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Abstract

Alterations in the brain’s connectivity or the interactions among brain regions have been

studied with the aid of resting state (rs)fMRI data attained from large numbers of healthy

subjects of various demographics. This has been instrumental in providing insight into how

a phenotype as fundamental as age affects the brain. Although machine learning (ML) tech-

niques have already been deployed in such studies, novel questions are investigated in this

work. We study whether young brains develop properties that progressively resemble those

of aged brains, and if the aging dynamics of older brains provide information about the aging

trajectory in young subjects. The degree of a prospective monotonic relationship will be

quantified, and hypotheses of brain aging trajectories will be tested via ML. Furthermore, the

degree of functional connectivity across the age spectrum of three datasets will be com-

pared at a population level and across sexes. The findings scrutinize similarities and differ-

ences among the male and female subjects at greater detail than previously performed.

Introduction

An understanding of the changes that occur to a brain is fundamental to human neuroscience.

While variability in person-to-person brain aging is expected due to genetics, environment,

and life events, there are also changes that are more salient. Resting-state fMRI can be collected

relatively quickly and easily from subjects of different ages, demographics, and possible pathol-

ogies. Atypical brain aging is often reflective of or a precursor to developmental disorders. Fur-

thermore, abnormal trajectories in brain age have been implicated in Parkinson’s disease (PD)

[1], Alzheimer’s disease (AD) [2], as well as several other neural pathologies [3] and even mor-

tality [4]. Utilizing fMRI data to investigate brain aging dynamics entails examining alterations

in measures of functional connectivity (FC). Typically, patterns of correlated activity between

regions of interest (ROIs) are compared between conditions to assess whether there are

changes. In the case of aging, differences between connectivity maps are quantified and used

to predict age with the purpose of identifying if and how brain signals change over time. Due

to its importance, age prediction from brain activity has been undertaken across sizable

datasets.

Subsequent to correlational studies and graph-theoretic approaches, machine learning

(ML) has been used to discover structure by performing either regression or classification.

There exists a growing number of works that use ML to answer questions pertaining to brain
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aging. In [5] support vector regression (SVR) was used to estimate brain age. Three groups of

subjects were considered with the ages of a subject lying in between 6 and 35 years. The con-

sidered age range was limited in comparison to more recent works as well as the data consid-

ered in this work. The work considered 12,720 FC features per subject and pare to 200 for the

analysis. LASSO regression was used in [6] to predict brain age by considering over 14,000

healthy participants from the UK Biobank. Interestingly, that work found that resting and

task-based fMRI are relatively uninformative in comparison to several variants of MRI, i.e.

T1-weighted MRI, T2-FLAIR,T2*, and diffusion-MRI, at chronological age prediction. A

review on the use of ML techniques for rsfMRI analysis is provided in [7]. We shall highlight

several of the more recent and particularly relevant works below.

The deviation of a person’s brain age from biological age may also be affected by sex as

there is no reason to assume that the prospective changes are uniform among males and

females. Works are increasingly incorporating sex as either a predictor or a response variable

when evaluating brain age. A recent study [8] considered over 4,000 subjects across a wide age

spectrum from five different sites. Ridge regression was used, and brain age prediction perfor-

mance was quantified via the mean absolute error (MAE) and correlation between the pre-

dicted and actual ages. The work quantified the effects of a multiscale study by considering

various numbers of functional networks in the predictive analysis. In [9] the authors consider

over 9,000 different pipelines consisting of hyperparameter values across a large (over 14,000)

number of subjects from the Human Connectome Project (HCP) and UK Biobank. Correla-

tion-based measures of functional connectivity were computed and used as inputs for several

classifiers including variants of deep learning (DL). It was noted that the regularized regression

method elastic net performs comparably with DL schemes for age prediction.

We use an ML pipeline to study whether brain aging is a progressive phenomenon that can

be characterized by a monotonic relationship. Recordings of different age groups will be used

in a training procedure with the resulting machine asked to classify subjects from age groups

that the machine has not previously encountered. The findings will reveal a prospective simi-

larity or difference among the connectivity of brains from a test set to those that are younger

or older. Several hypotheses will be presented and tested. Namely, what degree of monotonic-

ity exists in the changes experienced by brains during aging? How consistent are the findings

across datasets? Does the aging trajectory of young brains provide insight into the aging trajec-

tory of older brains? Conversely, are alterations in older subjects informative of brain activity

earlier in life? To the best of our knowledge, such analysis has not been previously undertaken

in imaging studies that assess FC.

The dedifferentiation theory of aging was presented to reflect evidence of brain activity that

is localized to specific regions in young adults becoming less localized with aging [10]. While

there exist advancements to and affirmations of the dedifferentiation theory of aging [11, 12],

we scrutinize the variability in the FC that appears at the various age groups by computing the

number of significant connections across the brains of subjects to evaluate how they are altered

by aging. The study shall be undertaken separately for male and female subjects as well to

assess sex differences. The analysis constitutes novel findings and quantifies the modularity

with the inclusion of anticorrelations. The majority of FC fMRI works restrict attention to pos-

itive connections and do not differentiate by sex.

Materials and methods

Subjects, imaging acquisition, and ROI definition

Three different datasets were considered. Table 1 contains a comparative listing of the number

of subjects per age group in each dataset. The age groups have been selected on
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(approximately) a decade basis. A subject division by sex is also provided and will be necessary

for the assessment of FC differences among males and females during aging. The first dataset

consists of participants from the International Neuroimaging Data-sharing Initiative (INDI),

1000 Functional Connectomes’ Project (1000FCP) [13, 14]. The cohort contains N = 887 indi-

viduals from 17 centers with the requirement that a center provide a minimum of 10 partici-

pants with full brain anatomical and functional coverage. The ages of the subjects spanned 21–

85 years, and 514 were female. All subjects were at rest and not performing any task during

recording. Some subjects had their eyes open while some had their eyes closed, and each

recording consisted of signals collected for 42 ROIs. Our analysis is based upon preprocessed

data of ROIs obtained from a previous study. We provide an overview of the most relevant sec-

tion from the methods of [11]. Seed-based analysis was performed as previously described [15,

16] to identify seven networks. The following seed regions were used to delineate the networks:

left posterior cingulate cortex, right frontoinsula, right intraparietal sulcus, right superior pari-

etal cortex, left auditory cortex, right visual cortex, and left motor cortex. Each seed was

defined as a 6 mm radius sphere centered on previously published foci. Correlation maps were

produced by extracting the time course from each of the above seeds. Then, the Pearson corre-

lation coefficient (PCC) between the time course and the time course of each voxel across the

whole brain was computed to create the voxel-wise connectivity maps. The maps from a

young age group (N = 458, 21–30 years) were used to identify peak coordinates of additional

ROIs representing each network. All regions were defined as 6 mm radius spheres around the

peak coordinate. Information regarding the participants, number of time points collected for

each recording, and the rsfMRI acquisition and epidemiological parameters of the different

centers are detailed in Table 2 as well as Tables 1 and 2 of [11].

The rsfMRI data from N = 709 subjects (286 female) spanning ages 18–79 years in the Japa-

nese Strategic Research Program for the Promotion of Brain Science (SRPBS) project [17] was

also used. Healthy control (HC) data was taken from five sites in Japan: Osaka, Showa, Kyoto,

and Hiroshima Universities as well as the Advanced Telecommunications Research Institute

(ATR). Each recording consisted of signals collected at 140 ROIs of a HC. The voxel sizes were

generally not the same across the five sites, however, the values were similar by being between

3 mm x 3 mm x 3 mm and 4 mm x 4 mm x 4 mm (please see Table 5 of [17]). A scanning time

of 10 minutes was used, and the subjects had their eyes open and fixated on a point during the

recording. The 9730 unique PCC values were provided as part of the dataset, thus no addi-

tional processing was required to attain the features. The acquisition and imaging parameters

for SRPBS are shown in Table 2 and in more detail via Table 5 and 9 of [17].

Table 1. An itemization of the number of subjects per age group associated with rsfMRI data via the 1000FCP (N = 887), NKI-RS recording center of 1000FCP

(N = 307), SRPBS (N = 709), and camCAN (N = 652) datasets. The number of subjects per age group are bifurcated by sex via the convention (male, female). *The

1000FCP subjects in Group #1 were, more precisely, in the 21–30 range.

