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Abstract

Scoliosis is a medical condition in which a person’s spine has an abnormal curvature and
Cobb angle is a measurement used to evaluate the severity of a spinal curvature. Presently,
automatic Existing Cobb angle measurement techniques require huge dataset, time-con-
suming, and needs significant effort. So, it is important to develop an unsupervised method
for the measurement of Cobb angle with good accuracy. In this work, an unsupervised local
center of mass (LCM) technique is proposed to segment the spine region and further novel
Cobb angle measurement method is proposed for accurate measurement. Validation of the
proposed method was carried out on 2D X-ray images from the Saudi Arabian population.
Segmentation results were compared with GMM-Based Hidden Markov Random Field
(GMM-HMRF) segmentation method based on sensitivity, specificity, and dice score.
Based on the findings, it can be observed that our proposed segmentation method provides
an overall accuracy of 97.3% whereas GMM-HMRF has an accuracy of 89.19%. Also, the
proposed method has a higher dice score of 0.54 compared to GMM-HMRF. To further eval-
uate the effectiveness of the approach in the Cobb angle measurement, the results were
compared with Senior Scoliosis Surgeon at Multispecialty Hospital in Saudi Arabia. The find-
ings indicated that the segmentation of the scoliotic spine was nearly flawless, and the Cobb
angle measurements obtained through manual examination by the expert and the algorithm
were nearly identical, with a discrepancy of only + 3 degrees. Our proposed method can
pave the way for accurate spinal segmentation and Cobb angle measurement among scoli-
osis patients by reducing observers’ variability.
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Scoliosis is a medical condition characterized by an abnormal curvature of the spine, causing it

to curve sideways in an "S" or "C" shape instead of maintaining a straight line [1]. The preva-
lence of scoliosis can vary globally and is influenced by factors such as age, gender, genetics,
and geographic location [2]. According to the Scoliosis Research Society, the estimated preva-
lence of scoliosis in the general population is approximately 2-3%, while in children and ado-
lescents, it ranges from 2-4% [3]. Previous studies have examined the occurrence of scoliosis
in Saudi Arabia [4]. Al Arjani et al. investigated the epidemiological patterns of scoliosis in a
specialized hospital in Saudi Arabia, finding that 59% of cases were idiopathic, 7% were sec-
ondary to poliomyelitis, and 17% were congenital scoliosis [5]. While scoliosis can affect indi-
viduals of any age, it typically develops during childhood or adolescence and can be caused by
factors such as genetics, neuromuscular conditions, or idiopathic reasons [6]. Effective treat-
ment and management of scoliosis relies heavily on systematic screening and accurate diagno-
sis. Screening for scoliosis poses several challenges such as (i) variability in presentation (ii)
lack of visible symptoms (iii) age of onset (iv) accessibility to screening (v) observer variability
and (vi) cost and resources [7]. These factors can pose challenges, particularly in resource-lim-
ited settings or areas with a high prevalence of scoliosis. Addressing these challenges requires a
combination of improved awareness, accessible screening programs, standardized diagnostic
guidelines, and technological advancements to enhance early detection and accurate diagnosis
of scoliosis. The gold standard for diagnosis is the measurement of the Cobb angle, which
quantifies the severity of the spinal curvature by assessing the deviation between the two most
affected vertebrae [8]. However, accurately tracking the spine and measuring the angle of cur-
vature can be challenging. Traditional measurement methods are susceptible to human errors,
leading to inaccurate results [9-11]. Consequently, computer-based methods have been devel-
oped to offer more precise and consistent measurements [12].

