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Abstract

The larynx undergoes significant age and sex-related changes in structure and function

across the lifespan. Emerging evidence suggests that laryngeal microbiota influences

immunological processes. Thus, there is a critical need to delineate microbial mechanisms

that may underlie laryngeal physiological and immunological changes. As a first step, the

present study explored potential age and sex-related changes in the laryngeal microbiota

across the lifespan in a murine model. We compared laryngeal microbial profiles of mice

across the lifespan (adolescents, young adults, older adults and elderly) to determine age

and sex-related microbial variation on 16s rRNA gene sequencing. Measures of alpha diver-

sity and beta diversity were obtained, along with differentially abundant taxa across age

groups and biological sexes. There was relative stability of the laryngeal microbiota within

each age group and no significant bacterial compositional shift in the laryngeal microbiome

across the lifespan. There was an abundance of short-chain fatty acid producing bacteria in

the adolescent group, unique to the laryngeal microbiota; taxonomic changes in the elderly

resembled that of the aged gut microbiome. There were no significant changes in the laryn-

geal microbiota relating to biological sex. This is the first study to report age and sex-related

variation in laryngeal microbiota. This data lays the groundwork for defining how age-related

microbial mechanisms may govern laryngeal health and disease. Bacterial compositional

changes, as a result of environmental or systemic stimuli, may not only be indicative of laryn-

geal-specific metabolic and immunoregulatory processes, but may precede structural and

functional age-related changes in laryngeal physiology.

Introduction

The larynx is essential for voice production. As we age, the larynx undergoes structural and

biological changes in the vocal fold mucosa, laryngeal cartilages, and muscle fibers [1–4],

which impact voice quality [5–8]. Emerging evidence suggests that laryngeal microbiology can
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influence immunological processes [9]. Age-related microbial variation may potentially under-

lie biological mechanisms and leave the larynx more susceptible to disease pathogenesis, as

laryngeal pathology is more prevalent with increasing age [10]. Given the fact that age-related

laryngeal pathology can affect 10–20% of the elderly population [5–8], there is a need to delin-

eate laryngeal microbial changes as a function of age. This could lay the groundwork for

informing age-related host-microbial interactions in laryngeal pathology.

Although studies in the laryngeal microbiota are relatively sparse, age-related microbial var-

iation has been delineated in other organs, including the gut and oral cavity [11, 12]. As we

age, the gut replaces certain short-chain fatty acid (SCFA)-producing bacteria (Prevotolla, Bifi-
dobacterium) with other phyla that perform the same function, such as Oscillospora [11, 12].

This process prevents the host from physiological age-related decline and improves gut barrier

function [11]. Certain bacterial taxa, such as Veillonella, Ruminococcus, Akkermansia, in the

gut induce “inflammaging”, the processes wherein there are low levels of systemic inflamma-

tion in older adults [13], which can leave them susceptible to further infection [14]. A decrease

in abundance of Lactobacillus and Bifidobacterium species can be associated with aging [15,

16]. Age-related microbial dysbiosis may be site specific, as decreased abundance of Fusobac-
terium genera has been measured in the gut with aging, while decreased abundance of Propio-
nibacterium is seen in the skin and increased Actinomycoses in the oral cavity [14]. Oral

microbiota varies highly across the lifespan, with middle ages showing a more homogenous

composition and older ages showing more diverse microbiomes with increased representation

of typically low abundance taxa [17]. The abundance of oral commensal Neisseria decreases

after the age of 40; prevalence of opportunistic pathogens, Streptococcus anginosus and Gemella
sanguinis, exhibit increased abundance with age [18]. In contrast, a longitudinal study of the

human oropharynx microbiota reveals a common core microbiota with high temporal stability

over 40 weeks’ observation [19]. While situated proximal to the oral cavity, the larynx, sitting

at the crossroads between the respiratory and digestive tracts, imposes unique selective pres-

sures on resident bacteria. Thus, age-related microbial variation in the larynx should be inves-

tigated independently.

