potentially improving

patient outcomes. However, the direct translation of mortality prediction to enhanced patient

care requires additional exploration, including prospective studies and clinical trials, to estab-

lish a clear causal link.

Conclusion

Our results demonstrate that ML-based algorithms assessing the daily dynamics of the SOFA

scores are superior to the conventional ΔSOFA score when predicting the 30-day mortality in

critically ill adult septic patients in the ICU. Therefore, this approach could provide a promis-

ing and automated support tool with intelligent mechanisms for the standardized assessment

of the individual disease course using daily SOFA score measurements. These ML-based algo-

rithms could be easily implemented in electronic health record systems, therefore, they offer a

valuable support tool, especially for ICU physicians.
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