In medical image analysis, medical image segmentation plays a critical role and finds appli-
cations in various areas such as diagnosis, treatment planning, and image-guided interventions
[13]. Numerous techniques are available for medical image segmentation, including threshold-
ing, region growing, edge detection, and machine learning-based methods [14,15]. Each tech-
nique has its own strengths and limitations, and the selection depends on the specific
requirements of the application at hand. In the context of scoliosis diagnosis and treatment,
spine segmentation holds significant importance as it enables doctors to evaluate the extent of
the condition and formulate suitable treatment strategies [16]. Accurate segmentation of the
spine in scoliosis patients is crucial for the accurate diagnosis and treatment of the condition.
This process involves precisely identifying the individual vertebrae in the spine, capturing the
curvature and alignment accurately. However, achieving accurate segmentation can be partic-
ularly challenging, especially when dealing with severe scoliosis or other spinal deformities. In
certain situations, manual segmentation may be necessary to ensure precise results. This
involves a trained medical professional utilizing specialized software to manually identify the
individual vertebrae in the spine. Accurate segmentation of the spine in scoliosis patients is
vital for developing appropriate treatment plans and monitoring the progression of the condi-
tion over time. While supervised methods are highly effective, they require extensive training
datasets with manually labeled images, which can be labor-intensive to produce. On the other
hand, unsupervised methods can be employed when training data is unavailable, enabling the
segmentation of new images. Aganj et al. introduced the unsupervised local center of mass
(LCM) technique [17], an advanced unsupervised machine learning approach utilized for
medical image segmentation. This method has demonstrated notable success, particularly in

PLOS ONE | https://doi.org/10.1371/journal.pone.0300685 March 21, 2024 2/17


https://doi.org/10.1371/journal.pone.0300685

PLOS ONE

Local center of mass based scoliosis spinal segmentation

cases where the bones exhibit severe curvature or deformities, as it can adapt automatically
without the need for manual intervention [17,18].

Automatic Cobb angle measurement is a computerized method utilized to determine the
degree of spinal curvature, specifically for evaluating the severity of scoliosis [19]. Existing
methods for Cobb angle measurement can be time-consuming and labor-intensive [20-25].
Earlier researchers have proposed automatic Cobb angle measurement methods that rely on
extensive datasets, adding to the labor-intensive nature of the process [26,27]. These methods
heavily rely on the training dataset, rather than adapting to new test images. Hence, it is crucial
to develop an unsupervised method that can accurately measure the Cobb angle and ease the
screening process. In this study, our objective is to employ the unsupervised local center of
mass (LCM) technique for accurate segmentation, along with a straightforward Cobb angle
measurement technique for screening scoliosis images with varying spinal curvatures.

The proposed work presents a computer vision-based approach for detecting spinal curva-
ture in medical images. The algorithm incorporates various image preprocessing, segmenta-
tion, and feature extraction techniques to improve image quality and extract relevant
information. The significance of this study lies in its pioneering contribution to the field of
scoliosis screening through the utilization of cutting-edge computer vision techniques. By inte-
grating the unsupervised LCM technique for precise image segmentation and a simplified yet
effective Cobb angle measurement method, the proposed work addresses critical challenges in
the early detection and assessment of spinal curvature abnormalities such as enhanced diag-
nostic precision, streamlined assessment, potential for early intervention, reduced subjectivity,
clinical workflow enhancement etc. In summation, the proposed work’s significance lies in its
potential to transform scoliosis screening practices, ultimately leading to improved patient
outcomes, reduced healthcare burden, and advancements in the broader field of medical
image analysis. The research hypothesis for the proposed work is exploring whether employing
the unsupervised LCM technique for segmentation, coupled with the straightforward Cobb
angle measurement technique, will lead to a significant enhancement in the accuracy and
effectiveness of screening scoliosis images featuring diverse spinal curvatures when compared
to conventional methods. Also, the research may lead to finding the key factors influencing the
accuracy of the Cobb angle measurement technique in the context of screening scoliosis
images, and how do these factors contribute to the overall effectiveness of the screening
process.