Age-related variations in microbiota can interact with a number of factors, including sex,

diet, and environment. Evidence suggests that sex hormones can potentially alter the gut

microbiota throughout the lifespan [20, 21]. Sexual dimorphism exists in laryngeal muscle

fibers, laryngeal size and manifests as differences in vocal quality [22]. Not only are females

more prone to voice disorders when compared to males [23, 24], but certain pathologies can

affect the sexes disproportionately. Understanding sex-related microbial mechanisms in the

larynx can potentially improve knowledge on certain disease pathogenesis. As a secondary aim

to our study, we explored the effects of biological sex on laryngeal microbiota in the murine

model.

The murine model has been frequently used in the study of laryngeal microbiology and

other biological processes [25, 26]. Thus, we compared age and sex-related variation in laryn-

geal microbial profiles of adolescent, adult, older adults and elderly mice. We found no age or

sex-related differences, indicating the laryngeal microbiota remains relatively stable across the

lifespan. Subtle differences in microbial composition, specifically for the following phyla; Fir-
micutes, Bacteroides, and Corynebacterium, are observed among different age groups.

Methods

All procedures and protocols were approved by the Institutional Animal Care and Use Com-

mittee (IACUC) at University of Wisconsin-Madison (Protocol: M005669).
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Description of samples and group allocation

Conventionally-raised C57BL/6J mice were divided into the following groups based on their

age: adolescent/6Wk (n = 6; age range: 6 weeks +/- 1 day; sex: 3 females (F), 3 males (M)),

young adult/6Mo (n = 7; age range: 6 months +/- 19 days; sex: 4F, 3M), older adult/12Mo

(n = 6; age range: 12 months +/- 21 days; sex: 3F, 3M), and elderly/18Mo (n = 5; age range: 18

months +/- 7 days; sex: 3F, 2M) [27]. All mice had the same lineage and housing conditions

with ad libitum access to regular chow diet and acidified tap water in a 12-hour light/dark

cycle throughout their respective lifespans. For the experiment, mice were sacrificed via CO2

inhalation, and larynges were excised with sterile surgical tools for downstream processing.

Sample processing

To collect bacteria from the laryngeal mucosa, laryngeal tissue was hemisected and minced in a ster-

ile petri dish. Minced tissue was washed 2–3 times in sterile Dulbecco’s phosphate-buffered saline

(DPBS, Ca/Mg-free) in a 2 mL microcentrifuge tube vortexed on a Genie 2 Vortex Mixer (Scientific

Industries Inc., Bohemia, New York, USA) with horizontal microtube holder (LABRepCo, Hor-

sham, Philadelphia, USA), at maximum speed for 5 min. Solid tissues were removed from the cell

suspension, and bacterial cells were harvested by centrifuging cell suspension (lavage) at 15,000 rpm

for 10 min. Bacterial cell pellets were stored in -80˚C until further processing. Within a week, bacte-

rial cell pellets were thawed, and bacterial DNA from each sample was extracted using DNeasy

Blood and Tissue Kit (Qiagen, Hilden, Germany) as per manufacturer’s instructions. Extracted

DNA was eluted in 35 uL of low TE buffer (10 mM Tris/0.1mM EDTA), and quantified using

Qubit1 Fluorometer (Invitrogen, San Diego, CA, United States). On average 40 ng/uL of bacterial

DNA was obtained from each mouse larynx and stored at 4˚C until 16S rRNA gene amplification.

V4 region of the 16S rRNA gene was amplified for each bacterial DNA sample using DNA-

free Platinum Taq Polymerase (Invitrogen, Waltham, Massachusetts). Amplification was com-

pleted in a 25 uL PCR reaction that contained 20 ng of DNA template and 400 uM of 515F/

806R primers [25]. An extraction negative control, no template control, and positive control

(mouse fecal DNA) was included in each test PCR run. Thermocycling parameters of PCR

reactions were as follows: initial denaturation (95˚C for 3 min), 35 cycles of denaturation

