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Abstract

Background and purpose

Mean pulmonary artery pressure (mPAP) is a key index for chronic thromboembolic pulmo-

nary hypertension (CTEPH). Using machine learning, we attempted to construct an accu-

rate prediction model for mPAP in patients with CTEPH.

Methods

A total of 136 patients diagnosed with CTEPH were included, for whom mPAP was mea-

sured. The following patient data were used as explanatory variables in the model: basic

patient information (age and sex), blood tests (brain natriuretic peptide (BNP)), echocardiog-

raphy (tricuspid valve pressure gradient (TRPG)), and chest radiography (cardiothoracic

ratio (CTR), right second arc ratio, and presence of avascular area). Seven machine learning

methods including linear regression were used for the multivariable prediction models. Addi-

tionally, prediction models were constructed using the AutoML software. Among the 136

patients, 2/3 and 1/3 were used as training and validation sets, respectively. The average of

R squared was obtained from 10 different data splittings of the training and validation sets.

Results

The optimal machine learning model was linear regression (averaged R squared, 0.360).

The optimal combination of explanatory variables with linear regression was age, BNP level,

TRPG level, and CTR (averaged R squared, 0.388). The R squared of the optimal multivari-

able linear regression model was higher than that of the univariable linear regression model

with only TRPG.
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Conclusion

We constructed a more accurate prediction model for mPAP in patients with CTEPH than a

model of TRPG only. The prediction performance of our model was improved by selecting

the optimal machine learning method and combination of explanatory variables.

Introduction

Chronic thromboembolic pulmonary hypertension (CTEPH) is a disease with a poor progno-

sis caused by stenosis and occlusion of the pulmonary artery due to an organizing thrombus in

the pulmonary artery that ultimately leads to pulmonary hypertension (PH) [1, 2]. PH is

defined as a mean pulmonary artery pressure (mPAP) of> 20 mmHg on right heart catheteri-

zation (RHC).

The mPAP is one of the key indices used for the diagnosis, severity classification, prognosis

prediction, and indications for surgery in CTEPH [3, 4]. It is measured using RHC, which is

expensive, invasive, and can cause adverse events, including infection, bleeding from local

puncture sites, and other morbidities [5]. Echocardiography, computed tomography, and

magnetic resonance imaging have been used to estimate mPAP [6]. Tricuspid valve pressure

gradient (TRPG) measured using the Doppler method with echocardiography is a well-known

method for estimating mPAP [7].

Echocardiography is frequently used in clinical practice because of its simplicity and low

cost compared with computed tomography, magnetic resonance imaging, and RHC. However,

echocardiography alone is not accurate in predicting mPAP [1, 8, 9]. An accurate, minimally

invasive, simple, and inexpensive method to predict mPAP is therefore needed.

In recent years, artificial intelligence such as machine learning and deep learning has been

used in various areas of clinical medicine [10, 11]. By using machine learning and deep learning,

it is possible to build classification and prediction models from multiple clinical data. To the best

of our knowledge, few studies have used machine learning to build mPAP prediction models.

This study compares a conventional method using TRPG with machine learning models to

predict mPAP of CTEPH. The hypothesis of this study is whether a low-invasive, high-accu-

racy assessment and prediction method can be developed using machine learning. For this, we

used echocardiography, as well as basic information such as patient age and sex, chest radiog-

raphy, and blood tests in the model construction. The contributions of this study are as fol-

lows: (i) A multivariable prediction model of mPAP with higher accuracy than that of

echocardiography alone was constructed by combining multiple minimally invasive tests. (ii)

Various machine learning methods were compared to construct the prediction models, and

the most accurate method was selected. (iii) The prediction model for the current study can be

easily used on our website.

Material and methods

This retrospective study was approved by the institutional review board (IRB) of Kobe Univer-

sity Hospital (number: B210112). The requirement for informed consent was waived by IRB of

Kobe University Hospital. This study conformed to the Declaration of Helsinki and the Ethical

Guidelines for Medical and Health Research Involving Human Subjects in Japan (https://www.

mhlw.go.jp/file/06-Seisakujouhou-10600000-Daijinkanboukouseikagakuka/0000080278.pdf).
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Subjects

Between April 28, 2005, and January 27, 2020, 167 patients diagnosed with CTEPH at Kobe

University Hospital were included in the current study, for whom mPAP was measured by

RHC. Of the 167 patients, those with missing values were excluded, and data from 136 patients

were used to construct the prediction model of mPAP.