2. Materials and methods

Clinical Data Collection: 50 X-Ray images of Scoliosis digital images were collected from
King Fahad Specialist Hospital, King Fahad Medical City (KFMC), Dammam, Saudi Arabia to
carry out this research. The Institutional Review Board (IRB) of KFEMC has reviewed and
approved this study with research protocol (EXT0397) with IRB Log number 22-049E. Scolio-
sis at various regions of the spine in the age group (20 and 80 years including both Male and
Female) were collected during the year 21 February 2022 to 20 February 2023 and the data
were authorized to use for research purposes only. The ethics committee waived the need for
informed consent. Authors do not have access to information that could identify individual
participants during or after data collection. These images were clinically and manually classi-
fied by clinical experts. The proposed work presents a computer vision-based approach for
detecting spinal curvature in medical images. The algorithm incorporates various image pre-
processing, segmentation, and feature extraction techniques to improve image quality and
extract relevant information. The generalized block diagram of the proposed LCM based auto-
matic Cobb angle measurement method is shown in Fig 1.
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Fig 1. Generalized block diagram of proposed LCM based automatic Cobb angle measurement method.

https://doi.org/10.1371/journal.pone.0300685.9001

Before commencing the segmentation process, the input scoliosis image undergoes resizing
to dimensions of 256 x 256. To ensure the suitability of the image, a filtering operation is per-
formed, ensuring that the image meets the condition of having a dimension less than or equal
to 3 within the algorithm. In the pre-processing stage, the focus is on isolating the spine region,
determining the region of interest (ROI) for the spine. For enhanced processing efficiency,
particular attention is given to the region between the thoracic and lumbar vertebrae in the
anteroposterior (AP) view spinal images. This region is referred to as the spine region of inter-
est (spine ROI). Initially, the images are converted into grayscale using a fixed threshold gradi-
ent. The histogram of the image is then analysed and Contrast Limited Adaptive Histogram
Equalization (CLAHE) is applied to improve the image resolution.

Preprocessing Stage: The initial phase of the algorithm involves preprocessing the input
data. This includes the essential step of converting DICOM images into the more universally
accessible JPG format. By undertaking this conversion, the algorithm ensures that the subse-
quent processes can be efficiently applied to the images. This preparatory stage sets the founda-
tion for the subsequent operations by transforming the input data into a compatible and
manageable format. Following the preprocessing stage, the algorithm advances to the isolation
of the region of interest (ROI). This phase entails identifying the specific area within the image
that is pertinent to the subsequent analyses. By isolating the ROI, the algorithm narrows its
focus to the relevant portion of the image, which is crucial for accurate and efficient process-
ing. This isolation step serves as a critical bridge between preprocessing and the more complex
analysis stages.

Spinal Curve Segmentation and Edge Detection: The second major stage of the algorithm
involves the segmentation of the spinal curve and the detection of its edges. This intricate pro-
cess employs the Local Centre of Mass technique to perform spinal curve segmentation. More-
over, it incorporates colour intensity information to execute background subtraction,
effectively eliminating non-essential elements from the spinal region. The outcome of this
stage is an image where the spinal structure is prominently featured, thus facilitating subse-
quent analyses. Upon achieving the background-subtracted image, the algorithm proceeds to
the creation of a binary mask. This mask is produced by converting the modified image into a
binary representation, where pixel values are either foreground or background. To determine
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the edges of the spinal structure in the binary mask, the algorithm employs the Canny edge
detection method. This process culminates in the generation of a mask that precisely outlines
the spinal structure, essential for the forthcoming computations.

Cobb Angle Calculation: In the third stage, the focus shifts to the calculation of the Cobb
angle, a pivotal measurement of spinal deviation. This phase involves detecting the center
curve, achieved by calculating the average coordinates of the edge pixels obtained from the
previously generated edge-detected image. Once the center curve is established, the algorithm
applies the Cobb angle formula. This formula yields a numerical representation of the extent
of deviation from the center curve, a crucial metric in the medical assessment of spinal condi-
tions. The final step of the algorithm involves the visualization of the calculated Cobb angle.
Leveraging the Matplotlib library in Python, the algorithm superimposes the Cobb angle mea-
surement onto the original image. This visual representation provides a clear and concise
depiction of the angle’s magnitude and direction, aiding medical professionals in their under-
standing and interpretation of the spinal condition. This visualization step enhances the algo-
rithm’s practical utility by transforming abstract measurements into comprehensible visual
information.