Group # Age group (years) 1000FCP,

# of subjects

SRPBS,

# of subjects

camCAN,

# of subjects

NKI-RS (1000FCP),

# of subjects

1 18–30 458 (215, 243)* 327 (227, 100) 79 (35, 44) 65 (37, 28)*
2 31–40 85 (44, 41) 126 (81, 45) 105 (56, 49) 27 (8, 19)

3 41–50 119 (40, 79) 115 (48, 67) 101 (43, 58) 71 (16, 55)

4 51–60 119 (38, 81) 69 (29, 40) 101 (54, 47) 67 (12, 55)

5 61–70 67 (22, 45) 61 (30, 31) 104 (56, 48) 45 (13, 32)

6 71–80 - - 117 (55, 62) -

6 71+ 39 (14, 25) 11 (8, 3) - 32 (11, 21)

7 81+ - - 45 (23, 22) -

https://doi.org/10.1371/journal.pone.0300720.t001
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Lastly, we used rsfMRI data that was collected at one recording center as part of the Cam-

bridge Centre for Aging and Neuroscience (CamCAN) study [18, 19]. A single testing center

provided N = 652 subjects (330 female) spanning ages 18–88 years. The subjects had their eyes

closed during the recordings and followed the instruction to not think of any one thing in par-

ticular. A voxel size of 3 mm x 3 mm x 4.44 mm was used with an acquisition time of 8 minutes

and 40 seconds. The acquisition and imaging parameters are further detailed in Table 2 of

[19]. To compute the FC from ROI recordings, the Craddock unsmooth parcellation was used

to attain 840 ROIs. The mean intensity across voxels was used. Although the parcellation pro-

vided 840 ROIs, we considered 808 across each subject as 32 had missing values for some of

the subjects. The PCC values were computed by correlating the time courses of the ROIs.

Preprocessing and head motion correction

With the 1000FCP dataset, the functional images were preprocessed in [11] using the FSL soft-

ware (FMRIB Software Library v. 5.0.1, Oxford, UK) and SPM software (Statistical Parametric

Mapping software package, Wellcome Department of Imaging Neuroscience, London, UK)

following conventional methods originally described in [16, 20]. The following steps were pre-

formed: 1) slice-timing correction; 2) rigid-body motion correction; 3) registration to the

MNI152 space; 4) regression of nuisance variables including ventricles, white matter (WM),

Table 2. (Top) Recording center demographics for the N = 887 subjects from the 1000FCP that were used in the analysis. Additional details such as the number of

slices, voxel size, and subject handedness can be found in Table 1 of [11]. (Middle) Recording center demographics for the N = 709 subjects from SRPBS, with additional

information available in Table 5 of [17]. (Bottom) Information on the N = 652 subjects from the camCAN dataset that consisted of a single recording center. Further details

about the subjects and study can be found in [18, 19].

Recording center Subjects (male, female) Age (years) Scanner, TR (s) Time points Eyes

NKI-RS 307 (97, 210) 21–85 3T, 2.5 120 Open

Beijing 119 (48, 71) 21–26 3T, 2 225 Closed

Cambridge 101 (40, 61) 21–30 3T, 3 119 Open

COBRE 66 (47, 19) 21–65 3T, 2 150 NA

Milwaukee 43 (14, 29) 44–65 3T, 2 175 NA

New York 32 (18, 14) 22–49 3T, 2 192 Open

St. Louis 31 (14, 17) 21–29 3T, 2.5 127 Open

Atlanta 28 (13, 15) 22–57 3T, 2 205 Open

Berlin 26 (13, 13) 23–44 3T, 2.3 195 Open

Cleveland 26 (9, 17) 24–60 3T, 2.8 127 Closed

Dallas 21 (10, 11) 21–71 3T, 2 115 NA

Queensland 18 (11, 7) 21–34 3T, 2.1 190 Open

Orangeburg 17 (13, 4) 25–55 1.5T, 2 165 Closed

Palo Alto 17 (2, 15) 22–46 3T, 2 245 NA

Munich 14 (9, 5) 63–73 1.5T, 3 72 Closed

Leiden 1 10 (10, 0) 21–27 3T, 2.18 215 Closed

Leiden 2 11 (5, 6) 21–28 3T, 2.2 215 Closed

Recording center Subjects (male, female) Age (years) Scanner, TR (s) Time points Eyes

Kyoto 234 (141, 93) 18–78 3T, 2.5 240 Open

ATR 108 (88, 20) 20–30 3T, 2.5 240 Open

Osaka 29 (21, 8) 29–73 3T, 2.5 240 Open

SWA 101 (86, 15) 19–55 3T, 2.5 244 Open

Hiroshima 237 (87, 150) 20–79 3T, 2 143 Open

Recording center Subjects (male, female) Age (years) Scanner, TR (s) Time points Eyes

camCAN 652 (322, 330) 18–88 3T, 1.97 261 Closed

https://doi.org/10.1371/journal.pone.0300720.t002
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and global average signal 5) temporal bandpass filtering (0.01–0.08 Hz). The preprocessing

included rigid body correction for motion within and across runs, normalization to the stan-

dard echo-planar imaging (EPI) template of the Montreal Neurological Institute (MNI), and

compensation for slice-dependent time shifts. Several key acquisition parameters are shown in

Table 2 with additional information such as the number of slices, voxel size, and subject hand-

edness available in Table 1 of [11]. The preprocessed functional data (in atlas space) were tem-

porally filtered to remove constant offsets and linear trends over each run while retaining

frequencies below 0.08 Hz. Data were spatially smoothed using a 4 mm full-width half-maxi-

mum (FWHM) Gaussian blur. Sources of spurious or regionally non-specific variance were

removed by regression of nuisance variables. This included six parameters obtained by rigid

body head motion correction, the signal averaged over the whole brain (global signal), the sig-

nal averaged over the lateral ventricles, and the signal averaged over a region centered in the

deep cerebral WM. Temporally shifted versions of these waveforms were removed by inclusion

of the first temporal derivatives (computed by backward differences) in the linear model. The

analysis used via [11] to account for head motion is summarized as follows. The parameters

were calculated for each participant as proposed by [22]. Framewise displacement (FD), which

represents head displacement from volume to volume, was computed as the sum of the first

derivative of the six rigid-body motion parameters estimated during standard volume realign-

ment. Delta variation signal (DVARS), which represents the change in BOLD signal intensity

from one frame to the next, was computed as the root mean square average of the first deriva-

tive of fMRI signals across the entire brain. A standardized version of DVARS was applied

according to [21]. Volumes with FD value over 0.5 mm or DVARS value over 1.5 IQRs above

the 75th percentile were removed with one prior and two subsequent volumes. Sixteen individ-

uals from several centers were excluded due to excessive head motion during rsfMRI acquisi-

tion according to the described movement parameters criteria [22].

The preprocessing of the SRPBS rsfMRI data are detailed in [17]. This was primarily done

using SPM8 implemented in MATLAB (R2016b; Mathworks, Natick, MA). The first 10 sec-

onds of data were discarded to allow for T1 equilibration. Preprocessing steps included slice-

timing correction, realignment, co-registration, segmentation of T1-weighted structural

images, normalization to MNI space, and spatial smoothing with an isotropic Gaussian kernel

of 6 mm FWHM. The ROIs were delineated according to 140 regions defined by the Brainvisa

Sulci Atlas and three subregions of the cerebellum (the left and right cerebellum, and the ver-

mis). The BOLD signal time courses were extracted from the ROIs, and a bandpass filter

(0.008–0.1 Hz) was applied to the time courses before a regression procedure. Filtered time

courses were linearly regressed on temporal fluctuations of the WM, the cerebrospinal fluid

(CSF), and the entire brain, as well as six head motion parameters. Fluctuation in each tissue

class was determined from the average time course of the voxels within a mask created by seg-

mentation of the T1 image. Extracted time courses were then bandpass filtered (0.008–0.1 Hz)

before linear regression, as was done for regional time courses. Then, for each individual, a

matrix of 9,730 connections between the 140 ROIs was calculated by evaluating PCCs of

BOLD signal time courses. The flagged frames in the previous procedure were discarded. After

calculating the FD, volumes with FD> 0.5 mm were removed. Further details and information

about the procedure to calculate the matrix are outlined in [17, 21].

The camCAN preprocessing of the rsfMRI data was performed and is detailed in [19]. The

procedure is summarized as follows. Co-registered T1 and T2 images were used in a multi-

channel segmentation (SPM12 Segment, based on “New Segment” in SPM8 [23]) routine in

order to extract probabilistic maps of six tissue classes: gray matter (GM), WM, CSF, bone,

soft tissue, and residual noise. Images from each subject were coregistered to the subject’s

T1-weighted image using a rigid-body (6-df) linear transformation. Normalization parameters
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from the diffeomorphic anatomical registration through exponentiated lie algebra (DARTEL)

procedure [24] were applied. The native-space GM and WM images for all participants who

passed quality-control checks were submitted to diffeomorphic registration to create group

template images. The group template was then normalized to the MNI template via an affine

transformation. Then combined normalization parameters were applied to each individual

participant’s GM and WM images. Individual normalized GM and WM images were

smoothed (8 mm FWHM Gaussian kernel). Data from each recording was unwarped to com-

pensate for magnetic field inhomogeneities, then realigned to correct for motion, and slice-

time corrected. The EPI data were co-registered to the T1 image, and the normalization

parameters were applied to warp functional images into MNI space. The mean regional time-

courses were then extracted using the template method.