(95˚C for 30 s), annealing (55˚C for 30 s), extension (72˚C for 1 min), followed by final exten-

sion (72˚C for 5 min). PCR Amplicons were confirmed on 1.5% agarose gel, and amplicon

concentration was subsequently quantified with a Qubit1 Fluorometer (Invitrogen, San

Diego, CA, United States). Oral Microbiome Whole Cell Mix (ATCC, Manassas, VA) (n = 4)

was included as positive control, processed, and sequenced in parallel with tissue samples, to

examine the effectiveness of sample/data processing methods. The mock community was a

defined synthetic community comprised of equal portions of Schaalia odontolytica (ATCC

17982), Prevotella melaninogenica (ATCC 25845), Fusobacterium nucleatum subsp. nucleatum
(ATCC 25586), Streptococcus mitis (ATCC 49456), Veillonella parvula (ATCC 17745), and

Haemophilus parainfluenzae (ATCC 33392), with each representing 16.7% of total cells. PCR

products from the biological replicates and positive control were pooled for each age group

into equimolar libraries and identified on a 1.5% agarose gel. A Zymoclean Gel DNA Recovery

Kit (Zymo research, Irvine, CA) was used to obtain a purified DNA library (containing 8 ng of

DNA/sample). This library was sequenced on Illumina MiSeq platform (Illumina, San Diego,

CA) with 250-bp paired-end sequencing chemistry by UW-Madison Biotechnology Center.

Sequencing and statistical analysis

Demultiplexed sequences were processed using QIIME2 (v2022.11). QIIME2 is a widely used

plug-in based platform for microbiome analysis [28]. A DADA-2 pipeline, using the open-
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sourced q2-dada2 plugin (v2017.2.0), identified de novo amplicon sequence variants (ASVs)

following quality-filtering and denoising [29]. ASVs were then aligned with Multiple Align-

ment using Fast Fourier Transform (MAFFT) using the q2-alignment plug-in (v3.6) [30].

Shared ASVs across groups were subsequently visualized. Unique taxa were identified through

classify-sklearn against the Greengenes 13_8 99% references sequences (open-source) [31, 32].

Microbial composition at each taxonomic level was obtained with the QIIME2 taxa-collapse
function.

Measures of alpha-diversity, beta-diversity, and subsequent analyses were obtained using

QIIME2 and Rstudio (v3.30), at a rarefaction depth of 531 sequences per sample. Two samples

(1 adolescent and 1 young adult) were removed due to the cutoff set by rarefaction depth. For

beta-diversity analysis, microbial community differences between different ages and sexes

were evaluated with permutational analysis of variance (PERMANOVA) and visualized using

principal coordinate analysis (PCoA). Dominant taxa and indicator species [33] for each age

group were subsequently graphed using indicspecies (v1.7.14) package in R. One-way analysis

of variance (ANOVA) and Tukey HSD post-hoc comparisons were incorporated to delineate

differential abundances of top 4 genera across age and sex groups. Differential abundances

across age groups and sexes were analyzed using linear discriminant analysis (LDA) effect size

(LEfSe) using Galaxy/Hutlab open-source software [34]. limma (v3.18) package was used to

verify the results of differential abundance analysis across sexes [35]. Bacterial taxa with an

LDA score > 4 and a p value < 0.05 were considered enriched for that group. PICRUSt2

(v2.5.2) analysis [36] was completed to determine functional consequences of age and sex on

the laryngeal microbiome. Functional predictions were obtained from comparisons with

KEGG pathway assignments. Welch’s t test comparisons were completed to compare gene and

pathway abundances in the laryngeal microbiome of different age and sex groups, and the

results were visualized in STAMP (v2.1.0) tool [37].

Results

Laryngeal microbial profiles as a function of age

We compared murine laryngeal microbiota profiles using 16 s rRNA sequencing across differ-

ent age groups [adolescent, mature adult, older adult, and elderly] [38]. After removing ASVs

unique to a single sample or present in less than 10% of the samples, we found 85 unique ASVs

in laryngeal microbiota. The number of shared ASVs between adjacent age groups varied with

age [adolescent and young adult mice share 6 ASVs, young and older adults share 12 ASVs,

and older adults and the elderly share no unique ASVs [that are not present in the other

groups, Fig 1]. Although all age groups share 14 ASVs, there were no ASVs unique to only the

oldest age groups (older adult and elderly, Fig 1). This may be indicative of gradual bacterial

compositional changes that may occur as a function of age.

