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Abstract

Model-based assessment of the potential impacts of variables on the Sustainable Develop-

ment Goals (SDGs) can bring great additional information about possible policy intervention

points. In the context of sustainability planning, machine learning techniques can provide

data-driven solutions throughout the modeling life cycle. In a changing environment, existing

models must be continuously reviewed and developed for effective decision support. Thus,

we propose to use the Machine Learning Operations (MLOps) life cycle framework. A novel

approach for model identification and development is introduced, which involves utilizing the

Shapley value to determine the individual direct and indirect contributions of each variable

towards the output, as well as network analysis to identify key drivers and support the identi-

fication and validation of possible policy intervention points. The applicability of the methods

is demonstrated through a case study of the Hungarian water model developed by the

Global Green Growth Institute. Based on the model exploration of the case of water effi-

ciency and water stress (in the examined period for the SDG 6.4.1 & 6.4.2) SDG indicators,

water reuse and water circularity offer a more effective intervention option than pricing and

the use of internal or external renewable water resources.

Introduction

To achieve Sustainable Development Goals (SDGs) and their targets, regular assessments are

needed to track the progress of countries and identify areas where more effort is necessary [1].

These assessments may require a range of data and information, including indicators on social,

economic, and environmental issues [2]. Evaluations can also involve consultation with vari-

ous stakeholders, including governments, civil society organizations, and the private sector

[3]. The main objective is to provide a complete picture of progress toward the SDGs, identify

challenges and opportunities [4], and inform policies and actions that can help accelerate prog-

ress [1].
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The complex relationships between policies and social, economic, and environmental issues

require models [5] and analyses that consider each issues and predict the performance of sus-

tainable development in countries [6]. Model-based assessment of sustainability planning pro-

vides decision-makers with a powerful tool to understand the complex interdependencies

between social, economic, and environmental systems and design policies and strategies that

are likely to lead to more sustainable outcomes. It involves developing quantitative structural

equation models that represent the systems that are being considered and using these models

to explore different scenarios and assess the likely impacts of different policy choices. In assess-

ing aggregated SDG indicators, effective decision support requires models that are suitable for

identifying potential intervention points and for establishing knowledge in political strategy

creation.

As SDG indicators are aggregated, effective decision support requires models that are suit-

able to identify potential intervention points and establish knowledge in the creation of politi-

cal strategies. Country-specific factors such as unique development phases, policies, and

databases can make it difficult to develop accurate and reliable system dynamics models.

Therefore, it is important to pay attention to the life cycle of models and the difficulties that

may arise during each stage, such as initial contextualization, data utilization, model creation,

analysis, implementation, and monitoring.

A common challenge in developing reliable complex systems is model identification to

accurately represent the workings of the system. Regarding sustainability, this challenge can

arise due to the detailed structure of SDGs, data and information limitations, and modeling

techniques. The development of structured models requires broad experience in modeling

techniques and validation methods and relies heavily on data and information. An additional

requirement is that the relationships between variables, and their change in behavior over time

must be known [7]. In this regard, life cycle-based assessment encompasses the various stages

of model development, including initial contextualization and data utilization for design, the

creation of a complex model, the derivation of analysis, the implementation of the model, and

the monitoring and revision of the model to improve its accuracy.

The primary objective of this paper is to highlight approaches that support structural equa-

tion model-based assessment of sustainability planning, identify the contribution of variables

to the SDG indicators based on historical data, and promote evidence-based policy develop-

ment. We propose methods based on network and data analysis to support modeler work and

obtain more accurate, automatic, and efficient model development procedures during the

entire life cycle of models. We introduce the potential for Shapley value utilization to identify

the contribution of each variable in the model to the output SDG indicators. Furthermore, we

highlight the opportunities for life cycle-based modeling as well as the links between life cycle

phases with the help of network and data science technologies. It is important to highlight that

we do not mean the identification of environmental impacts by the expression ‘life cycle’, we

consider the modeling process as a life cycle, which draws attention to the fact that during the

development of expert systems (in their life cycle) different steps can be followed to develop

the concept, for which the tools proposed in this research can be used.

Structural equation models can be represented as networks, and sustainable development-

related problems can be evaluated using network science tools [8]. Network analysis can be

useful in understanding the complex networks of stakeholders, institutions, and processes that

influence sustainability outcomes. Furthermore, it can be used to understand the relationships

between different SDG goals and targets. For example, network tools can help identify the

interdependencies between different goals and understand how progress in one area can

impact others [9]. The important variables of the model can be identified that can serve as pos-

sible intervention points. Additionally, data-based methods can be used to support the

PLOS ONE Network science and explainable AI-based life cycle management of sustainability models

PLOS ONE | https://doi.org/10.1371/journal.pone.0300531 June 13, 2024 2 / 29

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.”

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0300531


continuous development and analysis of structural equation models to assess progress toward

the SDGs. Data-driven methods can reveal the relationship between different variables, sup-

port understanding of the underlying mechanisms that drive these relationships, identify pat-

terns and trends, and the potential impact of different interventions on the system [10].

The related models are usually static in a way that the developed models are not further

improved, validated, and maintained throughout the modeling life-cycle. The modeling struc-

ture is usually not prepared to integrate and track changes, whereas we are and will be witness-

ing more and more dramatic changes because of the radical steps taken in the direction of

polycentrism and green transformation. Therefore, there is an emerging need for the model

life-cycle-based development.

By combining network and data analysis throughout the entire model life cycle, stakehold-

ers can gain a more complete understanding of the complex interactions and relationships that

influence the achievement of the SDGs. This life cycle-based assessment of models can be used

to ensure that models are developed, deployed, and maintained in a reliable, efficient, and

effective manner. In this study, we consider the intertwining of MLOps and CRISP-ML (Q)

(Cross-Industry Standard Process for the development of Machine Learning applications with

Quality assurance methodology) life cycles. MLOps is an end-to-end framework of the

machine learning (ML) development process and supports automation principles and includes

three phases: design, model development, and operation [11]. This framework is highly inter-

twined with CRISP-ML(Q), which consists of six iterative phases with varying sequences: busi-

ness and data understanding, data preparation, modeling, evaluation, deployment and

monitoring, and maintenance [12].

The system model of the Sustainable Development Goals can take into account changes

over time in the relationships between the SDG goals and the targets [13], so there is a signifi-

cant need to maintain the models, as the behaviour of the system is dependent on time and

maturity with a special focus on responses to political challenges [14], including critical and

success factors in economic sectors and national infrastructures [15]. Action-focused

approaches increase their utility in decision-making, so the scenario derivation supports the

formulations of reasonable actions [16].

Additional variables could be added to the explanation of ‘unexplained’ interactions in the

SDG models [13], which can be supported by machine learning [15]. Modeling efforts can be

exploited with a feedback-rich structure of models [17].

Therefore, the potential contributions and the structure of this article are as follows:

• The life cycle-based model development and possible application of data and network sci-

ence tools in each life cycle phase are discussed in the Sustainability focused model life cycle
management section.

• The methodology of using network and data science tools in model identification and develop-
ment is explored in the Development of models based on network science and explainable AI
tools section. This section emphasizes the challenges inherent in model development and how
the utilization of network analysis and the Shapley value can mitigate these difficulties. They
serve as sensitivity analyses by promoting the understanding of which variables have the great-
est direct or indirect impact on changes in SDG indicators through the model network based on
historical data.

• A case study is presented in the Application of network and data analysis for model develop-
ment section to demonstrate the effectiveness of the proposed methods. The case study is con-
ducted on a submodel developed by the Global Green Growth Institution for Hungary.
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It is imperative to underscore that the evaluation of models is contingent upon the data

they reflect, meaning that the results are primarily influenced by the data. Consequently, insuf-

ficient quality of the data can lead to incorrect inferences about the model’s quality and the

effects of variables. Furthermore, we must consider that different economies or environmental

backgrounds may exhibit different relationships. Therefore, a homogeneous sample is essen-

tial, requiring a clear definition of the modeled area. Naturally, the structure of models can

also be flawed, and identifying structural errors may not be straightforward. MLOps primarily

focuses on retraining the same model to address this issue. However, the methodology enables

to creation of a new model by incorporating new variables and insights.