Computed features and description of ML pipeline

To measure FC, PCC values were evaluated between the time courses for all pairs of ROIs of a

participant. Each recording consisted of signals collected for 42, 140, and 808 ROIs for subjects

in the 1000FCP, SRPBS, and camCAN datasets, respectively. A simple calculation shows that

we have 861, 9730, and 326,028 unique PCC values to be used as features. The features from

each participant were used either as training or test data in the ML analysis. We form two sets

A and B, consisting of a younger age group and an older age group for the scenarios consid-

ered in Fig 1. Let N1 denote the number of subjects in the young group and N2 the number in

the aged group. The following steps are taken.

Step 1) Let m = min{N1, N2}.

Step 2) Train a machine on the m data points from the smaller set, and m randomly selected

points from the larger set. This is done to ensure balance of data for an age range. The feature

vectors will consist of the PCC values for a subject. The labels correspond to whether the sub-

ject is from the aged or young group.

Step 3) Use the k = max{N1, N2}−m left-out recordings from the larger set as validation

data. The trained machine is to predict whether the k residual recordings are young or aged

and an accuracy rate (AR) will be attained.

Step 4) Test on the subjects not included in sets A and B, but rather in interval i: i = 1, 2, or

3 for the Fig 1 scenario that is being considered.

The above steps are depicted in the pipeline of Fig 2 where the schematic is iterated once

with the performance on the k residue data points from the larger set viewed as validation

accuracy. The trained machine is then presented with the left-out data from the new category.

The ML technique used was a support vector machine (SVM) with a linear kernel and a binary

classifier. The techniques were implemented in R via the packages e1071 and kernlab.

Methodology to assess monotonicity of brain differences with age

It is natural to assume that a brain will possess characteristics that are more similar to brains

close to its age than those of increasingly disparate age groups. A test of this notion is to pres-

ent a trained machine with recordings across a spectrum of ages that it has not previously

seen. The three scenarios in Fig 1 are considered with the ML pipeline in Fig 2. This will

encompass training a machine on connectivity patterns (CPs) from an equal number of sub-

jects from a young and an aged cohort in each scenario. The trained machines’ decisions will

scrutinize whether brains–whose age the machine has not previously encountered–have a CP

that is more similar to an older or a younger cohort. The cartoons accompanying each of the

scenarios in Fig 1 denote possible trajectories that we hypothesize for the left-out recordings

that will be classified by the respective machine. Interval 1 is the most conspicuous since it is
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expected that as chronological age increases, brains exhibit properties that become increasingly

similar to an extrema group of aged brains in a monotonic fashion. It is also expected that the

youngest brains in the interval exhibit CPs that are close to the extrema of young subjects (i.e.,

an intercept < 50%). The described relation is referred to as hypothesis 1 (H1) in Fig 1A.

The prospective hypotheses are less conspicuous for interval 2. It is conceivable that older

subjects exhibit CPs that follow an increasing trajectory away from younger brains that have

been bifurcated into a younger (i.e., aged) and youngest (i.e., young) groups. This possibility is

reflected by the two increasing lines labeled H1 and H2 in Fig 1B. The difference in the inter-

cept of the two lines reflects the notion that the youngest brains in interval 2 can be classified

as being closer in CP to brains in the aged group that are the most proximal to them in years

(H1), or alternatively as relatively young (H2) if the CPs in the unseen data are classified on a

relative rather than absolute basis. Lastly, it is conceivable that the recordings exhibit CPs that

do not deviate very much from the aged (yet relatively younger) brains in which case a hori-

zontal line with an intercept greater than 50% would be noted (H3). The investigation of inter-

val 2 probes at whether CPs of young brains provide information on the dynamics noted in

older subjects.

Interval 3 in Fig 1C represents a somewhat inverted version of the study for interval 2. It

investigates whether older brains provide insight into the connectivity changes that occur

Fig 1. Three scenarios for assessing whether brain aging is a progressive phenomenon. In each case a machine is trained on

a young and aged cohort and asked to classify CPs of subjects with ages that it has not previously encountered. For each

scenario an illustration contains possible hypotheses (H) for the trajectory of the predicted brain ages in the respective interval.

A) In interval 1 it is expected that the percentage of brains classified as aged follow a monotonically increasing trajectory among

the chronological age range with the y-intercept being less than 50%. B) The study of interval 2 investigates whether the CP of

young brains provide information about the CP of aged brains. C) Interval 3 is intended to investigate whether CP differences

among aged brains can be used to infer aging dynamics of younger brains.

https://doi.org/10.1371/journal.pone.0300720.g001
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among younger brains. A hypothesis shown by the strictly increasing line (H1) entails young

brains exhibiting properties reminiscent of the youngest brains in an otherwise aged cohort,

and the CP of the young brains gradually resembling that of the most aged brains as chrono-

logical age is increased. It is also conceivable that the gradual resemblance to the most aged

brains does not occur, but rather the trained machine associates the brains in interval 3 as

resembling the young cohort as the chronological age of the subjects approaches that of the

subjects in the more proximal young cohort. This scenario is depicted via the inverted U-

shaped trajectory (H2). Lastly, it may be that the CPs of subjects remain similar to the younger

group as shown by the trajectory of a horizontal line with an intercept below 50% (H3). The

investigation of interval 3 probes at whether aged brains provide information on the dynamics

of connectivity earlier in life.

Quantification of FC changes with age and sex

The pairwise PCC values were used as the features for the ML analysis and to assess the con-

nectivity among brain regions. For each subject the number of connections that exceeded the

threshold |ρ = 0.6| were totaled and referred to as the FC for the subject. The value of 0.6 has

been motivated in works such as [19, 25]. For completeness, thresholds of |ρ = 0.45| and |ρ =

0.7| are also considered in the analysis to assess the robustness of the findings. The evaluation

with different FC thresholds is to account for the possibility of low SNR in the recordings. Typ-

ically, signals in a stable or high SNR regime would provide similar trends when a correlation

threshold is uniformly adjusted. Importantly, we consider the positive and negative (i.e.

Fig 2. An ML pipeline to evaluate whether brains age in a monotonic fashion. The sets A and B refer to the young and aged groups of

the different scenarios that are considered when testing on subjects of interval 1, 2, and 3. An SVM is trained on 2m data points, asked to

classify k residue data points from either the aged or young group, and classify the age phenotype of the subjects in interval 1, 2, or 3.

https://doi.org/10.1371/journal.pone.0300720.g002
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anticorrelation) CC values separately when assessing the change in connectivity with aging for

the three datasets. In testing for the statistical significance of an effect, the youngest age group

is taken as a reference and a two-sample t-test is conducted among the positive, negative, and

total connections in the subjects. A p-value of 0.05 is used as the threshold for statistical signifi-

cance when evaluating the change in FC between the youngest age group and the older sub-

jects. The change is assessed separately among male and female subjects with the objective of

determining whether age-modulated FC is sex specific. As done with the entire population, the

youngest age group is considered the reference for assessing FC changes, and a two-sample t-

test is used to test for statistical significance (i.e. p< 0.05). The standard deviations (s.d.) of the

number of functional connections are also computed to study the inter-subject variability in

connectivity during aging.

Consideration of recording center and subject arousal effects

The 1000FCP dataset consists of recordings from 17 centers, and thus warrants scrutiny of

potential site effects. The NKI-Rockland (NKI-RS) center contains approximately 34% of the

subjects in the 1000FCP. This number is significant when considering the next largest partici-

pant pool (i.e. Beijing) contributes approximately 13%. NKI-RS also contains the largest spread

of subjects’ chronological ages (Table 1). The monotonicity and change in FC analysis shall be

repeated with only subjects from the NKI-RS center. A comparison of the findings for

1000FCP and its constituent NKI-RS will show whether the same trends are noted for both

cases or if site effects may be affecting the findings. Furthermore, unlike SRPBS and camCAN,

the 1000FCP contains a mixture of recordings where subjects had their eyes open and closed

(Table 2). A difference in arousal level can affect FC strength and bias connectivity patterns.

The monotonicity and change in FC analyses are conducted separately on 1000FCP recordings

where subjects had their eyes open (N = 543). The reason for not additionally conducting an

analysis on subjects with eyes closed is because of their relatively low number (N = 197), and

lack of representation across the spectrum of ages in the 1000FCP dataset (Table 2).