Fig 2 represents taxonomic profiles of the four age groups at phylum (top) and genus (bot-

tom) level. Firmicutes and Actinobacteria were the two dominant phyla across the age groups,

while Corynebacterium, Streptococcus, and Lactobacillus were the top three genera across the

age groups. Lactobacillus dominated in adolescents, Corynebacterium in young adults, and

Streptococcus in older adults (Fig 2). At the phyla level, mean relative abundance of Firmicutes
was dominant in adolescents, while Actinobacteria and Proteobacteria in young adults and

elderly (Fig 3). Taxonomic profiles of the top 4 genera across age groups (Fig 4) demonstrated

a significant decrease of Corynebacterium in the adolescent group, compared to other groups

(p< 0.05, Fig 4). Adolescents had the largest relative abundance in Lactobacillus, with large

variation across groups. There was a significant decrease in the relative abundance of Strepto-
coccus in the young adult mice when compared to the older adult and elderly (p< 0.05, Fig 4).
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Lastly, Bacteroides (S24-7) was significantly reduced in the young adult group, compared to

the adolescent group (p< 0.05, Fig 4). We conducted indicator species analysis to identify gen-

era indicative of age-related variation in the laryngeal microbiota, detailed in Table 1. We fur-

ther identified differentially abundant taxa across age groups through LEfSe analysis and

found Corynebacterium was significantly enriched in the young adult group (LDA score> 4,

Fig 5). Metagenomic functional profiles predicted by PICRUSt2 based on 16S rRNA gene data

revealed 32 KEGG pathways differentially represented across age groups (p = 0.05, Effect size

>2, Table 2). These functions were primarily associated with metabolism, cellular processes,

and genetic information processing, etc. Laryngeal microbiota of adolescents (6Wk) collec-

tively encode for significantly distinct functions from that of older mice, especially young

adults (6Mo) (Fig 6A1). Butyrate and the overall fatty acid metabolism exhibited the highest

proportion of sequences in young adult mice (6Mo) (Fig 6B1); propionate metabolism was

high in young adult and elderly mice (Fig 6B1). Interestingly, the three metabolisms were low-

est in adolescent mice (6Wk) (Fig 6B3).

Fig 1. Amplicon sequence variants in the laryngeal microbiota shared between murine age groups across the

lifespan. After removing ASVs unique to a single sample or present in less than 10% of samples, we found 67 unique

ASVs in laryngeal microbiota. The number of shared ASVs between adjacent age groups varied with age [adolescent

and young adult mice share 6 ASVs, young and older adults share 12 ASV, and older adults and the elderly share no

unique ASVs (that are not present in the other groups), Although all age groups share 14 ASVs, there were no ASVs

unique to only the oldest age groups (older adult and elderly).

https://doi.org/10.1371/journal.pone.0300672.g001
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There were no significant differences in the number of ASVs (Observed ASV Richness),

biodiversity (Shannon’s diversity), or evenness (Pielou’s evenness) between age groups, indi-

cating minimal variation in bacterial diversity across age groups (Fig 7). Principal coordinates

analysis of unweighted UniFrac distances (Fig 8A) did not show significant clustering between

age groups (p> 0.05); weighted UniFrac and unweighted UniFrac distances (Fig 8B) did not

demonstrate significant clustering between age groups with PERMANOVA (p> 0.05).