Nevertheless, we believe that the network and data analysis approach to model-based sus-

tainability planning offers valuable information throughout the entire model life cycle. Fur-

thermore, by identifying the direct and indirect contributions of variables to changes in the

SDGs, this data-driven approach can serve as a fundamental basis for evaluating the efficacy of

policy intervention. The relevancy of the proposed method is proved and validated through

the Global Green Growth Institute (GGGI) who applied the method in real-life sustainability

models. The interpreted application study relies on a real-life example that is developed by the

Global Green Growth Institute, which is a treaty-based international, inter-governmental

organization dedicated to supporting and promoting strong, inclusive, and sustainable eco-

nomic growth in developing countries and emerging economies. The developed method will

be an integrated tool that will be used for their work, enabling policymakers and researchers to

assess the environmental and economic impacts of various policy interventions, and fostering

informed decision-making for sustainable development initiatives worldwide.

Materials and methods

Sustainability focused model life cycle management

Environmental systems exhibit a high degree of complexity and dynamics, characterized by

diverse interacting variables that may vary over time. Models that aim to capture such com-

plexities are often susceptible to uncertainties attributable to the evolving nature of environ-

mental systems, the lack of data, and the adaptability of the model to local conditions. The

localization of model structures necessitates the customization of generalized models to reflect

unique characteristics of countries, regions, or cities, including but not limited to social, eco-

nomic, and environmental developmental levels, as well as diverse policy goals and interven-

tions aimed at enhancing sustainable development.

The systematic development of these models can be supported with machine learning tech-

niques to incorporate data-driven insights and evidence-based policy assessment. MLOps and

CRISP-ML are systematic frameworks that consider the whole life cycle of data-driven models

from design and business understanding until the operation phase and model maintenance

[18]. This life cycle-based model evaluation can be used to ensure that models are developed,

deployed, and maintained in a reliable, efficient, and effective manner. These concepts are fun-

damentally iterative and exploratory, so depending on the results from the later phases, the

reexamination of earlier steps may be needed.

In Fig 1, the framework for applying data and network analysis-based life cycle manage-

ment for the development of sustainability models is shown. The blue block represents model

development, where model building is based on expert knowledge and time series data and

requires the use of modeling and analyzing techniques, as well as country-specific targets and

policy implications for accuracy. The Global Green Growth Institute built models for assessing

and predicting green growth by linking the energy, agriculture, forestry and other land use

(AFOLU), and water and waste models [19]. The orange block indicates the difficulties of
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model development as mentioned above, such as lack of data availability, identification of pos-

sible external variables and their relationship, model validation, assessment of intervention

points, analysis of the effect of variables on SDGs, etc. The green block represents a model life

cycle-based solution for model development utilizing the tools of network and data sciences.

By following the CRISP-ML methodology, organizations can ensure that models are devel-

oped, evaluated, and deployed in a transparent and structured manner, which can help to

improve decision making and support long-term planning and management of environmental

systems. Additionally, the CRISP-ML provides a clear roadmap for monitoring and maintain-

ing the model, allowing continuous improvement and adaptation to new information and

scenarios.

The schematic workflow and connections between MLOps and CRISP-ML are illustrated

in Fig 2, where the line colors represent the different stages (orange—business and data under-

standing, blue—model development, green—model operation) and the arrow colors identify

where network and data science tools can be applied (network science—grey, data science—

yellow).

In Table 1, the intersection of MLOps, CRISP-ML life cycle, and the potential applicability

and implementation of network and data science techniques are examined within the frame-

work of model-based assessment of Sustainable Development Goals.

According to Studer et al. [12] the business and data understanding phase includes defining

objectives, collecting and verifying data quality, and assessing the project. This phase involves

Fig 1. The framework of applying network and data analysis-based life cycle management of sustainability model

development.

https://doi.org/10.1371/journal.pone.0300531.g001

Fig 2. Schematic representation of the connections between MLOps and CRISP-ML (based on [18]). The line

colors represent the different stages (orange—business and data understanding, blue—model development, green—

model operation) and the arrow colors identify where network and data science tools can be applied (network science

—grey, data science—yellow).

https://doi.org/10.1371/journal.pone.0300531.g002
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Table 1. Data and network science methods supporting sustainability model development in the MLOps and standard modeling life cycle.

MLOps CRISP-ML

dimensions

Model relevance Data science

relevance

Data science methods Network science

relevance

SDG relevance References

Design Business

understanding

S1 Fig Problem

definition

Understand the

problem, goals and

objectives of the

project, by analyzing

historical data,

identifying trends,

and patterns and

understanding the

relationships between

different variables.

Exploratory Data

Analysis (EDA) [20],

Descriptive statistics,

Data mining [21], Data

visualization, Causality

analysis [24]

Identify the key

variables and

relationships that are

important for

understanding the

behavior of the system,

by creating a

conceptual model of

the system.

Identify the

interlinkages between

SDG goals [25], targets

[36] and indicators [9].

Identify the connection

between model elements

and SDGs. Identify

dependencies among

risks associated with

SDGs [26].

[9, 20, 21,

23–27, 36–

42]

Data

understanding

S2 Fig Model

conceptualization

Collecting and

verifying the data

quality regarding the

structured issues and,

finally deciding upon

whether the project

should be committed.

Data cleaning, Data

exploration [20],

Correlation analysis

[27], Causality analysis

[23], Data visualization,

Shapley value [42]

Model

development

Data

preparation

S3 Fig Model

development

Representing

sustainability-related

concepts and

structured knowledge

of the relationship

between model

elements. Producing

a data set for the

modeling design

phase by gathering

and linking data from

diverse data sources.

Feature engineering,

Data imputation,

Feature scaling, Data

normalization, Data

selection, Data

cleaning, Ontology

modeling, Knowledge

graphs, Open linked

data

Defining knowledge

graphs representing

the relationship

between model

elements. Gather and

analyze the data that is

needed to validate the

model, by identifying

patterns and structures

in the data that can be

used to inform the

development of the

model.

Represent the SDGs and

their interrelationships

with other ontologies to

facilitate the integration

and analysis of data

applying to the SDGs.

Provides transparent

and reproducible

analysis, establishing a

shared vocabulary and

framework for the

description and sharing

of data and models

associated with the

SDGs.

[43–48]

Modeling Creating models that

satisfy the given

constraints and

requirements.

Regression analysis,

Time series analysis

[28], Clustering,

Decision trees,

Random forest, Neural

networks [32], Bayesian

methods [49], and

other machine learning

algorithms [29], Digital

Twins [35], Composite

indicators Cross-

validation,

Hyperparameter

tuning, Sensitivity

analysis, Classification,

Clustering, Regression

analysis, Frequent

itemset/pattern mining,

Visualization

Build and test the

model, by using

network metrics such

as centrality to identify

key elements in the

system and to

understand the overall

connectivity of the

system.

Predictions [50],

simulations, structural

model development, risk

assessment [26]

[26, 28–35,

49–52]

Evaluation S4 Fig Model

analysis

Design and analysis

are intertwined and

as new change

options are proposed,

they are analyzed

using data analysis

techniques. The

performance,

robustness and

explainability must be

evaluated.

Analyze the results of

the simulation and to

identify the best course

of action for achieving

a desired outcome, by

identifying patterns

and structures in the

results that can be used

to inform decision-

making.

Identify and categorize

countries, regions based

on their performance on

SDGs. Identify patterns

and key variables which

can be possible

intervention points to

succeed on SDGs.