Results

Monotonic changes in functional connectivity occur over an intermediate

age interval

In considering the 1000FCP data, the scenario in Fig 1A encompassed a machine trained on

features from 78 brains, 39 that comprise the 71+ age group and 39 of which have been ran-

domly selected from the 21–30 group. The remaining 809 brains shall be considered as test

data. Naturally, it is expected that the 419 remaining recordings from the 21–30 age group be

classified as young. In evaluating the accuracy on the test data, excellent performance is seen

for the left-out young brains in the 21–30 age group via an AR of 0.84 across 419 subjects. The

accuracy vindicated the machine’s integrity to continue the monotonicity study and evaluate

decisions on recordings in interval 1. The decisions made by the machine on the 390 brains of

ages 31–70 years are shown in Fig 3. We have considered the number of brains at each age that

were classified as old to arrive at percentages for the ages encompassed in interval 1. The bar

plot illustrates the number of brains at an age that have been classified as young or aged. The

accompanying line plot represents the percentage of subjects that were classified as aged after

the application of a 5-year sliding window for smoothing. Although the increase is not mono-

tonic, an increasing trend is noted in the percentage. The absence of complete monotonicity is

due to cross-subject variability as variance inherently exists among all facets of recordings

from different people. Furthermore, there is the limitation that the number of samples at each

PLOS ONE Brain age monotonicity and functional connectivity differences

PLOS ONE | https://doi.org/10.1371/journal.pone.0300720 May 30, 2024 9 / 29

https://doi.org/10.1371/journal.pone.0300720


Fig 3. The results of the brain age monotonicity analysis for interval 1. The histograms show the number of subjects

classified as young and aged at every considered age. A 5-year sliding window was applied and a linear regression was

fit to the results with intercept β0 and slope β1. A machine was trained on the youngest and oldest groups and

presented with test data of intermediate-aged subjects. For 1000FCP we have β0 = 31.58, β1 = 0.952. The Spearman

correlation of 0.7 computed among the percentages of subjects classified as aged and the ages indicates a moderate

degree of monotonicity between the two quantities. With SRPBS, β0 = 7.285, β1 = 2.696, and a Spearman correlation of

0.948 demonstrates a high degree of monotonicity between the two quantities. A consideration of camCAN leads to β0

= 0 and β1 = 2.234. The Spearman correlation of 0.986 signifies monotonicity between the two quantities. For NKI-RS

subjects we note β0 = 39.74, β1 = 0.877, and the Spearman correlation of 0.608 reflects monotonicity.

https://doi.org/10.1371/journal.pone.0300720.g003
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age in Fig 3 was not very large (min sample size = 3, max sample size = 19). Such confounding

factors are natural and expected to provide uncertainty to the findings. This is noted by the

moderate Spearman correlation value of 0.7 between the subjects’ ages and the percentage of

subjects classified as aged. To test for a trend, a linear regression with intercept β0 and slope β1

was fit to the results. As previously mentioned, a positive trend and a low intercept are

expected for the brains in interval 1. The intercept β0 = 31.58 is rather low indicating that the

classification of the youngest brains in interval 1 are indeed skewed towards the young group.

A slope of β1 = 0.952 demonstrates a positive association between the increase in age and CPs

resembling the older phenotype. The results justify H1 as holding for interval 1 of Fig 1A.

For the SRPBS subjects, a machine is trained on 72 subjects randomly selected from the 18–

30 age group and the 72 in the 61+ group. The test set consists of 565 subjects, 255 of which

are residual from the 18–30 year old (y.o.) range. The machine classified 247 of the residual

recordings as young leading to AR = 0.968 and vindicating the machine efficacy. The histo-

grams in Fig 3 illustrate the number of subjects assigned as young and aged at every considered

age. To test for a trend, a linear regression was applied to the results in interval 1. The low

intercept (β0 = 7.285) and the positive slope (β1 = 2.696) were expected while a Spearman cor-

relation of 0.948 indicates a high degree of monotonicity in the brains classified as having an

aged profile with increasing biological age. The hypothesis H1 in Fig 1A is validated. Similarly,

for the camCAN dataset a machine was trained on 45 randomly selected subjects from the 18–

30 age group and the 45 subjects 81+ y.o. Of the 34 remaining subjects in the younger group

33 were classified as young leading to AR = 0.9705. A linear fit to the percentage of subjects

classified as aged in Fig 3 yields the intercept β0 = 0 and slope β1 = 2.234. The Spearman corre-

lation of 0.986 computed among the percentages of subjects classified as aged and their chro-

nological ages indicates monotonicity between the two quantities. The analysis supports H1 as

the brain aging dynamics of intermediate aged subjects when extrema groups are used as the

references. The NKI-RS analysis entailed a machine trained on features from 32 recordings of

subjects in the 71+ age group and 32 randomly selected from the 21–30 age group. The

remaining 33 recordings from the young group (21–30 y.o.) were classified by the trained

machine at an AR of 0.696. The decisions on the residual 210 brains spanning 31–70 years are

shown in Fig 3. An increasing trend (β1 = 0.877), relatively low intercept (β0 = 39.74), and a

formidable Spearman correlation value of 0.608 are noted. The results also support hypothesis

H1 as an explanation for brain aging dynamics in interval 1.

Young brain functional connectivity is not indicative of alterations in older

subjects

Considering the 1000FCP subjects, the ML pipeline is applied with the partition in Fig 1B to

probe whether there is a monotonic relationship. A machine is trained on 170 brains, 85 of

which have been randomly selected from the 21–30 age group, and 85 that comprise the 31–40

age group. The remaining 717 subjects in the dataset are used to investigate whether brains are

perceived as young or aged by the machine. The 373 remaining brains from the 21–30 age

group are expected to be classified as young, however, the decisions are not obvious for the

344 brains that constitute interval 2. The AR noted is 0.646 for the held-out brains in the

young group. It is expected that the AR levels for Fig 1B be lower than those reported for Fig

1A–this is attributed to the difficulty in distinguishing among brains that are closer in age. We

consider the decisions made by the trained machine on the 344 elder brains (41–71+ y.o.) of

interval 2. In Fig 4 the percentage of brains classified as aged does not show a monotonically

increasing relationship (Spearman correlation = -0.243). The point 77+ on the abscissa is con-

sidered as the final age because of the relatively few samples available above this age–the point
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is comprised of 14 subjects ranging from 77 to 85 y.o. When fit with a linear regression, the

intercept β0 = 71.4 is rather high indicating that the youngest brains in interval 2 appear more

similar to the proximal brains in the aged group rather than the relatively young group that

was used during training. The slope of β1 = -0.147 does not support an increasing trend for the

41+ y.o. subjects of interval 2. The Spearman correlation of -0.243 between chronological age

and the percentage of brains classified as aged indicates that the change in CP dynamics of the

younger brains is not conserved among the progressively older brains. We conclude that

hypothesis H3 in Fig 1B is the most representative trajectory for interval 2.

Applying the analysis to the SRPBS dataset involved a machine trained on 126 subjects ran-

domly selected from the 18–30 age group and 126 comprising the 31–40 group. The test set

consisted of the remaining 457 subjects. Of the 201 residual subjects from the 18–30 y.o.

group, 146 were classified as young leading to AR = 0.726. In interval 2 we attain intercept and

slope values of β0 = 82.159, β1 = 0.1 indicating little change in the appearance of increasingly

older brains from the more proximal aged group. A Spearman correlation of 0.149 in Fig 4

denotes negligible monotonicity in the percentage of subjects classified as aged with an

increasing number of years. The findings support hypothesis H3 that studying the aging trajec-

tory in younger brains (i.e. 18–40 y.o.) provides little information about their aging trajectories

in later years. Analysis with the camCAN subjects considered the training data comprised of

79 subjects from the 18–30 as well as the 31–40 age groups, and testing done on the 493 resid-

ual subjects. The 26 subjects from the older group were classified as aged at an AR of 0.653 by

the trained machine. After computing the percentages of 468 subjects deemed as old at each

age in the 41+ range, the linear fit provided β0 = 77.48 and β1 = 0.329. This indicates little

increase in the classification of the older subjects with the increase in their chronological ages.

The Spearman correlation of 0.74 between the percentage of brains classified as aged and the

chronological age reflects a moderately monotonic relationship. The findings signify H1 as the

most expressive of the hypotheses for the trajectory in interval 2. NKI-RS subjects in the age

group 21–30 and 31–40 were used to train an SVM for the interval 2 analysis. Following the

selection of 27 random recordings from the younger group, the 38 left out recordings were

classified at a below-chance level of AR = 0.473. By computing the percentages of the 215 sub-

jects that were 41+ y.o. and classified as aged, a linear fit provided β0 = 65.48 and β1 = 0.453

(Fig 4). While the slope indicates an increasing trend, a Spearman correlation of 0.417 between

the percentage of brains classified as aged and the subjects’ ages in interval 2 reflects the

absence of a monotonic relationship. The analysis signifies H3 as the most representative

hypothesis for the NKI-RS trajectory in interval 2.