The segmentation process employs the LCM (local center of mass) method, and it calculates
the center of mass (CM) for the pixels in the image and clusters them into the same or different
regions based on their weights. The weights are carefully chosen to minimize computational
costs, making the LCM method superior to previous techniques. Overall, the described process
encompasses resizing the input image, filtering based on dimension, pre-processing involving
spine region isolation and image enhancement, and finally, segmentation using the LCM
method with optimized computational efficiency. The segmented images produced using the
LCM-based method were compared to the results obtained from the GMM-HMREF algorithm
[28,29]. The process of cropping the region of interest (ROI) from the original image is
depicted in Fig 2.

2.1 Computation of 1D local center of mass

The computation of the center of mass (CM) on an image is illustrated in Figs 3 and 4. For a
detailed explanation of this CM estimation method, refer to [17]. Fig 5 showcases a visual com-
parison of image segmentation for scoliosis using the LCM and GMM-HMRF methods, specif-

ically in the thoracic region and thoraco-lumbar regions. Center of mass is a point defined
relative to a group of pixels or segment which is calculated with average position of all parts of
system, weighted with their intensity values. For a group of pixels with uniform intensity, the
center of mass is located at the centroid.

Original Image Detectthe ROI
Fig 2. Region of interest cropping from the original image.

https://doi.org/10.1371/journal.pone.0300685.g002
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Fig 3. Method of CM computation on an image, Cn = {Cn,;, Cn,,, . . .Cn,4} of the nth pixel of k = 4iterations.
https://doi.org/10.1371/journal.pone.0300685.9003

Let f: Q — R be a 1D discretized image-intensity based sequence of length N, with Q: = {1,
..., N}. Pixels are grouped f into disjoint regions based on the estimated CM of individual pix-
el’s assumed region, which are called as the LCM, C: Q —R. Alternatively, the LCM at n, Cn,
is identified as the CM of area surrounding the nth pixel. Local CM is calculated as:

C, ==
" Em:lwm‘n

(1)

Where, W, ,, the non-negative weighting work out from f. Then, pixels located in the same
area, the C shall point to coarsely the same location (CM of the region), thus assigning those
pixels to the same cluster. Hence, the clustering of pixels is done by manipulating the evidence
provided in the whole signal, as different to lone its adjoining pixels. Computing C (the entire
set {Cy|n€ Q}) is, nevertheless, in overall computationally expensive, costing (N?).

Computational Complexity Reduction: To simplify the problem, we need to select a suit-
able value for w that not only fulfills the mentioned pixel-grouping objective but also effec-
tively reduces the computational cost of C. By adopting the following aproach for w, we can
substantially minimize the computation cost of C to approximately (N).

Wm’n::e*‘Dm*Dn‘, (2)
Where,
Dn3=O£Z lfi+1 _fi|P7 (3)
i=1
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with manually chosen o, p > 0 (We define f ,; = f \ for ease of notation). As the signal edges
between the m™ and n'™ pixels become increasingly pronounced, the absolute difference, |Dy,
— Dy, grows larger, resulting in a smaller wy, ;. This behavior signifies that these two pixels
belong to distinct regions. Conversely, when there are few noticeable edges between the m™
and n™ pixels, w,, , assumes a larger value, indicating that both pixels are within the same
region. Fig 4A illustrates this concept with a 1D signal £, (left, represented by the blue curve)
and its corresponding wy, ,, computation (right). It’s worth noting that Eq (3) can be readily
extended to multichannel images, such as RGB, by independently calculating the sum for each
channel and aggregating the results to obtain a composite D,,. When calculating C, we can take
advantage of the fact that D,, increases monotonically with respect to n. Consequently, wy, ,

can be expressed asase” " e ™ for m<n and e” ™ e ° ™ for m>n. This allows us to expand

"
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Fig 5. Cobb angle calculation procedure: (a) Centre curve, marking centre point and point of intersection; (b) Cobb
angle calculation method on spine image.

https://doi.org/10.1371/journal.pone.0300685.g005
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Eq (1) to compute the components of ’C’ as follows:

I SRS S 0
! e 22:16[)"' + ePn ZZ:M e Pn

Given that all the sums in Eqs (3) and (4) can be pre-computed recursively in (N) and
stored for all n, the entire C can now be computed efficiently and non-iteratively in (N). As
expected, C, is piecewise constant. and its value points to the CM of each interval in the signal
(e.g., it intersects the identity line at the centers of the intervals).