[5, 25, 29,

38, 40, 52]

(Continued)
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identifying the project’s scope, risks, and success criteria such as measurable features, systems

alignment, Key Performance Indicators (KPIs), feasibility, and data availability, which are crit-

ical components of model development. Regarding data science methods, exploratory data

analysis (EDA) provides insight and understanding of databases, visualization of potential rela-

tionships between variables, detection of outliers and anomalies, development of simple mod-

els (predictive or exploratory), the precondition of data [20]. Data mining and machine

learning methods can be valuable tools for discovering knowledge from databases [21]. Inte-

gration of data mining and system dynamics supports evidence-based decision-making and a

better understanding of the dynamics and complexity of a system [22]. The relationships

between, e.g., sustainability pillars [23], the interconnectedness of SDGs [24], and their pat-

terns can be identified through causality analysis that is important from a policy point of view.

The causal relationships [24] and complex interactions of the SDGs can be mapped through

network analysis [25]. For example, a probabilistic network model can be used to explore the

dependencies among the risks associated with the SDGs [26].

During the phase of model development, the data is preprocessed and delivered in a format

that is suitable for integration with the model. This process, also known as data preparation,

includes the selection, cleaning, and standardization of the data. The modeling activity

involves selecting appropriate models, incorporating domain knowledge, evaluating, validat-

ing, and documenting the models. The data preparation stage is supported by techniques such

as feature engineering, scaling, normalization, and data imputation [27]. There are various

methods that can be applied to the building and analysis of models, such as time series analysis

and forecasting [28], regression analysis, clustering, classification, dimension reduction tech-

niques [29], Monte Carlo simulation [30], system dynamics modeling [31], network analysis

[25], neural networks [32], Bayesian networks [33], and composite indicators [34]. These

methods can be integrated to provide a more comprehensive understanding of the system

under study. It is worth noting that, while these methods provide valuable information, the

identification of other factors such as dynamics, uncertainties, and external events contribute

to a more complete understanding of the system.

This will be the basis formodel operations, where the models are continuously deployed,

evaluated, and monitored, as well as fine-tuned if necessary. It is considered good practice to

Table 1. (Continued)

MLOps CRISP-ML

dimensions

Model relevance Data science

relevance

Data science methods Network science

relevance

SDG relevance References

Operations Deployment S5 Fig Model

implementation

Before rolling out a

model to all, it is best

practice to deploy it

first to a small subset

and evaluate its

behaviour.

Model deployment,

Simulation models,

Digital Twins [35],

Model interpretability,

Monitoring [53], Web

page development,

Dashboard

development, Model

maintenance

Identify the most

critical elements in the

network that need to

be targeted for the

implementation of

policies or strategies

that have been

identified as the best

course of action.

Identify transition

trajectories, different

scenarios based on

diverse strategies.

Identify the possible

performance on SDGs

based on the diverse

strategies.

[5, 30, 35,

51, 52]

Monitoring

and

Maintenance

S6 Fig Model

maintenance

Monitoring and

maintenance

processes to assure

quality performance

and identify

corrective actions.

The model has to

adapt to changes in

the environment.

Continuous monitoring

[54], improvement and

validation of the models.

Monitor the transition

trajectories. Identify

possible external

variables and mitigation

actions for better

accuracy.

[53–55]

https://doi.org/10.1371/journal.pone.0300531.t001

PLOS ONE Network science and explainable AI-based life cycle management of sustainability models

PLOS ONE | https://doi.org/10.1371/journal.pone.0300531 June 13, 2024 7 / 29

https://doi.org/10.1371/journal.pone.0300531.t001
https://doi.org/10.1371/journal.pone.0300531


first deploy a model to a small subset and evaluate its behavior prior to extensive implementa-

tion e.g. transition trajectories, and digital twin simulation based on scenarios may help

improve understanding of a phenomenon [35].

The literature on utilizing a network and data-driven tools for the assessment of SDGs has

been growing, but their integration and contribution throughout the entire model life cycle

remains an area of underexplored research, even though they are used in the steps. Developing

a framework that systematically evaluates the potential and contribution of network and data

science techniques throughout the model life cycle could prove to be a valuable asset in sup-

porting the work of modelers. In this way, the integration of data-driven techniques and net-

work-based analysis of the system can improve the accuracy, robustness, interpretability, and

efficiency of environmental system dynamics models, by allowing the selection of the most rel-

evant variables to the problem, and by identifying key drivers and relationships, it helps orga-

nizations and decision-makers to better understand the dynamics of environmental systems

and make more informed decisions.

Development of models based on network science and explainable AI tools

The MLOps approach introduces much-needed structure and efficiency to the development of

machine learning and network science models. By combining MLOps practices with explain-

able AI tools, organizations can leverage the power of these models across different domains,

ensuring transparency and interpretability, which in turn fosters greater trust in AI-driven

decision-making. In this context, we present a novel Shapley value-based method in Section,

which complements the MLOps life cycle by evaluating the contributions of variables to the

model. This approach promotes a better understanding of the model, as well as the data, and

facilitates model conceptualization, development, and analysis. Furthermore, in Section we

highlight the significance of combining the Shapley value and network science in identifying

key drivers of model behavior.

Shapley value-based evaluation of variable contribution. Complex models are often rep-

resented in the form of structural equation models (SEMs), whose equations describe the rela-

tionship between variables [56]. These structured equation models can be represented and

analyzed as networks. Combining the measures of the structural network with the Shapley

value [57] has a great potential to achieve a more complete understanding of the system. As

the Shapley value defines the contribution of the variables, in this regard, these values can be

applied as weights of the network edges. Thus, a deeper understanding of the interactions of

the models can be achieved, which can lead to valuable insights for model development and

analysis. The combination of Shapley value and networks is emerging, and has been utilized

for example to discover influential nodes in social network [58], identify centrality in weighted

and unweighted networks [59], identify individuals’ performance in group influence within a

real-world social network [60], used as an extension to betweenness centrality and define a

new metric called stress centrality [61]. Furthermore, the Shapley value-based interpretation of

feature contribution to model predictions have been applied in a variety of studies, such as pre-

dicting antifungal peptides [62], anti-tubercular peptides [63], or anti-inflammatory peptides

[64].

Consider a set of V that contains n number of variables ½x̂ðtÞ1 ; . . . ; x̂ðtÞl ; x
ðtÞ
lþ1; . . . ; xðtÞn � with l

number of observed input variables (x̂) and n − l number of derived variables. The kth struc-

tural model predicts the kth derived variable xðtÞk at a given time t = 1, . . ., T. The model fk
requires the set of inputs ðw

ðtÞ
k � VÞ and parameters θk to predict a variable:

xðtÞk ¼ fkðw
ðtÞ
k ; ykÞ ð1Þ
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where xðtÞk denotes the predicted variable, fk defines the structural equation, w
ðtÞ
k is considered as

the set of input variables, while θk stands for the parameters of the equation.

A structural equation model is built from several equations; the model structure can be

hierarchical, the output of an equation may be realized as an input of another function.

w
ðtÞ
k ¼ xðtÞj

�
�
�aj;k 6¼ 0

n o
; j ¼ 1; . . . ; n; t ¼ 1; . . . ;T; xðtÞj 2 V ð2Þ

where w
ðtÞ
k is the set of variables at time t for function fk. The jth variable is denoted by xðtÞj . Set

V contains all variables, aj,k stands for the one-way connection between the jth input and the

kth output variable.

Moreover, data may differ by context, so the models must be parameterized properly. In

some cases, parameters may require re-identification as time goes on; new technological and

cultural changes may trigger a need for adjustment in the model behavior. One possible solu-

tion is to minimize a cost function, e.g. the mean squared error of the prediction of the model

to an observed output.

min
yk

1

T

XT

t¼1

xðtÞk � fk w
ðtÞ
k ; yk

� �� � 2

ð3Þ

The inclusion of extraneous variables is a potential issue that may arise during the process

of developing a model. Therefore, it is important to determine which variable may be relevant

to the dependent variable, as it may result in a less convoluted and more accurate model.