Laryngeal microbial profiles as a function of biological sex

There were no significant sex differences in relative abundance of the top 4 genera (p>0.05,

Fig 9). There were no significant differences in the number of ASVs (Observed ASV Richness),

biodiversity (Shannon’s diversity), or evenness (Pielou’s eveness) between sexes, indicating

biological sex has little impact on commensal bacterial diversity in the larynx (Fig 10) PCoA of

unweighted Unifrac distances (Fig 11A) and weighted Unifrac distances (Fig 11B) did not

show significant clustering between sexes. LEfSe analysis exhibited no differentially abundant

taxa across biological sex (p>0.05, Fig 6A2), which was consistent with the differential abun-

dance analysis using limma by fitting the data to a linear model with age as a confounding vari-

able (p = 0.05). Thus, no indicator species analysis was completed for the biological sexes.

Taken together, this is indicative of minimal taxonomic variation between sexes. Metagenomic

functional profiles predicted by PICRUSt2 revealed no KEGG pathways differentially repre-

sented between sexes (p = 0.05, Effect size = 2).

Fig 2. Taxonomic compositions of microbiota at phylum (top) and genus (bottom) levels in conventionally raised C57BL/6J mice across age groups. p, g, f,

and o represent phylum, genera, family, and order level; other represents the relative abundance of all other phyla or genera combined; 6Wk = adolescent,

6Mo = young adult, 12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g002
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Discussion

Age is an important factor influencing laryngeal structure and function, with a greater number

of voice disorders reported in older adults [10]. Age-related microbial variation is complex in

other organs (gut, nose and mouth) and can be affected by a number of factors including diet,

environment, and systemic conditions [11, 14, 39]. Constant regeneration and repair in the

larynx occurs as a result of mechanical, systemic, and environmental influences [40]. Thus,

there is a critical need to parse out independent microbial mechanisms that may be mediated

by age-related changes within the larynx. The primary aim of our study was to delineate age-

related variation in laryngeal microbiota by comparing murine samples throughout the life-

span (adolescent, young adult, older adult, and elderly groups).

At the phyla level, the adolescent murine group was dominated by Firmicutes. These bacte-

ria are capable of producing SCFA, such as butyrate. Butyrate is important for breaking down

dietary fiber in the gut and acts as an energy source for the body. In the respiratory system,

SFCA-producing bacteria are responsible for regulating immunological homeostasis and sus-

ceptibility to diseases [41]. Bacteria belonging to Firmicutes produce 10% of the body’s energy

supply, while regulating gut homeostasis [42–45]. In healthy gut aging, SCFA-producing

Fig 3. Dominant phyla in the laryngeal microbiota across various age groups. 6Wk = adolescent, 6Mo = young

adult, 12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g003
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Firmicutes is replaced with other SCFA-producing bacteria, such as Oscillospora (which can

decrease certain inflammatory diseases in the gut) [11, 12]. However, we found that Oscillos-
pora were identified as an indicator species in the larynges of adolescents, in addition to the

Fig 4. Comparison of the relative abundance of top 4 genera across age groups. g, f represent genera and family

level. 6Wk = adolescent, 6Mo = young adult, 12Mo = older adult, 18Mo = elderly. Statistical analyses were done by

one-way ANOVA and Tukey HSD post-hoc comparisons across age groups; * represents the differentially abundant

taxa were statistically significant (p< 0.05).

https://doi.org/10.1371/journal.pone.0300672.g004

Table 1. Indicator species of each age group.

Taxonomy (genus) Group Stat p-value

Ruminococcus Adolescent 0.560 0.0425*
Bifidobacterium Adolescent 0.544 0.0283*
Lactobaccilus Adolescent 0.537 0.04*
Oscillospora Adolescent 0.649 0.002**
Akkermansia Adolescent 0.648 0.02*
Prevotella Adolescent 0.6348 0.02*
Actinomyces Young Adult 0.568 0.0357*
Veillonella Young Adult 0.610 0.03*
Fusobacterium Young Adult 0.98 .001**