2.2 Cobb angle calculation

In this study, a straightforward and innovative technique for measuring the Cobb angle was
developed. The process involves several steps using Python and matplotlib after obtaining the
image’s center curve through Canny edge detection and averaging techniques. The entire
Cobb angle measurement is conducted with respect to the original image. To locate the end
coordinates of the curve depicted in Fig 5, it is necessary to identify the upper and lower
points, denoted as L and U, respectively. Once these points are determined, a line connecting
them is drawn, intersecting the center curve at points M and N from the top and bottom,
respectively. In Fig 4A, the center curve is highlighted in red, while the line connecting points
L and U is presented in green. After locating the intersection points M and N as shown in the
diagram, point C is determined in the image by finding the minimum X-coordinate of the cen-
ter curve. This point corresponds to the maximum deviation of the curve from its mean posi-
tion. To visualize this deviation, lines are drawn between point M and C, and point N and C,
represented by blue dotted lines in Fig 5A. Subsequently, lines perpendicular to MC and NC
are drawn from points M and N, respectively, as depicted in Fig 5B. These perpendicular lines
are extended until they intersect at point O. According to the law of trigonometry,

op
from A MOP, 0 = tan™" AP and 20 gives Cobb angle (5)

where MON represents the Cobb angle in Fig 6B. The algorithm developed for Cobb angle
measurement is implemented using the Python 3.9 64-bit compiler, and the resulting angle is
calculated. The obtained results are plotted using the matplotlib library. In Fig 5A, the calcu-
lated angle is displayed near point O of the image. This allows for a clear visualization of the
Cobb angle for monitoring purposes. The algorithm not only calculates the angle but also pro-
vides a visual plot for the user’s convenience. To summarize, this study introduces a com-
puter-based approach for accurately measuring the Cobb angle from X-ray images of scoliosis.
The detailed results obtained from this methodology will be presented in the subsequent
section.

A comprehensive flowchart illustrating the entire methodology and the corresponding
algorithm developed in this study is presented in Fig 6. This flowchart offers a visual represen-
tation of the Cobb angle calculation process, enabling users to monitor the results effectively.

3. Results

The scoliosis images were preprocessed using standard techniques, including grayscale conver-
sion and noise reduction. We first evaluated the two (proposed LCM-based and
GMM-HMREF) methods on a sample image dataset containing different scoliosis cases (Fig 7),
with dimensions of 493x2077 pixels. Here, images were initially cropped for ROI by horizontal
and vertical histograms and then normalized by converting it into binary format. We com-
puted the local CMs in K = 180 orientations with an angular resolution of 1°. Fig 7A shows
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segmentation by the proposed LCM method with optimal values of o* = 2000, and Fig 7B rep-
resents the results of GMM-HMRF method with t * = 750 phase-1 iterations (1,000 total itera-
tions) and found the optimal value of r* = 5 and g* = 1. The dice score index is used for
quantitative analysis of segmented images from the greyscale by comparing the binary image
to its ground truth. The dice score of 1 indicates the ideal segmentation whereas 0 indicates
poor. The quantitative analysis of the proposed LCM image segmentation is performed in
terms of accuracy, sensitivity, and specificity to evaluate the effectiveness of segmentation
edges. We tested the above-mentioned procedure with several hardware distributions. Hence,
to compare the computational time of two methods in the same system, we executed the final
algorithms on a laptop with two Intel Core i5™ 2.40 GHz processors 4GB RAM.
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https://doi.org/10.1371/journal.pone.0300685.9008
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Table 1. Optimal values of the parameters chosen for the two methods.