Establishing the contribution of a variable to the model may enable us to filter out extraneous

ones, while also determining the highest contributor, known as biases. However, the impact of

one variable should include all contributions to the model, including the added value of coop-

eration with a group. As such, the average marginal contribution is required, which is often

determined by the Shapley value [57].

The marginal contribution requires marginalizing over (“averaging out”) the variables that

are excluded from the evaluated selected group of variables. Consider xðtÞk as the dependent var-

iable, w
ðtÞ
k the set of independent variables. If marginal contributions of a group variable are

required, then a contribution evaluation function ϕ(�) is required for a subset. The excluded

variables are marginalized over (averaged out), and, therefore, the contribution of the selected

variables is returned. The contribution should be understood as a difference from an expected

value (total average of the predictions) [65]:

� w
ðtÞ
k =fx

ðtÞ
j g

� �
¼

Z

fk w
ðtÞ
k ; yk

� �
dxj � E½ fk�; ð4Þ

where �ðw
ðtÞ
k =x

ðtÞ
j Þ defines the marginal contribution of variable xðtÞj . Here, the expected value is

approximated as the average of the model predictions: E½ fk� � 1

T

PT
t¼1
fk w

ðtÞ
k ; yk

� �
.

The classical way to approach the Shapley value (calculation of the average marginal contri-

bution) is by subtracting the contribution of a subset of variables with and without the selected

variable (xðtÞj ), and taking their weighted average [57], summed over all possible subsets:

SðtÞj;k ¼
1

jw
ðtÞ
k j!

X

P�wðtÞk = xðtÞj

n o
� P [ fxðtÞj g
� �

� � Pð Þ
ð5Þ

where Sj,k denotes the Shapley value, P denotes a subset of variables w
ðtÞ
k . ϕ(P) denotes the
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marginal contribution of the set without, �ðP [ xðtÞj Þ defines the marginal contribution of the

subset with the examined variable.

As the Shapley value is computationally intensive, it is often approximated by Monte Carlo

simulation. For a set with n variables, if all possible subset orders are considered, the operation

time would be factorial (O(n)!). As such, variable subsets are randomly sampled with aM
number of permutations rather than calculating the contribution of each subset. The calcula-

tion of the Monte Carlo-based Shapley value requires a set for averaging out the combination

of the variables (e.g. substituting the expected value of the variable to the set), and the other is

for the original values. As such, the computational time can be reduced to O(nM). The formal-

ization of the approximation of the contribution of the variable can be considered as [66]:

�̂jðP̂mÞ ¼ fk w
ðtÞ
k ½xi¼EðxðtÞi Þ�

; yk

� �
� fk w

ðtÞ
k ½xi¼Eðx

ðtÞ
i Þ;x

ðtÞ
j ¼Eðx

ðtÞ
j Þ�
; yk

� �

;

i; j =2 m; i 6¼ j

�SðtÞj;k ¼
1

jMj

X

m2M

�̂jðP̂mÞ

ð6Þ

whereM is a population of a randomly sampled set of feature combinations, m is a feature

combination inM with variables that are not marginalized, �SðtÞj;k denotes the approximation of

the Shapley value SðtÞj;k . ½xi ¼ Eðx
ðtÞ
i Þ�

suffix defines the set of variables, where the specific variables

(here, the ith) is fixed to an expected value.

The Shapley value aims to explain the change in the value function compared to the

expected value, therefore, the sum of the Shapley values for a model must return the difference

between the function value at point t and the expected value:

P
�SðtÞj;k ¼ fkðw

ðtÞ
k ; ykÞ � E½ fk� ð7Þ

Eq 7 defines the efficiency property of the Shapley value, which is to be used to scale indi-

vidual values between [0, 1]. The marginal contribution of a variable can be defined for an

individual sample (e.g. contributions of variables for year 2000), or for each to provide infor-

mation of the trends over the year. For the jth input of the kthmodel, the individual and mean

Shapley is as follows:

wj;k ¼

�SðtÞj;kP
i2wðtÞ

k

j�SðtÞi;k j
if dind ¼ 1

1
T

PT

t¼1
�SðtÞj;kP

i2wðtÞ
k

1
T

PT

t¼1
j�SðtÞi;k j

if dind ¼ 0

8
>>>>><

>>>>>:

ð8Þ

where dind defines a dummy variable as to whether the weight should be the individual or the

average Shapley value. The first member defines the normalized individual contribution, while

the second denotes the normalized mean contribution. For a proper weight matrix (W), all

dind should take the same value. If the weight type is selected, then for each model, a vector can

be defined where relevant inputs to the models have contributions, i.e. the Shapley value is des-

ignated as a zero for diagonals (so that there is no cycle) and observed inputs, who have no

models.

As shown above, the Shapley value provides a perfect measure to establish the direct con-

nection between variables, making it particularly valuable in the context of MLOps. In the

development and deployment of hierarchical models within the MLOps framework, the
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Shapley value can be used to assess the individual contributions of variables, aiding in the

interpretation, monitoring, and optimization of these models. In the following subsection, the

models will be defined as a directed acyclic graph of the variables that uses the Shapley value as

weight. By incorporating the Shapley value-based method and network analysis into the

MLOps life cycle, organizations can enhance their understanding of model behavior, promote

transparency, and optimize the performance of hierarchical machine learning models.

Network analysis for identifying key drivers of the model. Network analysis is a tech-

nique that can be used in MLOps to analyze the relationships between different variables or

features in a machine learning model. The application of specific network analysis tools may

help select key variables and intervention points in the graph that affect the model the most. If

the contribution of a variable is added as weight to the network, it may alter the result of the

analysis. By building a network, one can a) employ network science tools to understand the

relationship of variables, c) determine the key nodes of the model, and b) select intervention

points that significantly influence the output of the model.

The Shapley-weighted degree centrality may support the identification of the central posi-

tion of a variable for their contribution to change i.e. has various connections throughout the

model, and can be manipulated by several inputs, or can change the value of several outputs

[67]. It is a simple measure of the number of neighbors of a node; however, it provides infor-

mation on the degree one node influences or being influenced by other nodes. Degree central-

ity is defined as the number of edges incident on a node, and also considering the weight and

directions:

CdðkÞ ¼
Pn

j¼1
ðwj;k þ wk;jÞ

2ðn � 1Þ
; k 6¼ j ð9Þ

where Cd defines the degree centrality measure for directed graphs, and wj,k defines the weight

of the edges (e.g. individual Shapley values) for the directed edge between node j and k,

respectively.

Closeness centrality focuses on the average shortest path connections to other (significant)

nodes, so with consideration, nodes with high closeness may be able to manipulate various key

nodes at once [68]. It is defined as the reciprocal of the sum of the shortest path distances

between the node and all other nodes in the network. For a node xk, the formula is as follows:

CcðkÞ ¼
1

X

j6¼k

dðxj; xkÞ ð10Þ

where Cc(k) defines the closeness centrality, xk is the node in question, xj is a node in the net-

work, d(xj, xk) is the shortest path distance between node xk and node xj.
Betweenness centrality may improve the interpretation of the structure of the variables, as it

measures the amount of shortest paths going through the node [69]. The shortest path may be

influenced by the weights, so the role of this centrality is to find the measure of how dominant

the role of the node is.

CbðkÞ ¼
X

xj 6¼xi 6¼xk

dxj;xiðkÞ

dxj;xi
ð11Þ

where Cb(k) defines the betweenness centrality, xj and xi denote nodes in the network, dxj;xiðkÞ
stands for the number of shortest paths from node xj to node xi that pass through node xk, and

dxj;xi is the total number of shortest paths from node xj to node xi.
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Other network analysis tools such as community detection (e.g. Louvian [70]) and shortest

paths algorithms (e.g. Dijkstra’s algorithm [71]) may provide additional information on the

relationship of the variables and significance of intervention points.