Data

The following patient data were used as explanatory variables of the prediction model: basic

patient information (age and sex), blood tests (brain natriuretic peptide (BNP)), echocardiog-

raphy (TRPG), and chest radiography (cardiothoracic ratio (CTR) = length of heart/that of

thorax, right second arc ratio (RSR) = length of right second arc/that of thorax, and presence

of avascular area). The patient data were collected near the date of RHC. The average interval

between RHC and TRPG and that between RHC and BNP were 5.8 and 5.2 days, respectively.

CTR and RSR, correlated with pulmonary hypertension [12, 13], were calculated as the average

of the measurements of the two radiologists (3 years of experience), and the presence of an

avascular area was determined by their consensus. In cases where the two radiologists could

not achieve a consensus, the decision was made by a third radiologist (5 years of experience).

The objective variable of the prediction model was the mPAP measured by RHC.

Data splitting

Among the 136 patients, 2/3 and 1/3 were used as training and validation sets, respectively.

Ten different combinations of data splittings for the training and validation sets were obtained

by using different random seeds. As shown below, average of model evaluation results

obtained from the 10 different data splittings was calculated. These data splittings were per-

formed for selecting the optimal prediction model and the optimal explanatory variables.

Numerical transformation of explanatory variables

Among the explanatory variables, BNP and CTR were transformed into logarithms due to

their non-normality. In addition, after log transformation, data standardization was performed

for each explanatory variable using the mean and standard deviation.

Machine learning method

To build multivariable prediction models, age, sex, BNP, TRPG, CTR, RSR, and the presence

of an avascular area were used. Linear regression, k-nearest neighbor (KNN), decision tree,

nonlinear support vector regression (SVR), linear SVR, random forest, and eXtreme gradient

boosting (XGBoost) [14] were used as machine learning methods for the multivariable predic-

tion models. In addition, prediction models were constructed using automated machine learn-

ing (AutoML), a software program that automatically selects optimal machine learning

methods. The AutoML software programs used were FLAML [15], TPOT [16], AutoSklearn

[17], and AutoKeras [18]. Python (ver. 3.7.6) was used as programming language.

Selection of explanatory variables

To further improve the prediction accuracy of the models obtained using the optimal machine

learning methods, optimal explanatory variables were selected. Optimal explanatory variables

were selected from subsets of the seven explanatory variables (age, sex, BNP, TRPG, CTR,

RSR, and presence of avascular area). Prediction accuracy was calculated for the models
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constructed from different combinations of explanatory variables, and the combination of

explanatory variables with the highest prediction accuracy was selected.

Evaluation for selecting optimal model

R squared was used as an indicator of the model prediction accuracy. In addition, root mean

squared error (RMSE) and mean absolute error (MAE) were calculated. R squared, RMSE,

and MAE were obtained using the following formulas:

R squared ¼ 1 �

P
i mPAPm;i � mPAPp;i

� �2

P
i mPAPm:i � mPAPm

� �2
;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P

i mPAPm;i � mPAPp;i

� �2

n

v
u
u
t

;

MAE ¼
P

ijmPAPm;i � mPAPp;ij

n
;

where mPAPm is the measured mPAP, mPAPp is the predicted mPAP, and mPAPm is the mean

mPAPm. To calculate the indices of prediction accuracy, the model was constructed using the

training set, and the indices were calculated from the validation set using the constructed

model. The average of the indices obtained from 10 different data splittings was calculated.

This study used R squared, MAE, and RMSE as the evaluation metrics for selecting optimal

machine learning models. However, our variable selection was based solely on R squared.

Therefore, not only R squared but also MAE and RMSE were used in this study.

Final model construction

After selecting the machine learning method and combination of explanatory variables, the

final prediction model for mPAP was constructed from the data of 136 patients using the best

machine learning method and combination of explanatory variables. As the conventional

model, a linear regression model with only TRPG was constructed. The optimal final model

was then compared with the conventional model (TRPG-only model). To visually compare

and evaluate the prediction results, the prediction results of the two prediction models were

illustrated with scatter plots and Bland-Altman plots. In addition, Akaike’s information crite-

rion (AIC) and Bayesian information criterion (BIC) were calculated for the two models.

As shown in the Results section, the final prediction model for mPAP was constructed

using linear regression. Since the linear regression model was selected and least prone to over-

fitting, we did not prepare a separate test set.