Parameters LCM GMM-HMRF
CV Dice 0.51+0.04 0.54+0.01
Optimal parameters o =2000+500 & t* = 1000+250 r* =5+0.5 g* = 140
t=30,T =30
Tested range of parameters o: 100~5000 r:2~20; g: 1~5
t: 10~5000 t=5~100, T = 5~100
CPU Runtime 5400+600s (1.5hr+10mins) 1800+300s (0.5hr+5mins)

https://doi.org/10.1371/journal.pone.0300685.t001

The 1D image intensity profile along the horizontal blue line shown in Fig 7 (top, left) is
visualized in Fig 8 as the blue curve. Additionally, the local Contrast Measure (CM) for this 1D
signal is computed using Eq (4) with o = 200 and depicted as the red curve. The green dotted
line represents the identity function serving as a reference. Notably, the red curve representing
the local CM appears to exhibit an almost piecewise constant pattern, with its values signifying
the centers of the 1D intervals. Based on the experiment we selected an optimal value of both o
and iterations which is provided in Table 1.

Commonly employed metrics for assessing the efficacy of segmentation methods include
accuracy, sensitivity, and specificity. These metrics offer a glimpse into the performance of a
segmentation algorithm across various facets [30]. Performance of the proposed LCM segmen-
tation was evaluated in terms of accuracy, sensitivity, and specificity for its effectiveness of seg-
mentation edges. Accuracy is a measure of the overall correctness of the segmentation results
and is calculated as below,

Number of correctly classified pixels in Rol
Total number of pixels in Rol

Accuracy =

(6)
Sensitivity measures the ability of a segmentation method to correctly identify positive

instances and is calculated as below,

Sensitivit True Positive
ensitivity =
Y True Positives + False Negatives

(7)

Specificity measures the ability of a segmentation method to correctly identify negative
instances and is calculated as below,

True Negative

Specificity = 8
pecttictly True Negatives + False Positives ®)
The proposed LCM method is compared with GMM-HMREF, and parameters are obtained
and compared side by side as shown in Table 2. The confusion matric overlay is generated for
both GMM-HMREF and LCM method and compared. Through qualitative and quantitative

(accuracy &dice score) validation, it is proven that the proposed LCM method performed

Table 2. Quantitative analysis of LCM and GMM-HMRF segmentation methods.

Method Sensitivity Specificity" Accuracy" Dice score”
LCM 90.5 98.4 97.3 0.54
GMM-HMRF 88.24 90 89.19 0.51

! Expressed in terms of % and  as a ratio of two times the spatial overlap area to the total number of pixels in segmented and ground truth images.

https://doi.org/10.1371/journal.pone.0300685.1002
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2.

(a) () (c) (d) (e) ()

Fig 9. Background subtraction process to separate spinal region: (a) input spine image; (b) LCM segmented image
with predefined colors; (c) binary matrix of the mask; (d) cropped image after background subtraction; (e) after canny
edge detection; (f) center line marking.

https://doi.org/10.1371/journal.pone.0300685.9009

better than existing unsupervised segmentation GMM-HMRF method. The LCM algorithm is
more flexible with parameters like o, and iterations compared to other segmentation methods.
The LCM method generally produced less over-segmented results than the GMM-HMRF
which prevent errors due to grey scale exposure.

After LCM segmentation, the spine was cropped, and the color subtraction technique was
used to create a binary mask. The spinal curvature was traced by finding the coordinates of the
binary mask edges using the Canny edge detection algorithm [23]. The method of separating
the spine region and finding the center curve of the spine is described in Fig 8. Fig 9A was the
input scoliotic spine image and Fig 9B shows the segmented image with predefined colors for
the spinal region and background area. To generate the mask, the RGB values were specified
in the background colour of the segmented image. After applying background subtraction, a
binary matrix of the mask is obtained, as shown in Fig 8C. Finally, the complete background
sub-traction image is generated by multiplying the binary matrix with the cropped image
matrix, as shown in Fig 9D. The next step is to find the center curve of the spine. This is
achieved by extracting the coordinates of the edges in the background-subtracted image,
which correspond to the center line of the spine. To obtain the center spinal curve, we apply
canny edge detection to the ROI image, as shown in Fig 8E. The resulting edge coordinates are
stored as a matrix, and the center line is calculated by taking the average of the two edge coor-
dinate value matrices. This center line based on the average values is then plotted over the orig-
inal cropped image, as shown in Fig 9F. This curve is subsequently used to determine the
Cobb angle for the given spine image. The Cobb angle is calculated based on the maximum
deviation point from the vertical axis, if there is not much deviation of the curve, then the algo-
rithm automatically labels the image as no scoliosis case and continues to the next images.
Finally, the algorithm writes the resulting images in the respective directories based on the
decision. Fig 10 shows the measurement of Cobb angle using the proposed method on three
various scoliosis cases and Fig 11 shows the bias of the measured angle with respect to ground
truth images.