Significance code

** 0.01

* 0.05

https://doi.org/10.1371/journal.pone.0300672.t001

PLOS ONE Aging and laryngeal microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0300672 May 14, 2024 8 / 18

https://doi.org/10.1371/journal.pone.0300672.g004
https://doi.org/10.1371/journal.pone.0300672.t001
https://doi.org/10.1371/journal.pone.0300672


dominance of Firmicutes in this age group, which could be due to organ specificity. This

increased abundance of SCFA-producing bacteria in adolescent laryngeal microbiota may be

indicative of differential metabolic needs in the larynx. We found that metabolic functions

were one of the represented functions differentially predicted by PICRUSt2 analysis. Specifi-

cally, we found that butyrate and propionate metabolism to be highest in the young adult mice

(Fig 6B). SFCA-producing bacteria are responsible for maintaining epithelial barrier integrity,

lipid and energy metabolism, immunological and inflammatory responses, as well as hemosta-

sis [46]. Future studies should consider colonizing germ-free mice with these SFCA-producing

bacteria to delineate their specific metabolic role in the larynx across throughout the lifespan.

Fig 5. Differentially abundant taxa across age groups based on LEfSe analysis. Linear discriminate analysis (LDA)

effect size (LEfSe) was performed to determine the differentially abundant taxa across age groups. Cladogram showing

the significantly different taxa at different levels across age groups; histogram of LDA scores computed (LDA score

threshold = 4) for taxa differentially abundant across age groups. LEfSe score shows the degree of consistent difference

in relative abundance for taxa across age groups. g, f, o, c, and p represent genera, family, order, class, and phylum

level; 6Mo = young adult.

https://doi.org/10.1371/journal.pone.0300672.g005
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Lactobacillus, Prevotella, Bifidobacterium, Ruminococcus, and Akkermansia were indicator

species for adolescent mice, which is not surprising given that these bacteria are abundant in

younger individuals [15, 16]. Interestingly, we found that Actinomyces and Veillonella were

indicator species for young adults. Abundance of these bacteria in the gut have been associated

with unhealthy aging (frailty, inflammaging etc.) [11, 12]. The presence of these bacteria–as

indicator species–for adolescent and young adult mice may represent the distinct physiological

and cellular functions in the larynx (i.e., organ specificity). Cellular process (cell growth and

death) is a represented function for KEGG pathways represented by PICRUSt2. More research

is required to identify functional consequences of these KEGG pathways functions across life-

span (including translation).

Table 2. Differentially represented functions predicted by PICRUSt2.

Feature KEGG pathway (level-1) KEGG pathway (level-2) Effect size (Eta-

squared)

Corrected p-value

(Bonferroni)