Network tools and the incorporation of the Shapley value allow us to identify the most

influential variables, supporting the work of data scientists and modelers to focus on optimiz-

ing and fine-tuning the key drivers for improved model performance. With respect to the

MLOps framework, network analysis offers a more holistic and systematic approach to under-

standing the underlying dynamics of complex machine learning models.

Results

Application of network and data analysis for model development

This section presents the processes for improving a system of environmental simulation based

on structural equation models through a Hungarian case study provided by the Global Green

Growth Institute [19]. The Green Growth Model of Hungary consists of three connected struc-

tural equation submodels, namely: energy, agriculture, forestry and other land use (AFOLU),

water and waste models. To demonstrate of the efficiency of the data-driven Shapley value and

network analysis for hierarchical models, we apply the methods on a submodel of the Hungar-

ian water model. The introduced GGGI models rely on literature-based structural information

and the model connections are validated with subject-matter experts. The model itself is

deployed and maintained as a Python and Dash-based application. The practical and accurate

development, monitoring, and maintenance of the ecosystem of the environmental models

requires the principles of MLOps to apply.

As Hungary has progressed the least in SDG6 [5] since 2015, the interpretation of the

water-related submodel (SDG6 indicators) could be of great help in explaining the required

planning aspects of effective political interventions. Due to the fact that the modeling of the

SDG indicators is a complex problem, the time series data (2000–2019) were compiled from

sources such as FAO [72–76], NASA [77, 78], World Bank [79], United Nations [80], WHO &

UNICEF [81], and the Hungary Ministry of Innovation and Technology [82] by GGGI. Some

variables were imputed with the 2017 values due to unknown or missing data. The abbrevia-

tions and short description of the variables handled in the water model are shown in Table 2.

The structural equations of the water model is indicated in Table 3. The function indices

are named after the variable indices. It is also indicated which final output the derived variable

contributes to, as well as the equation of each function is specified as well as the literature-

based evidence of the model relationships are added for each model equation.

In Fig 3, the schematic representation of the Shapley value-based interpretation of the struc-

tural equation model and the contributions of the variables is shown. The structured equation

and the Shapley value method are formulated as follows.

In the following sections, we focus on the validation of the hierarchical models to show that

such models provide correct information and knowledge to transfer to decision-makers. As

the MLOps principles focus not only on the development but also on validation and mainte-

nance, they contain the necessary toolset to confirm the possible use of the models. Therefore,

first, we validate the model by comparing it with linear regression and k-th nearest neighbors

models to ensure the validity of the connection between the independent and the dependent

variables. Then the roles of the variables are discussed with the help of Shapley-value-based

analysis. Lastly, we introduce network analysis to select the most important input.

MLOps life cycle in environmental model development. The three stages of the MLOps

life cycle include the business and data understanding, model development, and model opera-

tion phases. Continuous revision, development, and evaluation of environmental models are
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required to ensure adaptation to spatial and temporal changes. Reviewing and analyzing the

model can help ensure that it is aligned with the problem statement and the data requirements.

This includes reviewing the policy needs and requirements, identifying country specifications,

data sources, and quality, as well as changes over time to ensure that the model is designed to

meet the desired SDG outcomes. Therefore, the modeling development phase includes

Table 2. Variables for the water efficiency model. The inputs and outputs contain data from 2000–2019. It is important to note that various inputs are imputed. (PI)

denotes policy intervention points. Parameter (I) represents identifiable parameters. Variables without a specific unit are symbolized with a one in the Unit column of the

table.

Notation Abbreviation Name Unit Type

x̂1 AGVA Agricultural Gross Value Added $ Input

x̂2 AIR Agriculture area actually irrigated 1000 ha Input

x̂3 Arice Area of Rice Paddy Irrigation 1000 ha Input (PI)

x̂4 CL Cropland 1000 ha Input

x̂5 DW Desalination Water m3/year Input

x̂6 ERWR External Renewable Water Resources m3/year Input

x̂7 ETa Actual Evapotranspiration mm/year Input

x̂8 ETo Evapotranspiration mm/year Input

x̂9 GDPC GDP per capita $ Input

x̂10 IGVA Industrial Gross Value Added $ Input

x̂11 IRRTECHi Irrigation technology proportion 1 Input (PI)

x̂12 IRWR Internal Renewable Water Resources m3/year Input

x̂13 IWU Industrial Water Withdrawal 109m3/year Input

x̂14 Pop Population capita Input

x̂15 SGVA Service Sector Gross Value Added Resources $ Input

x̂16 TW Treated Wastewater $/15m3 Input

x̂17 WP Water Price $/15m3 Input

x18 AIRi Irrigated area per irrigation technology type 1000 ha Variable

x19 AWU Agricultural Water Withdrawal 109m3/year Variable

x20 CI Cropping Intensity 1 Variable

x21 Cr Corrective coefficient 1 Variable

x22 ETc Potential Crop Evaporation Vector mm/year Variable

x23 ICU Irrigation Consumptive Use mm/year Variable

x24 IWR Irrigation Water Requirement 109m3/year Variable

x25 IWRi Irrigation Water Requirement per irrigation 1e9m3/year Variable

x26 IWW Irrigation Water Withdrawal 109m3/year Variable

x27 MWU Municipal Water Withdrawal 109m3/year Variable

x28 PAIR Proportion of Irrigated Cropland 1 Variable

x29 TFA Total Freshwater Available m3/year Variable

x30 TNCW Total Non Conventional Water m3/year Variable

x31 TRF Total Renewable Freshwater m3/year Variable

x32 TWW Total Water Withdrawal 109m3/year Variable

y1 SDG 6.4.1 Water Use Efficiency $/(m3/year) Output

y2 SDG 6.4.2 Share of Freshwater Withdrawal to Freshwater Availability % Output

θ20 ICA Cropland area actually irrigated (per crop type) 1000 ha Parameter

θ22 Kc Crop Factor (per crop type) 1 Parameter

θ26, θ28 IRRTECHEFFi Irrigation efficiency per irrigation technology % Parameter

y271;2;3;4
βMWU Municipal Water Withdrawal coefficient vector 1 Parameter (I)

yy2 EFR Environmental Flow Requirement m3/year Parameter

https://doi.org/10.1371/journal.pone.0300531.t002
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optimization of the model parameters, validation of the model against new data, and integra-

tion of new knowledge and insights into the model.

The GGSim model aims to predict several sustainable development goals. The water sub-

models include the water use efficiency (SDG 6.4.1) and share of freshwater withdrawal to

freshwater availability (SDG 6.4.2) as outputs. As the Shapley value evaluates the contribution

of variables to the model output, first, the accuracy of the models should be evaluated. The pre-

dictions are evaluated for the GGSim model, two machine learning techniques, namely linear

regression and k-th nearest neighbors, and the parameter optimization.

Fig 4 presents the results of different models for the efficiency of water use (SDG 6.4.1) and

the share of freshwater withdrawal to freshwater availability (SDG 6.4.2) SDG indicators. The

red line represents the observed data, whereas the blue dashed line shows the output of the

GGSim model, which was built by experts. It seems that the error is somewhat systematic;

Table 3. Structural model equations. The function indices are named after the variable indices. ŷ defines parameters that ensure the matching of dimensions or any phys-

ical conversions or attributes. The source of model equation is also indicated in the table.