Connectivity patterns of older subjects reflects aging dynamics in young

brains

Through the scenario depicted in Fig 1C we explore if older brains exhibit CPs that can be

used to differentiate among younger brains, and whether the differentiation occurs in a mono-

tonic fashion with age. We hypothesize the trained machine to provide a low intercept when

investigating a trend in the percentage of brains classified as aged. However, it is not obvious if

a monotonic increase or a positive association will be seen. For the 1000FCP dataset an SVM is

trained on 78 brains; 39 randomly selected from the 61–70 age group and 39 from the 71+ age

group. The residual subjects from the 61–70 age group are expected to be classified as young,

and an AR of 0.714 was noted on the 28 held-out brains from this group. The decisions made

by the trained machine on the 781 younger brains (ages 21–60 years) are shown in Fig 5. The

intercept of β0 = 24.2 is somewhat high since the ideal intercept would be near zero. This dem-

onstrates that the relatively young brains that were used to train the machine are not very
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Fig 4. The results of the brain age monotonicity analysis for interval 2. The histograms show the number of subjects

classified as young and aged at every considered age. A 5-year sliding window was applied and a linear regression was

fit to the results with intercept β0 and slope β1. A machine was trained on the two youngest groups of subjects and then

asked to classify older recordings. For 1000FCP we attain β0 = 71.4 and β1 = -0.147 indicating little change in the

classification of increasingly older brains as aged. Furthermore, a Spearman correlation of -0.243 reflects a non-

monotonic relationship. With the SRPBS subjects β0 = 82.159 and β1 = 0.1 suggest little change in the classification of

increasingly older brains as aged. The Spearman correlation of 0.149 reflects a non-monotonic relationship among the

ages and the percentage classified as aged. For camCAN we attain β0 = 77.48, β1 = 0.329 demonstrating little change in
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representative of the FC changes in the youngest subjects of the study. The slope in Fig 5 is β1

= 0.58 indicating a marginal but increasing trend in the percentage of brains classified as aged

across interval 3. A Spearman correlation of 0.795 is noted among the subjects’ ages and the

percentage of brains classified as aged. We conclude that H1 is the best hypothesis for interval

3. This indicates that the difference in CP among aged brains is reflective of FC dynamics ear-

lier in life.

Applying the ML pipeline to the SRPBS dataset, a machine is trained on 69 subjects in the

51–60 age group and 69 subjects randomly selected from the 61+ group. The testing was per-

formed on the remaining 571 subjects. Of the 3 remaining subjects from the 61+ y.o. group, 2

were correctly classified as aged (AR = 0.667). By applying the ML pipeline of Fig 2 to this sce-

nario, we attain the results in Fig 5 for interval 3. A linear fit provides a low intercept (β0 =

3.11) and a positive slope of β1 = 0.788. The Spearman correlation of 0.853 signifies that differ-

ences among aged brains (i.e. 61+ y.o.) provide a high degree of information about the aging

trajectory of younger brains. The quantified results indicate that hypothesis H1 is the most

explanatory of the three hypotheses for interval 3. The study with the camCAN subjects

involved training on 45 young (71–80 y.o.) and 45 aged (81+ y.o.) subjects and subsequently

testing on the 561 residual recordings. The 72 residue subjects in the 71–80 group were classi-

fied accurately as young via AR = 0.666. For the remaining 489 recordings that comprise inter-

val 3, the linear fit provides β0 = 32.52 and β1 = -0.205. The Spearman correlation of -0.448

reflects a small degree of monotonicity in the number of subjects classified as aged when the

reference was taken to be the aging dynamics of older brains. The scenario H3 is the endorsed

hypothesis as the properties of the two chronologically oldest groups do not markedly differen-

tiate between the ages of the recordings from the younger subjects. The ML analysis for the

NKI-RS subjects involved training on 32 young (61–70 y.o.) and 32 aged (71+ y.o.) recordings.

The 13 residual subjects in the 61–70 group were classified as young via AR = 0.692. The deci-

sions made by the machine on the 230 younger subjects comprising interval 3 yield β0 = 45.12

and β1 = -0.176 when fit with a linear model (Fig 5). A Spearman correlation of -0.161 does

not reflect monotonicity and H3 is recognized as the most supported hypothesis.

Functional connectivity changes are categorical with aging

In light of the ML analysis providing predictions from measures of FC, we pursue a quantita-

tive evaluation of the FC and how it varies across the age spectrum. For the 1000FCP dataset,

Fig 6A shows the mean and standard deviation (s.d.) of the FC for subjects across the seven

decades. A significant decrease in mean FC in noted among the 51–60, 71–80, and 81+ groups

(p< 0.05). The positive FC values that showed a significant decrease coincided with the total

FC except for the 31–40 age group. Although less apparent, the presence of anticorrelations

was not negligible, and the decrease in the negative FC values was significant for the 81

+ group. The alteration in FC with aging was also prevalent for the SRPBS subjects, however

the direction of the change was different as there is an increase in FC with age (Fig 6B). The

increase accelerated among the 51–60 and 71+ groups and, aside for the positive correlations

in the 61–70 y.o. group, is seen for positive, negative, and total connectivity measures. The

change in the number of negative connections is not insignificant and follows an increasing

trend that coincides with the conventionally considered (i.e. positive) correlations. The

the classification of increasingly older brains as aged. The Spearman correlation of 0.74 reflects a moderately

monotonic relationship among the subjects’ ages and the percentage classified as aged. The consideration of NKI-RS

subjects of interval 2 leads to β0 = 65.48, β1 = 0.453, and a Spearman correlation of 0.417. This indicates an increasing

relationship but little monotonicity.

https://doi.org/10.1371/journal.pone.0300720.g004
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Fig 5. The results of the brain age monotonicity analysis for interval 3. The histograms show the number of subjects

classified as young and aged at every considered age. A 5-year sliding window was applied and a linear regression was

fit to the results with intercept β0 and slope β1. A machine was trained on the two oldest age groups and received

younger subject recordings as test data. With the 1000FCP dataset, the values β0 = 24.2, β1 = 0.58, and the Spearman

correlation of 0.795 indicate a gradual increase and moderate monotonicity. For SRPBS, β0 = 3.11, β1 = 0.788, and the

Spearman correlation of 0.853 demonstrates monotonicity in the number of subjects classified as aged with increasing

age. With camCAN, the values β0 = 32.52, β1 = -0.205, and the Spearman correlation of -0.448 indicate a gradual

decrease and small degree of monotonicity. The NKI-RS subjects of interval 3 provide β0 = 45.12 and β1 = -0.176 to

reflect a gradually decreasing relationship. The Spearman correlation of -0.161 indicates an absence of monotonicity.

https://doi.org/10.1371/journal.pone.0300720.g005
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Fig 6. A study of the change in FC for subjects across decades from the A) 1000FCP, B) SRPBS, C) camCAN, and D)

the NKI-RS recording center. The mean FC was computed by averaging across subjects the number of times that the

Pearson CCs from the connectivity matrix exceeded a threshold of |ρ| = 0.6. The bifurcation of the FC in positive and

negative (i.e. anticorrelations) directions is also shown. Two-sample t-tests are used to assess the significance of the

change in FC with the youngest age group taken as the reference. A p-value of 0.05 is the threshold for statistical

significance in the pairwise comparisons between positive, negative, and total FC values. The s.d. of the number of

functional connections is illustrated to study the inter-subject variability across the age spectrum.

https://doi.org/10.1371/journal.pone.0300720.g006
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camCAN subjects show a decrease in FC that is steady but significant with increasing age (Fig

6C). Interestingly, while being negligible in value in comparison to the number of positive cor-

relations, the anticorrelations show an opposite trajectory by increasing with aging. For the

NKI-RS dataset, Fig 6D shows the mean of the FC for subjects. A significant decrease in mean

FC is noted among the 81+ y.o. group and for the positive FC values of the 71–80 y.o. group

(p< 0.05).

We examine the inter-subject variability in FC with aging. In the case of 1000FCP, there is

an increase in variability among middle age to elder (61–70) subjects, and a reduction in FC

variability for the two oldest decades (Fig 6A). It is intriguing that the increase in FC consis-

tency for the oldest subjects is precipitous and present among the positive and negative corre-

lations. Similarly, the peak inter-subject FC variability occurs in middle age for the SRPBS

subjects (51–60 y.o.) with decreasing variance for older and younger age groups (Fig 6B). The

youngest subjects (18–30 y.o.) exhibit the most consistency. The variance in the inter-subject

FC for the camCAN subjects shows a steady decrease along the decades. There is a bimodal

division as the older subjects (61+ y.o.) have a more consistent CP than the younger subjects

(Fig 6C). It is interesting that the datasets provide very different results on the variability in

inter-subject FC across the broad age spectrum. While the 1000FCP and camCAN subjects

show the least variability in the oldest age groups, the SRPBS subjects show the lowest variabil-

ity for the youngest subjects. Furthermore, the 1000FCP and SRPBS subjects show the highest

variability for middle-age (61–70 and 51–60, respectively), while the youngest decade (18–30

y.o.) camCAN subjects exhibited the largest inter-subject FC variability. In the case of the

NKI-RS subjects there is an increase in variability among middle age to elder (61–70 y.o.) sub-

jects, and a reduction in FC variability for the two oldest decades (Fig 6D). The trend is very

similar to the aggregate 1000FCP scenario since the increase in FC consistency is precipitous

for the oldest subjects and exists for positive and negative correlations. In summary, the

change in the total FC is categorical with aging across the populations of subjects. The inter-

subject variance, however, follows an inverted U-shaped trajectory in two datasets, and a

bimodal trajectory showing a decrease in variability with aging in the third case.