Results

Of the 167 patients diagnosed with CTEPH, 31 with missing values were excluded from the

current study. Thus, 136 patients diagnosed with CTEPH were included. The median mPAP

was 37 mmHg, and the interquartile range (IQR) was 30.8–45.0 mmHg. Seven explanatory

variables were used for model construction: age, sex, BNP, TRPG, CTR, RSR, and presence of

avascular area. The median age was 69 years (IQR, 62–75 years), the gender distribution was

73.8% male and 27.2% female, and the median TRPG was 57.1 mmHg (IQR, 46.8–71.0

mmHg). Details of the other variables are presented in Table 1.
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To select the optimal machine learning method, linear regression, KNN, decision tree, non-

linear SVR, linear SVR, random forest, and XGBoost were compared. Seven variables were

used as explanatory variables to construct the prediction models with these seven machine

learning methods. The detailed results of the seven prediction models are listed in Table 2. The

best averaged R squared value was 0.360 for the prediction model with linear regression, fol-

lowed by KNN and linear SVR (R squared, 0.307 and 0.298, respectively).

Additionally, prediction models for mPAP using AutoML were constructed and evaluated

(Table 3). The AutoML software programs used were FLAML, TPOT, AutoSklearn, and Auto-

Keras. Seven explanatory variables were used in AutoML. The averaged R squared for mPAP

prediction were as follows: TPOT = 0.348, AutoSklearn = 0.320, AutoKeras = 0.274, and

FLAML = 0.178. Thus, among all the prediction models constructed in the current study, lin-

ear regression was the most accurate machine learning method.

To select the optimal combination of the explanatory variables, all combinations of the

seven variables were compared. Here, linear regression was used as the machine learning

method. Table 4 shows the 10 best combinations of explanatory variables and their averaged R

squared values. The averaged R squared of the best model was 0.388, and the explanatory vari-

ables were age, BNP, TRPG, and CTR. The 2nd and 3rd best R squared values were as follows:

Table 1. Characteristics of patients.

Data Median or number of patients (IQR or ratio)

N 136

age 69 (62–75)

gender

male 99 (73.8%)

female 37 (27.2%)

mPAP (mmHg) 37 (30.8–45.0)

BNP (pg/mL) 85.4 (37.6–299)

TRPG (mmHg) 57.1 (46.8–71.0)

CTR 0.535 (0.495–0.566)

presence of avascular area 14 (10.3%)

RSR 0.170 (0.140–0.193)

Abbreviations: mPAP (mean pulmonary artery pressure), TRPG (tricuspid valve pressure gradient), CTR

(cardiothoracic ratio), RSR (right second arc ratio)

https://doi.org/10.1371/journal.pone.0300716.t001

Table 2. Performance evaluation of machine learning method.

Machine learning R squared RMSE MAE

Linear Regression 0.360 0.773 0.634

KNN 0.307 0.811 0.638

Decision Tree -0.358 1.131 0.866

nonlinear SVR 0.295 0.820 0.632

linear SVR 0.298 0.811 0.629

Random Forest 0.276 0.830 0.636

XGBoost 0.159 0.888 0.682

Abbreviations: SVR (support vector regression), RMSE (root mean square error), MAE (mean absolute error)

Note: Values are obtained by averaging the validation set results over 10 different data splittings.

https://doi.org/10.1371/journal.pone.0300716.t002
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the combination of age, BNP, TRPG, CTR, and RSR = 0.384; the combination of age, BNP,

and TRPG = 0.377.

After the best machine learning method and the best combination of explanatory variables

were determined, all data from the 136 patients were used to construct the final optimal model.

The conventional linear regression model with only TRPG was compared with the optimal mul-

tivariable linear regression model of the current study (the combination of age, BNP, TRPG,

and CTR). The R squared of the prediction model was 0.233 for the univariable linear regression

model with only TRPG. The R squared of the optimal multivariable linear regression model

(0.388) was higher than that of the conventional model. The equation and detailed information

of our final model are included in the Supporting Information (Supporting Information, S1

File). The results of the normality or homoscedasticity of the errors in our final model is shown

in the Supporting Information (Supporting Information, S1 Fig). S1 Fig shows that there were

no significant issues with the normality or homoscedasticity of the errors.