4. Discussion

The proposed methodology offers enhanced accuracy and consistency in measuring the Cobb
angle, thereby holding promise for advancing the diagnosis and treatment of scoliosis. The
introduction of the LCM technique for image segmentation enhances the accuracy of identify-
ing relevant spinal regions in medical images leads to diagnostic precision. This automated
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(a) Cobb angle measurement for Subject A using the
proposed method

(b) Cobb angle measurement for Subject B using
proposed method

(c) Cobb angle measurement for Subject C
using the proposed method

Fig 10. Measurement of Cobb angle using the proposed method on various scoliosis cases.

https://doi.org/10.1371/journal.pone.0300685.g010

approach reduces the potential for human error, variability, and bias that often accompany
manual segmentation methods. The resulting segmented images provide a solid foundation
for subsequent analysis. The incorporation of a straightforward Cobb angle measurement
method streamlines the assessment of spinal curvature severity. By directly quantifying the
Cobb angle from segmented images, the proposed work offers a time-efficient and standard-
ized approach, empowering clinicians to make informed decisions promptly.
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Bias from the actual Cobb angle

Measured Cobb angle in degrees

Fig 11. The bias of measured Cobb angle from the actual angle obtained from ground truth images for 50
subjects.

https://doi.org/10.1371/journal.pone.0300685.g011

The implementation of threading was not incorporated into the codes. However, it is worth
noting that the algorithm’s complexity led to phase-2 iterations taking approximately seven
times longer to execute compared to phase-1 iterations. In the experiment, we executed the
algorithm with a total of 1000 iterations, including 250 phase-2 iterations. To further optimize
the runtime, the number of phase-2 iterations can be reduced based on the desired segmenta-
tion quality. Additionally, employing a smaller number of orientations (K) and executing the
algorithm on a high-end GPU can contribute to runtime reduction. Furthermore, it was
observed that increasing the values of o and iterations resulted in over-segmentation, but this
can be mitigated by selecting optimal parameter values as recommended by Aganj et al [17].
To assess the efficacy of the approach, a comparison was made between the results obtained
and the assessments made by senior scoliosis surgeons at a multi-specialty hospital in Saudi
Arabia. The findings revealed that the LCM segmentation of the vertebrae was remarkably
accurate, closely resembling the ground truth images with a dice coefficient of 0.542, surpass-
ing the dice score value of 0.512 obtained by GMM-HMREF. The LCM segmentation exhibited
an overall accuracy of 97.3%, whereas the GMM-HMREF achieved an accuracy of 89.19%. It
was observed that the GMM-HMRF model placed greater emphasis on image intensity rather
than the geometry of a segment, resulting in segmentation that was more tissue-oriented
rather than organ-specific. The GMM-HMRF model, which assigns a single Gaussian to each
detected linked tissue type, proved to be less effective in segmenting specific bones [17] (Fig 7).