Function Derived variable name Relevant to Equation Reference

f18 Irrigated area per irrigation technology type (AIRi) SDG 6.4.1, SDG 6.4.2 x18;i ¼ x̂11;ix̂2 [83]

f19 Agricultural Water Withdrawal (AWU) SDG 6.4.1, SDG 6.4.2 x19 = x26 [84]

f20 Cropping intensity (CI) SDG 6.4.1, SDG 6.4.2 x20;i ¼
y20;i
x̂2

; i ¼ 1; . . . ; jy20j
[85]

f21 Corrective coefficient (Cr) SDG 6.4.1 x21 = 1/(1 + (x28/(1 − x28) * θ21)) [86]

f22 Potential Crop Evaporation Vector (ETc) SDG 6.4.1, SDG 6.4.2 x22 ¼ y22 � x20 � x̂8 [85]

f23 Irrigation Consumptive Use (ICU) SDG 6.4.1, SDG 6.4.2 x23 ¼ jx22 � x̂7j [85]

f25 Irrigation Water Requirement per irrigation (IWRi) SDG 6.4.1, SDG 6.4.2 x25;i ¼ ŷx23x18;i
[85]

f26 Irrigation Water Withdrawal (IWW) SDG 6.4.1, SDG 6.4.2 x26 ¼
Pjx25 j

i¼1
ðx25;i=y26;iÞ þ x̂3ŷrice height

[84]

f27 Municipal Water Withdrawal (MWU) SDG 6.4.1, SDG 6.4.2 x27 ¼ e
y271 x̂y272

17 x̂
y273

9 x̂
y274

14 10� 9 [87]

f28 Proportion of Irrigated Cropland (PAIR) SDG 6.4.1 x28 ¼ ð
Pjy28 j

i¼1
y28;iÞ=x̂4

[86]

f29 Total Freshwater Available (TFA) SDG 6.4.2 x29 = x30 + x31 [88]

f30 Total Non-Conventional Water (TNCW) SDG 6.4.2 x30 ¼ x̂5 þ x̂16 [88]

f31 Total Renewable Freshwater (TRF) SDG 6.4.2 x31 ¼ x̂6 þ x̂12 [88]

f32 Total Water Withdrawal (TWW) SDG 6.4.1, SDG 6.4.2 x32 ¼ x27 þ x19 þ x̂13 [88]

fy1 Water Use Efficiency (SDG 6.4.1) SDG 6.4.1 y1 ¼ ðx̂1ð1 � x21Þ þ x̂10 þ x̂15Þ=ðx32109Þ [86]

fy2 Share of Freshwater Withdrawal to Freshwater Availability (SDG 6.4.2) SDG 6.4.2 y2 ¼ x32=ðx29 � yy2 Þ102 [88]

https://doi.org/10.1371/journal.pone.0300531.t003

Fig 3. Schematic representation of the Shapley value-based network interpretation of structural equation model

and variable contributions.

https://doi.org/10.1371/journal.pone.0300531.g003
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however, some variables have no variance due to data imputation. Thus, the systematic error

may be associated with a lack of adequate data. The r2 was also calculated: for SDG 6.4.1 r2:

0.519, SDG 6.4.2 r2: 0.639. Additionally, parameter optimization was performed on the GGSim

model for municipal water use. The SDG 6.4.1 model improved significantly, with a r2 of

0.744, while SDG 6.4.2 only had an insignificant change in fitness (r2 = 0.65).

Two machine learning models have been applied to the input data to predict the output

while leaving out intermediate (derived) variables. Linear regression and the k-th nearest

neighbor [89] models were trained every second year, starting from 2000 to 2009. It seems that

linear regression cannot capture the complexity of the computation for SDG 6.4.2, and its r2 is

-20.46, while the SDG 6.4.1 model provides an acceptable fit (0.907). Although the coefficients

are known, the white-box nature cannot be used due to the failing prediction of SDG 6.4.2.

However, the k-th nearest neighbors method was able to fit a well-performing model on the

observed output variable (SDG 6.4.1 r2: 0.91, SDG 6.4.2 r2: 0.69). Due to the black-box nature

of the model, one may not be able to interpret why it provides predictions as such, but the

improvement in accuracy reassured the connection between the inputs and outputs. If the

model is hierarchical, it may also be hard to interpret; in some cases, the conversions and cal-

culations are not trivial; therefore, it requires a method that is capable of describing the contri-

butions between the variables.

This example has revealed the necessity for continuous model development and mainte-

nance through data-driven machine learning techniques to ensure the quality of model perfor-

mance. As is evident from the application of linear regression and k-th nearest-neighbor

machine learning models in a given scenario, the model accuracy can vary significantly. Mod-

els should be trained over time to adapt to changes. It includes updating model parameters

Fig 4. Prediction of the GGSim model against observed data. The expert-built model (SDG 6.4.1 r2: 0.519, SDG 6.4.2

r2: 0.639) is also compared against a linear regression (SDG 6.4.1 r2: 0.907, SDG 6.4.2 r2: -20.46) and a k-th nearest

neighbor algorithm (SDG 6.4.1 r2: 0.91, SDG 6.4.2 r2: 0.69). The k-th nearest neighbor shows the most promise,

however, one cannot easily explain the inner structure of the black-box model. The parameter optimization of the

municipal water withdrawal equation improved the model (SDG 6.4.1 r2: 0.744, SDG 6.4.2 r2: 0.65).

https://doi.org/10.1371/journal.pone.0300531.g004
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and incorporating new data, and variables, thereby improving the predictive capability of the

model. The application of the MLOps-based continuous development approach is a must to

ensure that the models capture the complexity of the sustainability problems and iteratively

enhance accuracy and robustness and provide more reliable predictions. Therefore, we re-

trained linear regression for SDG 6.4.2, which is presented in Fig 5. Here, the red line repre-

sents the observed variable, the green line represents the previous linear regression, and the

cyan line represents the retrained linear regression. During retraining, we dropped the years

from 2000–2002, and trained on from 2003 to 2012. The regression predicts the whole time

interval. The new prediction seems to be closer to the observed data than the previous linear

regression.

Emphasizing the significance of validated model structures is essential for performing in-

depth analysis and model development. By focusing on validated models, data scientists and

modelers can confidently investigate the underlying dynamics without concerns about flawed

or unreliable outcomes. The reliable model structure facilitates the analysis of variable contri-

butions to the model output and the identification of potential policy intervention points.

Direct and indirect contribution of the variables to the model output. Understanding

the direct contribution of variables provides insight into which variables have the most signifi-

cant impact on the output of the model. This information is crucial to identify the key drivers

of the system being modeled, which can be used to inform decision-making and policy devel-

opment. The indirect contribution of a variable refers to the impact that a variable has on the

output of the model through its interactions with other variables in the network, which can

allow us to identify complex relationships. During model validation, it is imperative to ensure

that only the relevant variables remain part of the model. The Shapley value heavily relies on

the role of the variable in the model and the variance of the data, and so ensuring variance may

define the importance of a variable.

Figs 6 and 7 illustrate the indirect contribution of variables to water use efficiency and

water stress level in 2017. It is advantageous to visualize how one variable changes the expected

value; the impact of one particular year may help in deciding what policies should be imple-

mented next year. The cumulative effects on the predictions can be measured, which provides

information on how different variables may interact with each other. In this representation,

the negative contribution values should not be associated with negative correlations to the out-

put. The water use efficiency model is biased towards industrial water withdrawal (IWU), and

service sectoral gross value added resources (SGVA), the data for 2017 indicate that most

Fig 5. Retrained linear regression for SDG 6.4.2. The red line depicts the observed variable, the green one represents

the linear regression from Fig 4, and the cyan colored one represent the retrained linear regression. The years before

2003 were dropped, and the model was retrained on years 2003–2012. The “new” model seems to fit better on the

observed model, proving the necessity of continuous maintenance for machine learning models.

https://doi.org/10.1371/journal.pone.0300531.g005
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variables have no proper impact on the output of the model, except for what is required for the

calculation of the expected value and conversions. For water efficiency (SDG 6.4.1), industrial

water withdrawal, service sector gross value added resources, industrial gross value added

(IGVA) and GDP per capita (GDPC) can be considered high-impact variables (Fig 6). For the

level of water stress (EW2), industrial water withdrawal and GDP per capita are the drivers of

contribution from the point of view of the SDG output indicator (Fig 7).