The prediction results obtained from the conventional model and the optimal multivariable

model were plotted on scatter plots and Bland-Altman plots to compare the prediction results

visually. Figs 1 and 2 show the scatter plots between the predicted and measured values of

mPAP using the conventional and optimal multivariable models, respectively. Figs 1 and 2

show that the prediction results were more accurate in the optimal multivariable model than

in the conventional model. Figs 3 and 4 show the Bland-Altman plots between the predicted

and measured values of mPAP using the conventional and optimal multivariable models,

respectively. Figs 3 and 4 do not show any apparent fixed bias. Fig 3 of the conventional model

Table 3. Performance evaluation of AutoML.

AutoML R squared RMSE MAE

FLAML 0.178 0.869 0.675

TPOT 0.348 0.782 0.638

AutoSklearn 0.320 0.803 0.633

AutoKeras 0.274 0.823 0.667

Abbreviations: RMSE (root mean square error), MAE (mean absolute error)

Note: Values are obtained by averaging the validation set results over 10 different data splittings.

https://doi.org/10.1371/journal.pone.0300716.t003

Table 4. Top-10 optimal linear regression models.

Explanatory variables R squared

age, BNP, TRPG, CTR 0.388

age, BNP, TRPG, CTR, RSR 0.384

age, BNP, TRPG 0.377

age, BNP, TRPG, CTR, avascular area 0.377

age, BNP, TRPG, CTR, gender 0.375

age, BNP, TRPG, CTR, RSR, gender, avascular area 0.373

age, BNP, TRPG 0.372

age, BNP, TRPG, CTR, RSR, gender 0.372

age, BNP, TRPG, avascular area 0.371

age, BNP, TRPG, gender 0.364

Abbreviations: TRPG (tricuspid valve pressure gradient), CTR (cardiothoracic ratio), RSR (right second arc ratio)

Note: BNP and CTR were transformed into logarithms. Values were obtained by averaging the validation set results

over 10 different data splittings.

https://doi.org/10.1371/journal.pone.0300716.t004
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shows a mild proportional bias. 95% limits of agreement of the conventional model and the

optimal multivariable model were -16.5 to 16.5 mmHg and -14.2 to 14.2 mmHg, respectively.

The AIC and BIC of the two models were as follows: the optimal multivariable model, 934.1

Fig 1. Scatter plot between measured and predicted mPAP (univariable model with only TRPG). Abbreviations: mPAP (mean pulmonary artery pressure), TRPG

(tricuspid valve pressure gradient).

https://doi.org/10.1371/journal.pone.0300716.g001
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and 948.7; the conventional model, 968.6 and 974.4. Thus, prediction accuracy was better in

the optimal multivariable model than in the conventional model.

To make our optimal multivariable model for predicting mPAP publicly available, our web-

site is available at https://benzenedog.github.io/predicting-pulmonary-artery-pressure/. Fig 5

shows a screenshot of the website where the mPAP is predicted on a smartphone. In addition,

Fig 2. Scatter plot between measured and predicted mPAP (multivariable model with 4 variables). Abbreviation: mPAP (mean pulmonary artery pressure).

https://doi.org/10.1371/journal.pone.0300716.g002
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our source code of this study is available at https://github.com/benzenedog/Regression-of-

mPAP-of-CTEPH.

Discussion

In our study, 136 patients diagnosed with CTEPH at our institution were included to construct

a prediction model for mPAP. To construct the prediction models, seven explanatory variables

(age, sex, BNP, TRPG, CTR, RSR, and presence of avascular area) were used. We selected the

optimal machine learning method and optimal combination of explanatory variables to con-

struct our prediction model. This allowed us to construct the model with higher accuracy than

the conventional model, for predicting mPAP. Based on the results of this study, we have vali-

dated the hypothesis that the low-invasive and highly accurate assessment and prediction

method could be developed using machine learning.

Based on the results of the current study, the linear regression model was the most accurate

machine learning method for mPAP prediction in CTEPH. Seven machine learning methods

and four AutoML software programs were used to build the model. Among these, the linear

model was selected as the optimal method. This result may have been caused by the amount of

training data used in the current study. In general, it is possible to build more accurate models

than linear models using advanced and complex machine learning methods. However, the

Fig 3. Bland-Altman plot between measured and predicted mPAP (univariable model with only TRPG). Abbreviations: mPAP (mean pulmonary artery pressure),

TRPG (tricuspid valve pressure gradient). Note: 95% limits of agreement was -16.5 to 16.5 mmHg.

https://doi.org/10.1371/journal.pone.0300716.g003
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generalizability of prediction models tends to decrease in complex models. In our study, the deg-

radation of generalizability was significant in the complex model because the amount of training

data was limited. As a result, the linear model was selected as the best machine learning method.