Lysine degradation Metabolism Amino acid metabolism 0.727 3.78E-03

Tryptophan metabolism 0.76 1.23E-03

Valine, leucine and isoleucine degradation 0.77 8.43E-04

Phenylalanine metabolism 0.678 1.60E-02

Amino sugar and nucleotide sugar

metabolism

Carbohydrate metabolism 0.648 0.036

Citrate cycle [TCA cycle] 0.678 1.60E-02

Fructose and mannose metabolism 0.645 3.90E-02

Galactose metabolism 0.665 2.30E-02

Inositol phosphate metabolism 0.752 1.60E-03

Pentose phosphate pathway 0.712 6.03E-03

Carbon fixation in photosynthetic organisms Energy metabolism 0.669 2.10E-02

Carbon fixation pathways in prokaryotes 0.661 2.60E-02

Sulfur metabolism 0.75 1.75E-03

Sulfur relay system 0.71 6.41E-03

Biosynthesis of unsaturated fatty acids Lipid metabolism 0.732 3.19E-03

Fatty acid metabolism 0.788 4.03E-04

Synthesis and degradation of ketone bodies 0.712 6.04E-03

Biosynthesis of siderophore group

nonribosomal peptides

Metabolism of terpenoids and

polyketides

0.658 0.028

Carotenoid biosynthesis 0.698 9.14E-03

Geraniol degradation 0.703 7.98E-03

Zeatin biosynthesis 0.737 2.70E-03

Biotin metabolism Metabolism of cofactors and

vitamins

0.661 0.025

Benzoate degradation Xenobiotics biodegradation and

metabolism

0.682 0.014

Butyrate metabolism 0.752 1.61E-03

Caprolactam degradation 0.765 9.93E-04

Glyoxylate and dicarboxylate metabolism 0.64 4.40E-02

Propionate metabolism 0.719 4.93E-03

Styrene degradation 0.739 2.51E-03

Tropane, piperidine and pyridine alkaloid

biosynthesis

Biosynthesis of other secondary

metabolites

0.769 8.65E-04

Cell cycle—Caulobacter Cellular Processes Cell growth and death 0.73 3.49E-03

Peroxisome Transport and catabolism 0.699 8.90E-03

RNA transport Genetic Information

Processing

Translation 0.757 1.38E-03

https://doi.org/10.1371/journal.pone.0300672.t002
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In young adults, we found that Fusobacterium is an indicator species. The prevalence of this

bacteria increases with age in the gut [11, 12]. In young adults, we found the significant enrich-

ment of Corynebacterium. Corynebacterium generally requires moist environments, such as

sweat and mucus, for colonization [14, 47]. The significant enrichment of Corynebacterium in

young adults is an interesting finding, as this bacteria can be associated with lower levels of

allergen sensitization in the nasal microbiome [48].

We also found enrichment of Actinobacteria and Proteobacteria specific to young and older

adults. Whereas, Actinobacteria are essential for modulation of epithelial permeability and

immunoregulation [49]; Proteobacteriamaintain an ideal environment for anaerobic coloniza-

tion by regulating oxygen levels [50]. Healthy age-related changes are associated with

decreased abundance of Bacteroides with age [39]. However, we found a significant variation

Fig 6. Differentially represented metagenomics functions across age groups predicted by PICRUSt2. (A) Principal Coordinate Analysis (PCoA) of KEGG

ortholog (KOs) abundances determined via PICRUSt2 analysis showing the dissimilarity of predicted metagenomics of the laryngeal bacterial communities in

each mouse group; each dot represents a laryngeal sample. (B) Boxplot showing the proportion of differentially represented KOs abundances across age groups.

Statistical analyses were done by one-way ANOVA and Tukey HSD post-hoc comparisons across age groups; “*” above the black line represents the

differentially abundant taxa were statistically significant (p< 0.05). Upper whisker, lower whisker, black line in the box, “*” inside the box, “+” represents the

maximum, minimum, median, mean, and outlier of the data. 6Wk = adolescent, 6Mo = young adult, 12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g006
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Fig 7. Comparison of alpha diversity metrics within age groups. 6Wk = adolescent, 6Mo = young adult,

12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g007

Fig 8. Beta diversity analysis assessing microbial community structure across age groups. Principle Coordinate Analysis (PCoA) of unweighted

(left) and weighted (right) UniFrac distance. Each dot represents a mouse laryngeal sample; contours indicate the groups obtained by comparisons

with PERMANOVA (p = 0.162, F = 1.8664). 6Wk = adolescent, 6Mo = young adult, 12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g008
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Fig 9. Comparison of the relative abundance of top 4 genera across sexes. g, f represents genera and family.

6Wk = adolescent, 6Mo = young adult, 12Mo = older adult, 18Mo = elderly. Statistical analyses were done by one-way

ANOVA (p = 0.05) and Tukey HSD post-hoc comparisons across sex groups.

https://doi.org/10.1371/journal.pone.0300672.g009

Fig 10. Comparisons of alpha diversity metrics within biological sex. 6Wk = adolescent, 6Mo = young adult,

12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g010
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of Bacteroides across age groups (i.e., decreased abundance of Bacteroides in young adults com-

pared to adolescents, followed by an increase in older adults and elderly). The aging murine

gut is also associated with a “trade-off” of other Firmicutes genera for Clostridia, in later life

[13].

While we found age-specific taxonomic variation, there was relative stability of laryngeal

microbiota within each age group (largest microbial variation observed in adolescents across

all measures of alpha diversity). This may be indicative of high laryngeal resistance to coloniza-

tion that stabilizes post-development [51]. Similarly, oropharyngeal microbiota is reported pri-

orly to have similar temporal stability across age groups [19]. We found no significant

separation in the laryngeal microbiota (i.e., no significant differences in post-hoc analyses of

beta-diversity) across age groups. Although the gut microbiota has been shown to vary

throughout the lifespan [52], similar result has not been reported in the laryngeal microbiome.