In the case of the water efficiency and water stress submodels, the decisive input in 2017

was the withdrawal of industrial water in Hungary; therefore, in order to improve the

Fig 6. Indirect contribution of variables for SDG 6.4.1 in year 2017. The dataset contains data imputations that were

made with the 2017 data, therefore, this year is the best candidate for Shapley analysis. The X-axis shows the function

value of SDG 6.4.1 in 2017, while the y axis presents how one variable changes the expected value of the function.

https://doi.org/10.1371/journal.pone.0300531.g006

Fig 7. Indirect contribution of variables for SDG 6.4.2 in year 2017. The X-axis shows the function value of SDG

6.4.2 in 2017, while the y axis presents how one variable changes the expected value of the function.

https://doi.org/10.1371/journal.pone.0300531.g007
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achievement of the 2030 Agenda, it is necessary to identify political interventions that reduce

the value of this input, since the effect of IWU strongly affects the performance of SDG 6.4.1 &

6.4.2 indicators. However, due to the complexity of the SDG indicators, disaggregated inputs

[90] are easier to handle. The reduction of water footprint [91], the circularity of water [92],

and the nature-based solutions [93] can be effective tools to support SDG6.

By applying the framework we propose, it is possible to analyze the entire model structure,

which also laid the foundation for the validation of the elements of the model. It is important

to emphasize that all models included in this manuscript have undergone expert validation.

It is important to note that the effectiveness of individual state variables (policy intervention

points) can vary depending on the current value of the other inputs, so policy monitoring is

also an important task, which can be supported by our proposed Shapley value-based manage-

ment. If it is not the given annual contributions but the tendentious driving forces that need to

be identified in the SDG framework, the indirect mean Shapley values can be called upon.

The indirect mean Shapley values of the variables for the efficiency of water use are illus-

trated in Fig 8 and for the level of water stress in Fig 9. The mean contribution determines the

Fig 8. Indirect mean Shapley values of variables for SDG 6.4.1. The X-axis shows the average of caused (relative)

change in the SDG 6.4.1 from 2000 to 2019, while the y axis presents the average impact of a variable.

https://doi.org/10.1371/journal.pone.0300531.g008

Fig 9. Indirect mean Shapley values of variables for SDG 6.4.2 the level of water stress. The X-axis shows the

average of caused (relative) change in the SDG 6.4.2 from 2000 to 2019, while the y axis presents the average impact of

a variable.

https://doi.org/10.1371/journal.pone.0300531.g009
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significance of a variable over the years, so these mean contributions can be used as a general

rule of thumb during the selection of appropriate policies. The high impact variables are simi-

lar compared to the 2017 data. Therefore, we can deduce that the roles do not differ signifi-

cantly over time. In decision support, this representation may help in selecting features with

high impact over time, model interpretation (by defining the high-impact variables), and vali-

dation. For example, if one variable relevance is a scientific fact and the mean absolute Shapley

value is insignificant, then the model may have flaws that must be corrected before the actual

information visualization is provided to the decision makers.

Fig 8 shows that the average contribution of the service sector to water efficiency is the

most significant. This indicator indirectly characterizes tourist activity, the operation of hotels,

restaurants, laundries, etc., thus affecting a wide range of water uses, and in SDG12 for the co-

benefits that appear through food waste [94]. This high Shapley value draws attention to the

fact that the potential of the service sector for sustainable watershed management in Hungary

is worth considering as an effective point of political intervention.

The indirect mean Shapley values of the variables for the level of water stress are illustrated

in Fig 9. The decisive role of industrial water withdrawals in water stress is outstanding when

examined over the entire period. In this case, the importance of productivity developments

comes to the fore, which already show a decreasing trend in water stress in several developed

countries [95]. Water stress is an excellent example of the fact that SDG indicators are difficult

to directly regulate, so the identification of intervention points for which effective political

measures [96] can be formulated is essential for the implementation of the 2030 Agenda.

The direct contribution of the variables to the changes in the output variables is shown in

Figs 10 and 11. Nodes are differentiated by their color and shape, with policy intervention

points represented by green triangles (x̂3, x̂11), input variables by orange triangles

(x̂k; k ¼ 1; . . . ; 17), derived variables by blue triangles (xk, k = 18, . . ., 32), variables with (pos-

sibly identifiable) parameters by blue hexagons (x21, x27), and output SDG indicators by yellow

triangles (y1, y2). The thickness (the greater the better) of the arrows represents the strength of

direct variable contribution (the width is proportional to the individual to total contribution

ratio). Here, the percentage of the total average contribution is provided for each arrow with

respect to all inputs of a model. The gray arrows depict the zero contribution.

Figs 10 and 11 show that there are aggregated and raw data input sources to describe the

aggregated SDG indicators, which can be used to identify optimal intervention points (poli-

cies) based on their systematic exploration and impact of the contribution on the SDG output,

and this systematic exploration can also be used to check the effectiveness of existing policies.

Fig 10. Direct mean contribution of variables to the change in the output variables. The types of nodes are

represented with different colors and shapes (green triangle—policy intervention points; orange triangle—input

variables; blue triangle—variables; blue hexagon—variables with parameters; yellow triangle—output). The thickness

of the arrows represents the strength of direct variable contribution.

https://doi.org/10.1371/journal.pone.0300531.g010
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Fig 10 shows that irrigated agricultural areas (AIR) influence irrigation water use (IWW)

through crop specifications (ETc, ICU), which in relation to total water withdrawal (TWW)

affects the level of water stress (SDG 6.4.2) the most. It seems that the water price (WP), the

internal and external renewable water resources (IRWR, ERWR) as political intervention

points did not have a significant impact in the period examined based on Hungarian data, so it

is more expedient to develop the service sector instead (SGVA), or improve water retention

(ETa), more precisely in developed and scheduled irrigation solutions, such as the internet of

things and wireless sensor network technologies [97]. Based on the model structure, the other

option is to reduce industrial water use, which can be supported by moving toward water

reuse and recycling [98] and technological solutions saving water [99]. The role of the variables

can also be analyzed in a yearly breakdown, which lays the foundation for a better understand-

ing of the dynamics of the SDG indicators and their input data sources. The annual contribu-

tion of the variables in 2017 can be seen in Fig 11.

The values on the edges show the contribution relative to the value of the output variable of

the model, so if the change in the output is low, the relative contribution values on the edges

are also low. However, the thickness of the edges symbolizes the degree of contribution of the

given variable, so the absolute and relative effects can be read together for all SDG indicators

included in the model. As can be seen in Fig 11, the effect of the progress achieved in industrial

water use on both SDG6 indicators is even more pronounced than in the case of the mean

time series contribution (Fig 10).

Conducting the analysis of the direct and indirect contribution of the variables to the

model output reveals key information regarding the drivers of the models, which serves as vali-

dation of the developed model, a base for further improvement, and enabling informed deci-

sion-making and selection of key policy intervention points through understanding the

underlying interactions within the variables and the model output.

Selection and validation of policy intervention points. The selection and validation of

policy intervention points is an important step in the development of effective policies and

interventions that can improve outcomes in the water model. We utilized the potential of sen-

sitivity and network analysis to validate policy intervention points and to support the selection

of possible ones. By testing the sensitivity of the model to changes in the value of intervention

points, we can identify the points that have the greatest potential to improve outcomes. This

information can be used to prioritize interventions and focus resources on the most effective

intervention points. The tools of network science enable us to identify critical paths and nodes

within the water model, based on which information we can focus on the most important

Fig 11. Direct contribution of variables to the change in the output variables for 2017. The type of nodes are

represented with different colors and shapes (green triangle—policy intervention points; orange triangle—input

variables; blue triangle—variables; blue hexagon—variables with parameters; yellow triangle—output). The thickness

of the arrows represents the strength of direct variable contribution.

https://doi.org/10.1371/journal.pone.0300531.g011
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variables in the system, and develop interventions that target these variables. Fig 12 shows the

betweenness centrality of network water efficiency (6.4.1) and water stress (6.4.2) SDG

indicators.