Brain aging dynamics are similar among sexes, but accentuated in males

In considering the 1000FCP subjects, the results in Fig 7 indicate that a decrease in FC with

increasing age is more pronounced in males. Specifically, the two middle-age groups of males

(41–50, 51–60) exhibited a significant decrease in their positive FC measures (p< 0.05) while

only the 51–60 y.o. group of females showed a similar decline. The significant decrease in FC

is noted in the total FC of males for the two oldest groups. A similar decrease is noted in

females of 81 years and older. Interestingly, the oldest females witness a greater reduction in

FC than the male subjects. For the SRPBS dataset there is an increase in FC with aging for both

males and females, although the increase is only significant for the male subjects. Specifically,

the increase in all three classes of correlations are significant for the male subjects in the 41–50

and 51–60 y.o. range, while only the negative correlations are significant for the female subjects

of the same age groups (Fig 8). Perhaps more importantly, the males show their largest number

of negative and total connections in the oldest age group. The subjects in the camCAN cohort

exhibit a similar trend with the progressive change in FC being more prominent in males.

While a significant decrease in total FC is noted in the 71–80 and 81+ age groups for both

sexes, the change starts earlier in males via the 61–70 y.o. group (Fig 9). The earlier alteration

to FC in males is also noted among their anticorrelations across the age spectrum. The change

in FC for the NKI-RS subjects is similar to that seen for the aggregate 1000FCP dataset (Fig

10). The decrease in connectivity is only significant for the oldest age group of male and female
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subjects. The change is more pronounced in males because the total and positive FC values are

statistically significant, while only the positive FC values are significant for females.

We examine the inter-subject variability in FC with aging separately among the sexes. A ris-

ing and precipitous fall in variability is noted among both sexes for the 1000FCP subjects (Fig

7). However, the peak variability occurs at the different junctures of 51–60 for males and 61–

70 for females when considering the total FC. A similar inverted U-shape trend is noted with

the SRPBS data (Fig 8) but with the peak variance in inter-subject FC at the 61–70 age group

in males while the peak variability for females occurred during the 51–60 interval. In Fig 9, the

camCAN results for the female subjects showed a similar spike in inter-subject variability dur-

ing middle age since the 41–50 and 51–60 year-old females had the least consistency. The

males show a variation in FC that is incongruous to what we have noted thus far. Namely, they

Fig 7. An assessment of the differences in FC between male and female subjects in the three datasets. The mean and s.d. of the number of connections are

plotted separately for the male and female subjects from the 1000FCP dataset. The mean FC was computed by averaging across subjects the number of times

the Pearson CCs from the connectivity matrix exceeded a threshold of |ρ| = 0.6. The division of the FC in positive and negative (i.e. anticorrelation) directions

is also shown. Two-sample t-tests are used to assess the significance of the change in FC with the youngest age group taken as the reference. A p-value of 0.05 is

the threshold for statistical significance in the pairwise comparisons between positive, negative, and total FC values. The s.d. of the number of FCs is shown to

study the inter-subject variability for each sex and age group.

https://doi.org/10.1371/journal.pone.0300720.g007
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showed the greatest variance in the young (18–30 and 31–40) and a relatively constant variance

in the latter decades. The NKI-RS male and female subjects show a rising and precipitous fall-

ing in FC variability with aging (Fig 10). The trends are similar to that for the aggregate

1000FCP since the peak variabilities occur at 51–60 for males and 61–70 for females. In both

sexes the lowest variability is seen for the oldest age group.

Discussion

In the course of healthy human aging, one may expect a monotonic relationship with young

brains having properties that are increasingly similar to aged brains. The application of ML

pipelines can aid in the discovery of fundamental facets of brain aging including the role of

sex. While our use of SVM was motivated by prior works [5, 26], the questions and

Fig 8. Assessment of the differences in FC between male and female subjects in the three datasets. The mean and s.d. of the number of connections are

plotted separately for the male and female subjects from the SRPBS dataset. The mean FC was computed by averaging across subjects the number of times the

Pearson CCs from the connectivity matrix exceeded a threshold of |ρ| = 0.6. The division of the FC in positive and negative (i.e. anticorrelation) directions is

also shown. Two-sample t-tests are used to assess the significance of the change in FC with the youngest age group taken as the reference. A p-value of 0.05 is

the threshold for statistical significance in the pairwise comparisons between positive, negative, and total FC values. The s.d. of the number of FCs is shown to

study the inter-subject variability for each sex and age group.

https://doi.org/10.1371/journal.pone.0300720.g008
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classification-based methodology are novel. The three intervals studied in Fig 1 investigate

questions pertaining to the dynamics of brain aging among healthy subjects. A strong degree

of monotonicity was noted when considering the two extrema age groups as references (inter-

val 1 of Fig 1A). This was consistent among three datasets that contained subjects of diverse

demographics. A discrepancy from a Spearman correlation value of one–i.e., a completely

monotonic relationship–points towards several practical considerations. For instance, the

study is prone to inter-subject variability since participants of the same age may have very dif-

ferent genetic traits, environmental factors, and life histories while participants in a different

age group may be more similar to each other with respect to the aforementioned factors.

The analysis that accommodated a new question of whether the CPs of young brains con-

tain structure that is conserved among progressively older brains (interval 2 of Fig 1B)

Fig 9. Assessment of the differences in FC between male and female subjects in the three datasets. The mean and s.d. of the number of connections are

plotted separately for the male and female subjects from camCAN. The mean FC was computed by averaging across subjects the number of times the Pearson

CCs from the connectivity matrix exceeded a threshold of |ρ| = 0.6. The division of the FC in positive and negative (i.e. anticorrelation) directions is also

shown. Two-sample t-tests are used to assess the significance of the change in FC with the youngest age group taken as the reference. A p-value of 0.05 is the

threshold for statistical significance in the pairwise comparisons between positive, negative, and total FC values. The s.d. of the number of FCs is shown to

study the inter-subject variability for each sex and age group.

https://doi.org/10.1371/journal.pone.0300720.g009
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provides a less categorical answer. While the majority of brains were classified as more similar

to the aged group, there was little indication of monotonicity in the classifiers’ decisions across

the age spectrum. The difference in CP among younger brains was not indicative of nor reso-

nated to the CP changes of the older brains. Conversely, it is interesting that information can

be gained about the connectivity of young brains through the CPs of strictly older brains (i.e.

interval 3 of Fig 1C). In two of the datasets a linear fit showed that the CP associated with old

subjects (61+ y.o.) are informative of relative changes in much younger subjects. Table 3 con-

tains the prominent hypotheses among the possible brain aging trajectories in each interval for

the datasets. The ML parameters as well as the results attained via the post-processing are also

listed. To the best of our knowledge, this work presents the first evaluation of monotonicity in

brain aging and its quantification via ML. The analysis has gone beyond the paradigm of brain

Fig 10. Assessment of the differences in FC between male and female subjects in the three datasets. The mean and s.d. of the number of connections are

plotted separately for the male and female subjects from the NKI-RS recording center. The mean FC was computed by averaging across subjects the number of

times the Pearson CCs from the connectivity matrix exceeded a threshold of |ρ| = 0.6. The division of the FC in positive and negative (i.e. anticorrelation)

directions is also shown. Two-sample t-tests are used to assess the significance of the change in FC with the youngest age group taken as the reference. A p-

value of 0.05 is the threshold for statistical significance in the pairwise comparisons between positive, negative, and total FC values. The s.d. of the number of

FCs is shown to study the inter-subject variability for each sex and age group.

https://doi.org/10.1371/journal.pone.0300720.g010
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age prediction from fMRI signals or changes in brain connectivity to probe whether differ-

ences in CPs of young brains are reflective of the differences in later life. Interestingly, the

complementary question of whether the difference in CPs of aged brains are informative of the

changes seen by younger subjects provided a different answer. For each of the three intervals

in the monotonicity study, a 5-year sliding window was applied for smoothing. This was done

prior to fitting a linear regression to the percentage of subjects that were classified as aged

across the spectrum. The analysis was also performed without the sliding window (S1 Fig) and

we did not witness a change in the conclusions. It is noteworthy that the Spearman CC values

were smaller in magnitude without the sliding window. This is expected because not smooth-

ing may obfuscate or hide trends if the data at a single age contains outliers or when fewer,

non-representative subjects exist at an age. The interval 1 subjects in Figs 3–5 that deviate

from a monotonic relationship deserve further discussion. This is explained by the limitation

in the number of subjects as well as the empirical nature of the collected data. Despite a

smoothing operation having been applied, the percentage of subjects classified as aged was

computed for every year in the interval. This temporal resolution further contributed to spe-

cific ages consisting of a fewer number of subjects and the likelihood of a non-representative

CP affecting the results at a particular age. Another factor follows from the choice of the mono-

tonicity measure. Although a commonly used metric, the Spearman CC is a measure of linear

monotonicity. Conversely, the BOLD signal as well as the aging process are nonlinear pro-

cesses at both the micro- and macroscale. As increased data, analysis, and results come forth, it

will perhaps be possible to thoroughly assess the suitability of nonlinear measures of monoto-

nicity for explaining brain aging dynamics.