The reason for the performance improvement of our prediction model may be that the

selected explanatory variables had a large association with stenosis/occlusion of pulmonary

artery, which is the pathogenesis of CTEPH. The TRPG is a metric for disease severity and has

been conventionally used to estimate mPAP [8]. BNP reflects the pathophysiology of heart fail-

ure and increases in response to ventricular load, suggesting a correlation with mPAP [19].

Our results showed that age, but not sex, had a significant effect.

To improve the prediction accuracy of our model further, new explanatory variables must

be added. D-dimer, C-reactive protein (CRP), and transcutaneous arterial oxygen saturation

measured using pulse oximetry are possible candidates that are minimally invasive, simple,

and inexpensive. Previous studies have shown that D-dimer and CRP are significant prognos-

tic factors in patients with CTEPH [20], and arterial oxygen saturation might be a good predic-

tor of the development of pulmonary arterial hypertension [21]. D-dimer and CRP levels are

routinely measured in clinical practice as blood tests, and transcutaneous arterial oxygen satu-

ration can be easily measured using a pulse oximeter. By adding these explanatory variables to

our model, further prediction accuracy may be obtained.

Fig 4. Bland-Altman plot between measured and predicted mPAP (multivariable model with 4 variables). Abbreviation: mPAP (mean pulmonary artery pressure).

Note: 95% limits of agreement was -14.2 to 14.2 mmHg.

https://doi.org/10.1371/journal.pone.0300716.g004
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Estimated values from our prediction model correlated better with mPAP than those from

TRPG. However, we speculate that it is difficult to replace our model with RHC, because of the

prediction error of our model. Instead, our model might be a low-risk and low-cost method

for assessing trends of the mPAP in CTEPH.

Fig 5. Screenshot of website. Note: This screenshot was obtained using a smartphone.

https://doi.org/10.1371/journal.pone.0300716.g005
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TRPG measured using the Doppler method with echocardiography is a well-known

method for estimating mPAP [7]. Other methods of estimating mPAP have been reported,

including the construction of an mPAP prediction model using indices measured on com-

puted tomography [22] and magnetic resonance imaging [23–25]. While this study mainly

used the TRPG for the model construction, parameters of other modalities such as computed

tomography and magnetic resonance imaging were ignored in this study. This is one of the

major limitations of this study.

In machine learning, it is typical to assess predictive performance using a separate test set.

However, due to the rarity of CTEPH, it is difficult to obtain a sufficient dataset. In this study,

we compared machine learning models by averaging the evaluation results from 10 different

validation sets to address this issue. We also speculate that there was the possibility of overfit-

ting during model evaluation in this study. However, the linear regression model, which is less

prone to overfitting, was found to be the most accurate in this study. If a machine learning

model other than linear regression had been optimal, it would have been necessary to prepare

a separate test set. However, since the linear regression model was the most accurate and least

prone to overfitting, we selected it as the optimal model and did not prepare a separate test set.

The current study had several limitations. First, the data of the current study were collected

from our institution (Kobe University Hospital), and external validation was not performed

for our model. Because our model is easily available on our website, it is expected that our

model will be validated with data from different institutions through our website in the future.

Second, the linear model was the best machine learning method in the current study. This is

mainly due to the small amount of training data. It is possible that other machine learning

methods could be better than the linear model by collecting more training data. However,

because of the low disease frequency of CTEPH [3], it might be difficult to collect a large

amount of training data. Third, our model can be used only for the patient at the diagnosis of

CTEPH. Fourth, our model was constructed from the small-sized training data of patients

with CTEPH. If patients without pulmonary hypertension/CTEPH or patients after therapeu-

tic intervention are included in the training data, the independent and identically distributed

property required for machine learning methods will not be satisfied and the accuracy of the

prediction model will be reduced. Therefore, the mPAP prediction model was constructed

with the data of CTEPH at the time of diagnosis. Fifth, our model cannot be applied to patients

in which there is no tricuspid regurgitation.

Conclusion

We constructed a prediction model for mPAP in patients with CTEPH with higher accuracy by

performing minimally invasive tests. The prediction performance of our model was improved

by selecting the optimal machine learning method and combination of explanatory variables.

Our prediction model may be useful for predicting the mPAP in patients with CTEPH.
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