In the network of Fig 12, the size of the nodes is the same as the degree of their intermediary

role (betweenness centrality measure), so the larger nodes represent successful mediators, i.e.

potential political interveners, while the influence of the smaller nodes is less significant in the

state changes of the SDG system of the water model. Regarding the intermediary role, in the

case of the SDG6 indicators, crop evaporation (Etc), irrigation (ICU, IWW), agricultural water

use (AWU) and total water withdrawal (TWW) play a prominent role in the network, so a

direct or indirect reduction of these node values may mean political implementation potential.

Based on the example shown in Fig 12, it can also be seen that if the used state variables e.g.

water withdrawals cannot be reduced directly, the model extension with additional politically

perturbable variables can be performed based on the network science-based model analysis.

Utilizing network science tools facilitates the identification and validation of crucial policy

intervention points, a key aspect of model validation and development. By employing these

tools, researchers and decision-makers can rigorously verify the effectiveness and reliability of

proposed policy changes before implementing them in real-world scenarios, ensuring a more

robust and informed decision-making process.

Discussion

The proper translation of information empowers decision-makers. The decision support often

relies on the visualization of data and models. Dashboards with incorporated visualizations

and hierarchical structures can help in identifying trends, relationships between variables, sen-

sitivities of features etc. Knowledge, insight, and information transfer is required to improve

the decision-making capacity of stakeholders [100]. The role of explainable AI is to provide

knowledge transfer, when the actual knowledge is hidden [101]. Shapley-based networks have

already been researched [102], however, we focus on their implications for decision-makers

and their connection with MLOps practices. We must note that the Shapley values may not be

interpretable if the data is incorrect, the model acts on incorrect assumptions, has inappropri-

ate biases, or the incorrect set of variables is used as inputs [103], which is why checking and

validating the prediction ability of the models is crucial before understanding their structure.

The accuracy of model evaluation relies heavily on the quality of the underlying data, and poor

data quality can result in inaccurate assessments of model performance and variable effects.

Fig 12. Network representation of the betweenness centralities for the SDG 6.4.1 & SDG 6.4.2 indicators in water

model. The size of the nodes presents the importance of centralities. The types of nodes are represented with different

colors and shapes (green triangle—policy intervention points; orange triangle—input variables; blue triangle—

variables; blue hexagon—variables with parameters; yellow triangle—output). The thickness of the arrows represents

the strength of the direct variable contribution.

https://doi.org/10.1371/journal.pone.0300531.g012
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Additionally, the need for generally accepted data sources is emphasized, especially when deal-

ing with diverse economies or environmental backgrounds. Furthermore, addressing struc-

tural flaws in models is a key focus of MLOps, which involves retraining existing models or

creating new ones by incorporating new variables and insights.

However, the method that facilitates the identification of potential intervention points can-

not be utilized to propose exact policies. Furthermore, the method was developed to support

decision-makers rather than substitute them. Also, the proposed case study is an isolated sub-

model of the whole SDG framework, and the change of one variable may seem to be very effec-

tive; it may negatively influence other areas and models, provided that the models are

connected. Consider the following counterfactual: removing rice paddies may decrease water

use and improve water use efficiency; however, the harvest will also be reduced, and so it will

affect the food market. In other words, water use is improved, but the number of starving peo-

ple can increase due to costly imports and reduced harvests. Therefore, the selection of the pol-

icy intervention is a great balancing act. The change in one variable may initiate a trade-off

between several of the outputs, even if the models may not account for it. Furthermore, for

one country in a global economy, it may seem reasonable to take actions, e.g. reduce rice pro-

duction, if all countries do the same, which may affect the global food supply. Therefore, there

is a need to evaluate policy-making in a system of systems settings.

Regarding the evaluation of sustainability models with Shapley-based network analysis, the

results present a handful of irrelevant variables to the change in prediction. Namely, water

price, rice paddy irrigation area, and internal and external renewable water resources lack vari-

ance, therefore they have no impact. The agricultural gross value added (AGVA) also has a

minuscule contribution due to its small size compared to its industrial (IGVA) and service sec-

toral (SGVA) versions. Generally speaking, agriculture draws the most water worldwide

(about 69%) [104], due to crop and animal needs, and therefore plays a significant role in feed-

ing the population. The output shows a one-sided picture of water use. The description of

water use efficiency can be understood as the economic value per cubic meter of water [105].

Therefore, the interpretation may have methodological flaws [106], as it may not consider

other important factors. The SDG indicator may be related to behavioral factors that impact

municipal water withdrawal [104]. Here, the water price indicator can be used as an incentive

to control behavior, yet this variable does not have variance in the Hungarian data set provided

by the GGGI. However, the price of water was selected as an intervention point in the original

model.

The application and key scientific contribution of the MLOps methodology presented in

the research are two-fold since the experts who create the models can represent the entire

model structure, therefore it is possible to validate the model features. In addition, our pro-

posed methodology also supports problem exploration and understanding through data. In

other words, data-based qualitative validation and network science, as well as Shapley value-

based qualitative validation, can be implemented together, thereby effectively supporting

modeling processes.

Conclusion

This paper emphasizes the importance of developing life cycle-based models that incorporate

network and data analysis practices in sustainability planning, as demonstrated through an

application study of the Hungarian water model developed by the Global Green Growth Insti-

tution. To accurately track progress toward achieving the Sustainable Development Goals

(SDGs), it is necessary to use data-driven models that are country-specific and aligned with

policy interventions. However, modeling such complex relationships is often difficult due to
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the diverse scale and quality of data, policy initiatives, and economic and social developments

across countries. Continuous life cycle-based revision, analysis, development, and evaluation

of environmental models are needed to ensure model adaptation to spatial and temporal

changes.

Therefore, we propose the utilization of tools based on network and data science through-

out the modeling life cycle to ensure more accurate models to assess the SDGs and evidence-

based policy-making. The potential of Shapley value has been introduced to identify key driv-

ers of the system being modeled and to support decision-making and validate policy interven-

tions, which facilitates understanding of the direct and indirect contribution of variables. This

enables greater insight into which variables have the most significant impact on the output of

the model (SDG indicators). Furthermore, we suggest using a Shapley value-driven sensitivity

analysis of the changes in intervention point values, and network analysis to identify critical

paths and nodes in the selecting and validating of policy intervention points. Ensuring the

accuracy of model evaluation is imperative, hinging on the detailed handling of underlying

data quality to prevent incorrect conclusions about the model’s performance. It is crucial to

establish homogeneous, generally accepted samples, particularly when considering diverse

economic and environmental backgrounds, underscoring the need for a clear definition in the

modeled area. Future development plans should prioritize advancements in model evaluation

by refining methodologies for handling data, while also focusing on the continuous innovation

of MLOps to proactively identify and rectify structural flaws in models through either retrain-

ing existing models or creating new ones with updated variables and insights.

The real-life application study of network and data analysis for the development of the

Hungarian water model underlines the efficiency of the proposed aspects. We believe that the

proposed data-driven life cycle management of sustainability models has great potential in

real-life sustainability planning and decision-making at any administrative level including

model identification, development and validation.

Supporting information

S1 Fig.

(TIF)

S2 Fig.

(TIF)

S3 Fig.

(TIF)

S4 Fig.

(TIF)

S5 Fig.

(TIF)

S6 Fig.

(TIF)

Author Contributions

Conceptualization: Lilibeth A. Acosta, Viktor Sebestyén, János Abonyi.

Data curation: Sanga Lee, Innocent Nzimenyera.

PLOS ONE Network science and explainable AI-based life cycle management of sustainability models

PLOS ONE | https://doi.org/10.1371/journal.pone.0300531 June 13, 2024 23 / 29

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0300531.s006
https://doi.org/10.1371/journal.pone.0300531
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Resources: Lilibeth A. Acosta, Sanga Lee, Innocent Nzimenyera.
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