While quantitative ML analysis of how brain connectivity dynamics are modulated by

aging is important, it is also necessary to be cognizant of the features that are input to the pre-

dictive algorithm. The Pearson CC has been used as a measure of the degree and direction of

the relationship–i.e. connectivity–among pairs of ROIs. This measure and its transformations

are prevalent in rsfMRI works that investigate the effects of aging on CPs. Drawing upon sev-

eral recent studies, in [27] task-evoked and rsfMRI were collected from subjects spanning 20

to 93 years. The connectivity comparisons concluded that large-scale brain organization was

maintained during aging, but parcellation differences existed among age groups and increased

with larger differences in age. Conversely, the resting and task fMRI data analyzed in [28] led

Table 3. The comparative parameters and results of the monotonicity study conducted with the three datasets. The intercept (β0) and slope (β1) attained via a linear

fit to the percentage of subjects classified as aged in intervals 1, 2, and 3 are included. The Spearman CC and fitted parameters were used to determine the prominent

hypothesis among the possible brain aging trajectories.

Interval Dataset Size of training set Size of test set β0 β1 Spearman CC Prominent hypothesis

1 1000FCP 78 390 31.58 0.952 0.7 H1

1 SRPBS 144 310 7.285 2.696 0.948 H1

1 camCAN 90 528 0 2.234 0.986 H1

1 NKI-RS 64 210 39.74 0.877 0.608 H1

2 1000FCP 170 344 71.4 -0.147 -0.243 H3

2 SRPBS 252 256 82.159 0.1 0.149 H3

2 camCAN 158 468 77.48 0.329 0.74 H1

2 NKI-RS 54 215 65.48 0.453 0.417 H3

3 1000FCP 78 781 24.2 0.58 0.795 H1

3 SRPBS 138 568 3.11 0.788 0.853 H1

3 camCAN 90 490 32.52 -0.205 -0.448 H3

3 NKI-RS 64 230 45.12 -0.176 -0.161 H3

https://doi.org/10.1371/journal.pone.0300720.t003
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the authors to conclude that FC was lower in older adults. Correlational analysis in [29] also

noted that aging led to a decrease in strong FC across the brain. The decrease in modularity

was quantified by more uniform activity patterns among the ROIs of the older subjects. The

more diffuse and fewer strongly correlated functional connections with older age has been

referred to as functional dedifferentiation [30–32]. We also note a definitive change in FC with

increasing age that is more significant in the latter decades of the subjects. Two of the datasets

show the strength of the connections to decrease (supporting functional dedifferentiation)

while contrary results were noted with the SRPBS cohort. The general decrease in the mean

number of significant CC values with increasing age is consistent with several prior reports of

the modularity in functional networks decreasing with aging [11, 29, 33, 34]. A recent work

found mostly weakened connectivity with aging among subjects, but an increase in several

cases [8]. The authors attribute the increases to the within network FC of several prominent

systems such as the visual and somatomotor. In [35] a four-year longitudinal analysis of

N = 16 elderly subjects (69+ y.o. at the start of the study) was undertaken. The results revealed

a decrease in FC in two of the three considered brain networks. Such findings are interesting

in accommodating the non-unanimous results noted here when considering three distinct

datasets.

The BOLD fMRI signal has been processed to quantify FC in assessing a large scale of phe-

notypes studied in resting and task-based studies. Surprisingly, much less attention has been

given to its inter-subject variability. In this work the variability in FC was studied by comput-

ing the s.d. at various decades. An inverted U-shape was noted in quantifying the variability in

two of the three datasets where the middle-aged-to-elder subjects—i.e. 51–60 y.o.—showed the

highest variability. The findings point toward brain aging being a complex process where alter-

ations in cohorts do not simply increase, decrease, or remain constant across the decades of

life. The peak in variability during middle age presents intriguing possibilities as far as peoples’

lifestyle, occupation, and perhaps their personality being the most different during that junc-

ture. Interestingly, the peak occurred at different junctures within the middle-to-elder range

for male and female subjects.

Another largely neglected facet of connectivity-based fMRI analysis is the consideration of

anticorrelations. While we note that the relative change of significant anticorrelations during

aging generally follow what was seen for the positive correlations, there were discrepancies.

Perhaps more importantly, including the negative correlations in a tally of the connectivity

changes does lead to altered or new findings. With the 1000FCP subjects, if one was to restrict

attention to the canonical positive connections, then a significant decrease in connectivity

would be seen between the two earliest decades of the considered ages. However, incorporat-

ing the anticorrelations into the total indicates that the change is not significant. Additionally,

for the 1000FCP data, the loss of FC in the male subjects for the 81+ y.o. group was not deemed

significant when accounting for only the positive correlations (or the anticorrelations)–yet, the

aggregate account shows statistical significance. A similar result occurred for the oldest group

of male SRPBS subjects. Namely, counting the standard (positive) correlations showed no sig-

nificant alteration in the number of functional connections, whereas the inclusion of anticor-

relations indicated that the FC of 71+ y.o. males is modulated in comparison to the reference

young group. This reveals that when assessing FC, an aggregate connectivity measure should

be considered rather than solely positive correlations.

Human and animal studies are increasingly becoming cognizant of the differences between

the sexes and performing separate analyses. Thus, the attainment of trajectories of healthy

brain aging in males and females is important. Repeating the per-decade FC analysis for male

and female subjects provided several findings. First, the changes in connectivity with aging

were similar between males and females in the three datasets. Second, the modulation in the
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dynamics were more pronounced (i.e. statistically significant) for males. Such a result would

be important to take into account when assessing deviations from a baseline in a male versus a

female. Perhaps most importantly, the results reveal that the modulation in FC with age is not

as prominent when male and female subjects are considered separately rather than together.

This accentuates the prudence of separate sex analyses in age-related studies across a popula-

tion. The inter-subject variability in FC among the sexes also yielded interesting results.

Although the peak variabilities occurred at different junctures in the age spectrum between

males and females, they occurred in the middle-to-elder range. This result, however, did not

hold in one dataset where the youngest group of males exhibited the largest variance. Such dis-

crepancy highlights the general difficulty in attaining consensus across datasets in light of the

brain being a nonlinear stochastic system while aging is a complex process. It also warrants the

requirement of further scrutiny via additional datasets, methodologies, and computation.

The datasets considered in this work share similarities as well as differences. The 1000FCP

subjects spanned 17 centers necessitating an investigation of site effects. The monotonicity

and change in FC analyses were repeated on subjects from the NKI-RS center to investigate if

the trends noted with all subjects coincide with those seen for the largest constituent center.

Interval 1 results on the presence and degree of monotonicity coincided with those attained

for 1000FCP. The interval 2 findings also agreed on the absence of a monotonic relationship.

Contrarily, the interval 3 conclusions were different because the NKI-RS analysis did not

reflect a monotonic relationship. Aside from possible site effects, such deviation may be due to

the single-site dataset providing a fewer number of subjects in the ML training set as well as in

the test set. The change in FC analysis conducted on the NKI-RS subjects provided results that

were very similar to the aggregate results. In the constituent and the 1000FCP, there was an

increase in variability among middle age to elder subjects, and a reduction in FC variability for

the two oldest decades. The trends noted for the positive and negative correlations also coin-

cided. Furthermore, the sex differences in FC that were observed in the NKI-RS subjects

agreed with those of the collective dataset. In summary, the results are suggestive of site effects

not being prominent in the results presented for the 1000FCP recordings. Nevertheless, the

use of harmonization techniques [36, 37] is a future avenue for further assessing to what degree

the presented results may be affected.

The SRPBS and camCAN studies maintained a constant protocol with respect to all subjects

having their eyes open and closed, respectively, during the recordings. This was not the case

with the 1000FCP dataset (S1 Table). It is not unusual for rsfMRI investigations to consider a

mixture of subjects of different arousal states [11, 38]. Nevertheless, we consider the monoto-

nicity and quantification of FC separately for the 1000FCP recordings where subjects had their

eyes open. The conclusions of the monotonicity analysis when subjects had their eyes open

(N = 543) generally agreed with those attained with the aggregated subjects (S2 Fig). The

hypotheses derived from interval 1 and interval 2 agree between the two studies. However, the

interval 3 results indicate the absence of a monotonic relationship between the chronological

age and the percentage of subjects classified as aged when considering only subjects with eyes

open during recordings (S2C Fig). The findings pertaining to the change in FC across decades

were consistent when considering all 1000FCP subjects and separately studying the subjects

with eyes open (S2D Fig).