Lastly, while the selection of age group is based on prior research [27], it is possible that the

age groups may not accurately reflect microbial variation across aging.

A secondary aim of our study was to explore potential sex-related variation in laryngeal

microbiota. Although sex hormones can significantly affect alpha and beta-diversity in the gut

microbiome [20, 21], there were no changes in our measures of alpha or beta-diversity, no dif-

ferentially abundant taxa, nor changes in relative abundance in the top 4 genera between sexes.

Possible reasons may account for the lack of observed laryngeal microbiota variation. Sex hor-

mones are time and age-dependent [21]. We assumed that sex-induced variation in laryngeal

microbiota may be confounded by collapsing of age groups. However, differential abundance

analysis using limma-voom function suggests the confounding age effects are negligible in our

case. Reports of sex-related variation in the gut microbiome remain mixed [53–55], and inde-

pendent microbial effects of sex may not be as apparent in an organ with relatively low

Fig 11. Beta-diversity analysis showing difference in microbial community structure across biological sexes. Principle Coordinate Analysis (PCoA) of

unweighted (left) and weighted (right) UniFrac distance. Each dot represents a mouse laryngeal sample; contours indicate the groups obtained by comparisons

with PERMANOVA (p> .005). 6Wk = adolescent, 6Mo = young adult, 12Mo = older adult, 18Mo = elderly.

https://doi.org/10.1371/journal.pone.0300672.g011

PLOS ONE Aging and laryngeal microbiota

PLOS ONE | https://doi.org/10.1371/journal.pone.0300672 May 14, 2024 14 / 18

https://doi.org/10.1371/journal.pone.0300672.g011
https://doi.org/10.1371/journal.pone.0300672


bacterial load [such as the larynx] [25]. Although female mice were housed together, we did

not perform estrus staging. Thus, hormonal variation in females across different age groups

could confound potential sex-related variation in laryngeal microbiota across the lifespan. Sex-

hormones are thought to affect microbiota in the gut [56].

Limitations and future directions

Considering that Streptococcus is underrepresented in positive controls of the oral microbiome

whole cell mix, which is likely due to the potential bias of the current sample processing proto-

col towards certain groups of microorganisms, the relative abundance of Streptococcus in all

age groups could be underestimated. Before sex-related variation in the laryngeal microbiota

can be discounted, future studies with a larger sample size of each sex, and multiple age groups

are needed for corroboration (n> 4). Although changes of SCFA-producing bacteria were

observed in the present study, their functional consequences on host laryngeal physiology

remain unknown. Future studies should consider the colonization of germ-free mice with

these SCFA-producing bacteria to delineate their specific metabolic role in the larynx across

the age-span. In addition, murine laryngeal microbiota exhibited relative stability with age and

sex, as seen within the oropharyngeal microbiota [19]. However, environmental differences,

and mechanical stresses from vibration, differentiate the human model from the murine

model. These factors may contribute to aging related findings and cannot be replicated in the

murine model. Thus, future work should investigate whether similar age and sex-related varia-

tion exist in the human laryngeal microbiota to better understand the role of the microbiota in

developing laryngeal pathologies.

Conclusion

The laryngeal microbiota experiences variation as a function of age. There is a compositional

shift in the laryngeal microbiota that occurs between adulthood and older adults. Differentially

abundant phyla, such as Firmicutes, Bacteroides, Lactobacillus, and Corynebacterium, across

the age-span may be indicative of the differing metabolic and immunological needs and differ-

ing colonization resistance of laryngeal microbiota compared to that of other body organs,

such as the gut, nose, and oral cavity. Future studies should elucidate the role of specific bacte-

ria in age-related decline in laryngeal function. Additionally, in our cohort of murine samples,

there were no sex-related changes in the laryngeal microbiota.
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