Moreover, the Cobb angle measurements were obtained through manual examination by
senior scoliosis surgeons at the multi-specialty hospital in Saudi Arabia. The proposed novel
method exhibited precise calculation of the Cobb angle in scoliosis, surpassing the perfor-
mance of other existing methods (Fig 11). The proposed method effectively tackles the issue of
improper edges in the spinal vertebral mask by implementing the center curve smoothing
technique and thus reducing observers’ variability. The algorithm estimates Cobb angles with
a minimal bias of only + 3 degrees, which aligns with the findings of recent studies on auto-
matic Cobb angle measurement [31,32]. Notably, the proposed LCM-based method does not
rely on pretrained models or weights, eliminating the need for time-consuming training, vali-
dation, and testing steps typically seen in CNN-based methods [32]. This feature enables the
calculation of Cobb angles in diverse scoliosis cases using segmented masks. Rapid and reliable
scoliosis screening is pivotal for timely therapeutic interventions. The proposed approach’s
accuracy and efficiency hold the promise of identifying spinal irregularities at an early stage,
allowing for proactive interventions, and minimizing potential complications [17,18]. The
proposed automation of segmentation and Cobb angle measurement reduces subjectivity in
diagnosis, leading to increased consistency and reliability of results across different medical
practitioners and settings. Integrating computer vision techniques into clinical practice has the
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potential to enhance workflow efficiency. By automating time-consuming tasks such as seg-
mentation and angle measurement, medical professionals can allocate more time to patient
care and decision-making. In the era of telemedicine, automated image analysis techniques
can facilitate remote assessments. The proposed approach could serve as a valuable tool for
remotely evaluating spinal curvature, thereby expanding access to healthcare services. How-
ever, this study has certain limitations that are: (i) The accuracy of the proposed method relies
heavily on the quality of segmentation achieved by the Local Centre of Mass (LCM) method.
Therefore, selecting appropriate parameters for LCM becomes crucial for the success of our
approach. (ii) The proposed method involves a higher runtime, resulting in increased compu-
tation costs. It necessitates a higher-end system with GPU and processors, adding to the overall
cost of computation. However, by reducing phase-2 iterations and the number of orientations,
considerable results can still be obtained while minimizing the runtime and computational
requirements. (iii) The utilization of intensive graphics in the proposed method requires a sys-
tem with capable graphics cards, which further adds to the cost of computation. Additionally,
the LCM segmentation method is time-consuming compared to other approaches. However,
by executing algorithms with lower numbers of orientations (K) and iterations, the computa-
tional cost and runtime can be minimized, while still yielding reasonable results.

5. Conclusions

In this investigation, an unsupervised LCM technique is introduced for the segmentation of
the spinal region, coupled with an innovative approach for the precise measurement of the
Cobb angle. The proposed methodology underwent validation using 2D X-ray images from
the Saudi Arabian population. Segmentation outcomes were systematically compared with the
GMM-HMREF segmentation method, assessing sensitivity, specificity, and dice score metrics.
Our segmentation approach showcased an overall accuracy of 97.3%, outperforming the
89.19% accuracy achieved by GMM-HMREF. Additionally, our method exhibited a superior
dice score of 0.54 compared to GMM-HMRE. The introduced approach successfully addresses
concerns related to inaccurate edges in the spinal vertebral mask by incorporating the center
curve smoothing technique, thereby minimizing variability among observers. The proposed
algorithm accurately estimates Cobb angles with a minimal bias, showing a narrow range of
only + 3 degrees. Future work will focus on developing an algorithm that autonomously opti-
mizes parameters based on input images, enhancing segmentation quality crucial for accurate
Cobb angle calculations. The method relies heavily on precise image segmentation, prompting
exploration of advanced techniques for improved accuracy. For pre-segmented images, main-
taining fixed labels or updating them during iterations will benefit semi-supervised segmenta-
tion. Ultimate goal is to transform the algorithm into a web application for easy image upload
and Cobb angle results retrieval. Additionally, it is aimed to create an Android app for real-
time Cobb angle calculations from digital X-ray images. In summary, this methodology pro-
pels the field of medical image analysis, promoting synergy between computer science and
medicine. It lays the groundwork for continued research, refining the applications of computer
vision in diverse medical imaging challenges and potentially resulting in advanced algorithms
for comprehensive spinal assessment. Furthermore, this research has the capacity to transform
scoliosis screening, improving patient outcomes, lessening the healthcare burden, and pushing
the boundaries of medical image analysis.
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