The study of FC alterations with aging was repeated with thresholds of |ρ = 0.45| and |ρ =

0.7| for declaring connections (S3 and S4 Figs). Scrutiny with lower and higher thresholds

aims to expurgate spurious relationships that would arise with noise-dominated signals (i.e.

low SNR recordings). With the decreased value of |ρ = 0.45|, the per-dataset trends in the

mean and variability of the number of FCs across the age spectrum matched what was reported

in Fig 6. There were naturally a larger number of FCs per age group with the lower threshold.
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Similarly, although a higher threshold lowered the number of FCs in every age group, the

trends in the mean and variability were consistent to those observed in Fig 6. The results are

reassuring by reproducing the findings despite less stringent as well as more conservative

threshold values from what we initially considered. Nevertheless, more detailed analysis of the

FC dependency during aging on the SNR and threshold values is an avenue of future research.

There is an additional caveat of the number of ROIs not being constant among the considered

datasets. However, it is not uncommon in fMRI studies that examine multiple datasets to

assess BOLD differences with different ROI numbers and selection schemes [39–41]. For

instance, the authors of [42] compared age prediction results with 419 ROIs from HCP sub-

jects and 55 ROIs from UK Biobank subjects. Despite the ML pipeline ensuring that the same

number of young and aged subjects are used to train an SVM, there is an unequal number of

subjects considered across the age groups in the datasets. This is a consequence of the subject

imbalance between ages that exists in neuroimaging studies where age is a predictive variable

and spans a broad range. Rather than being a hinderance, this is standard among related

works [8, 43]. The number of data points across the subjects at different recording centers was

also not constant. This is consistent with related works such as [11, 44]. A recent work evalu-

ated brain age prediction accuracy for varying number of time points and observed improve-

ments with the number of time points [45]. However, the increases were reported as being

relatively small. Lastly, it should be noted that more sophisticated and computationally

demanding algorithmic techniques such as DL may provide more accurate prediction results

and reveal FC properties in any one of the considered datasets. However, the techniques may

also overfit a different dataset to provide marginal predictive capability and obscure FC char-

acteristics by not generalizing. An SVM classifier was considered in this work due to its sim-

plicity, general robustness, and interpretability. A comparative study with more advanced

methods is a future avenue of investigation.

Supporting information

S1 Fig. Brain age monotonicity without application of a sliding window. The results of the

brain age monotonicity study for intervals 1, 2, and 3 without application of a 5-year sliding

window. To test for a trend, a linear regression was fit to the data with the intercept β0 and

slope β1. A) For 1000FCP subjects, in interval 1 we have β0 = 31.49, β1 = 0.971. The Spearman

correlation of 0.549 computed among the percentages of subjects classified as aged and the

ages indicates a moderate degree of monotonicity between the two quantities. In interval 2 we

attain β0 = 70.94, β1 = -0.108 indicating little change in the classification of increasingly older

brains as aged. The Spearman correlation of -0.053 reflects a non-monotonic relationship

among the ages and the percentage of subjects classified as aged. For interval 3, the values β0 =

24.33, β1 = 0.568, and the Spearman correlation of 0.404 signifies a gradual increase and small

degree of monotonicity. B) When considering the SRPBS subjects, in interval 1 we have β0 =

6.647, β1 = 2.749. The Spearman correlation of 0.818 computed among the percentages of sub-

jects classified as aged and the ages demonstrates monotonicity between the two quantities. In

interval 2 we attain β0 = 82.49, β1 = 0.054 indicating little change in the classification of

increasingly older brains as aged. The Spearman correlation of 0.108 reflects a non-monotonic

relationship among the subjects’ ages and the percentage labeled as aged. For interval 3, the

values β0 = 3.48, β1 = 0.748, and the Spearman correlation of 0.544 indicates an increase and

moderate degree of monotonicity. C) For the camCAN dataset, in interval 1 we have β0 = 0, β1

= 2.254. The Spearman correlation of 0.9027 computed among the percentages of subjects clas-

sified as aged and the subject ages signifies a high degree of monotonicity between the two

quantities. In interval 2 we attain β0 = 76.42, β1 = 0.3706 demonstrating little change in the
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classification of increasingly older brains as aged. The Spearman correlation of 0.386 reflects a

non-monotonic relationship. For interval 3, the values β0 = 32.301, β1 = -0.1968, and the Spear-

man correlation of -0.118 indicate a gradual decrease and non-monotonicity in the number of

subjects classified as aged with increasing biological age. D) With the NKI-RS subjects, in

interval 1 we have β0 = 39.71, β1 = 0.858. The Spearman correlation of 0.396 demonstrates

small to no monotonicity between the percentages of subjects classified as aged and the ages.

In interval 2 we attain β0 = 64.78, β1 = 0.496 which indicates a gradual increase in the classifica-

tion of increasingly older brains as aged. The Spearman correlation of 0.371 reflects an absence

of monotonicity among the subjects’ ages and the percentage labeled as aged. For interval 3,

the values β0 = 45.75, β1 = -0.206, and the Spearman correlation of -0.112 indicates a non-

monotonic but decreasing relationship.

(TIFF)

S2 Fig. Findings for subjects with eyes open during the rsfMRI recordings. The results of

the brain age monotonicity and change in FC studies for subjects in the 1000FCP dataset that

had eyes open during rsfMRI recording. For the monotonicity study, the histograms show the

number of subjects classified as young and aged at every considered age. A 5-year sliding win-

dow was applied and a linear regression fit to the results with the intercept β0 and slope β1. A)

The analysis consists of a machine trained on the youngest and oldest groups and presented

with test data of intermediate-aged subjects. In interval 1 we have β0 = 22.71, β1 = 1.34. The

Spearman correlation of 0.661 computed among the percentages of subjects classified as aged

and the ages indicates a moderate degree of monotonicity. B) A machine was trained on the

two youngest groups of subjects and then provided with recordings from subjects 41+ y.o.

(interval 2). The values β0 = 54.2, β1 = 0.76, and a Spearman correlation of 0.325 indicate an

absence of monotonicity. C) A machine was trained on subjects from the two oldest age groups

prior to being presented with the task of classifying younger subjects (21–60 y.o.) in interval 3.

The linear fit values β0 = 34.32, β1 = 0.25, and Spearman correlation of 0.047 signify a non-

monotonic relationship between chronological age and the percentage of subjects classified as

aged. D) The change in FC analysis consisted of the mean FC computed by averaging across

subjects the number of times that the Pearson CCs from the connectivity matrix exceeded |ρ| =

0.6. The s.d. of the number of functional connections is shown to study the inter-subject vari-

ability across the age spectrum.

(TIFF)

S3 Fig. Analysis of FC changes with threshold |ρ| = 0.45. A study of the change in FC for sub-

jects across decades from the A) 1000FCP, B) SRPBS, and C) camCAN datasets. A threshold |

ρ| = 0.45 was used to determine if the Pearson CCs from the connectivity matrix constituted a

FC. The mean FC was computed by averaging the FC values across the subjects in each age

group. A bifurcation of the FC to positive and negative (i.e. anticorrelations) directions is also

shown. Two-sample t-tests were used to assess the significance of the change in FC with the

youngest age group taken as the reference. A p-value of 0.05 is the threshold for statistical sig-

nificance in the pairwise comparisons of positive, negative, and total FC values. The s.d. of the

number of functional connections is illustrated to study the inter-subject variability across the

age spectrum.

(TIFF)

S4 Fig. Analysis of FC changes with threshold |ρ| = 0.7. A study of the change in FC for sub-

jects across decades from the A) 1000FCP, B) SRPBS, and C) camCAN datasets. A threshold |

ρ| = 0.7 was used to determine if the Pearson CCs from the connectivity matrix constituted a

FC. The mean FC was computed by averaging the FC values across the subjects in each age
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group. A bifurcation of the FC to positive and negative (i.e. anticorrelations) directions is also

shown. Two-sample t-tests were used to assess the significance of the change in FC with the

youngest age group taken as the reference. A p-value of 0.05 is the threshold for statistical sig-

nificance in the pairwise comparisons of positive, negative, and total FC values. The s.d. of the

number of functional connections is illustrated to study the inter-subject variability across the

age spectrum.

(TIFF)

S1 Table. 1000FCP subjects with eyes open or closed. A listing of the subjects from the

1000FCP with eyes open (N = 543) or closed (N = 197) during the rsfMRI recording.

(TIFF)
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