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Abstract

Direct recycling of aluminum waste is crucial in sustainable manufacturing to mitigate envi-

ronmental impact and conserve resources. This work was carried out to study the applica-

tion of hot press forging (HPF) in recycling AA6061 aluminum chip waste, aiming to optimize

operating factors using Response Surface Methodology (RSM), Artificial Neural Network

(ANN) and Genetic algorithm (GA) strategy to maximize the strength of recycled parts. The

experimental runs were designed using Full factorial and RSM via Minitab 21 software.

RSM-ANN models were employed to examine the effect of factors and their interactions on

response and to predict output, while GA-RSM and GA-ANN were used for optimization.

The chips of different morphology were cold compressed into billet form and then hot forged.

The effect of varying forging temperature (Tp, 450–550˚C), holding time (HT, 60–120 min-

utes), and chip surface area to volume ratio (AS:V, 15.4–52.6 mm2/mm3) on ultimate tensile

strength (UTS) was examined. Maximum UTS (237.4 MPa) was achieved at 550˚C, 120

minutes and 15.4 mm2/mm3 of chip’s AS: V. The Tp had the largest contributing effect ratio

on the UTS, followed by HT and AS:V according to ANOVA analysis. The proposed optimi-

zation process suggested 550˚C, 60 minutes, and 15.4 mm2 as the optimal condition yield-

ing the maximum UTS. The developed models’ evaluation results showed that ANN (with

MSE = 1.48%) outperformed RSM model. Overall, the study promotes sustainable produc-

tion by demonstrating the potential of integrating RSM and ML to optimize complex

manufacturing processes and improve product quality.
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1. Introduction

Recycling material waste reduces landfills and provides a viable economic solution. In recent

years, there has been a notable surge in focus on aluminum waste recycling, driven by its

potential to achieve resource conservation, reduce energy consumption, and promote environ-

mental sustainability [1–3]. Specifically, solid-state (meltless-based) recycling techniques have

emerged as a promising pathway for converting discarded material into valuable components.

Solid-state recycling (SSR) is a preferred choice as it is an energy-efficient and eco-friendly

technique, particularly for handling the scrap chips of aluminium. This method can convert

the scraps directly into semi-finished and finished products of superior mechanical properties,

eliminating the need for remelting. Several SSR processes, including hot forging, extrusion,

high-pressure torsion, and friction stir welding, have demonstrated the ability to produce alu-

minum chip-based products with high performance [4–6]. Utilizing SSR recycling processes

to efficiently recycle aluminum chip waste into functional parts reduces material waste and

energy consumption compared to the remelting method [5, 7, 8].

Among SSR techniques, hot press forging (HPF) was found to be an efficient way of pro-

moting intermetallic bonding in aluminum chip recycling [9–11]. In the HPF technique, alu-

minum chip waste is directly consolidated by heating and high pressure. When metal is

subjected to high temperatures and pressure, its microstructure becomes more malleable,

formable, and easily shaped through a die [12]. This technique has several advantages over

other SSR techniques, including strength improvement, hardness, and ductility [13]. Multiple

studies have reported that HPF significantly improves the mechanical properties of recycled

aluminum parts [5, 11, 14–17]. Forged parts exhibited 20% and 40% higher yield strength (YS)

and ultimate tensile strength (UTS) than as-cast material at 500–550˚C and 1 s-1 strain rate

[18]. The properties of chip-based forged material are substantially affected by operating tem-

peratures. Several studies have shown that 530–550˚C forging temperature and 120 min hold-

ing time resulted in higher UTS and hardness [10, 11, 19, 20]. Nevertheless, the morphology of

the aluminum chip, including surface roughness, size, and shape structure, influenced the

direct recycling of aluminum alloy 6061 (AA6061) waste [21, 22].

The strength improvement of AA6061 chip-based recycled material is a major challenge in

HPF direct recycling methods. Another challenge is determining optimal processing parame-

ters and machining chip morphology to achieve the desired strength of recycled material [21,

22]. Modeling and optimizing the processing parameters and chip morphology can signifi-

cantly contribute to improving the chip-based recycled strength. Recently, there has been a

growing interest in utilizing advanced techniques, such as Response Surface Methodology

(RSM) and Machine Learning (ML), to model and optimize the performance of manufactur-

ing processes [23–27]. The aluminum waste recycling parameters have been modeled using

RSM [10, 11, 28, 29] and ANN [26, 30–34]. Moghri et al. [35] reported that RSM and genetic

algorithm effectively identified the optimum process variables for maximum tensile modulus

and tensile strength of PA-6/clay nanocomposite. Alateyah et al. [36] concluded that the

hybrid RSM-GA method efficiently enhanced the hardness, ultimate tensile strength, and elec-

trical conductivity of pure Cu. Yeniay [37] suggested that the integrated GA-RSM can improve

optimization outcomes better than conventional gradient-based approaches. Praga-Alejo et al.

[38] reported that ANN-GA performed well in identifying the ideal parameters for process

response Compared to RSM. In [39], the age hardening process of aluminum alloy A356/cow

horn particulate composite was modeled using RSM and ANN and optimized by a simulated

annealing (SA) algorithm. The developed ANN model outperformed the RSM model in age

hardening data prediction, with a correlation coefficient (R2) of 0.9921. With a 1.2% relative

error, SA-NN optimization results matched experimental values. Zulfiqar et al. [40] adopted
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RSM optimization and ANN modeling for photocatalytic degradation of acid orange 7 (AO7)

in wastewater treatment using TiO2-P25 nanoparticles (TNPs). ANNs accurately predicted

AO7 degradation with a high R2 value, indicating a strong correlation with experimental data.

The application of RSM, ANN, and GA for modeling and optimizing processing parameters

proved highly effective, with remarkably accurate results.

This study explores the effectiveness of this innovative RSM-ML approach in modeling and

optimizing processing parameters (i.e., forging temperature, holding time, and chip morphol-

ogy) in HPF to achieve the desired strength of the recycled parts. This approach is absent from

most previous studies of recycling aluminum chips using HPF. The ML was based on the

ANN and GA algorithm. ANN is a computational configuration used to simulate the biologi-

cal neural system concerning the information-processing capabilities of neurons. It exhibits a

high degree of parallelism, which utilizes numerous interconnected units to process informa-

tion [41]. ANN consists of several neurons as processing units, categorized as input, hidden

layers and output. Each neuron contains three basic parts: weights, bias, and transfer function.

Typically, the input is weighted, and the bias is added to its value before passing through the

activation function [42]. The architecture and algorithm of the network determine its predic-

tion accuracy and learning rate [43]. Among the various ANN algorithms and activation func-

tions, backpropagation and the ReLU function are deemed more appropriate for processing

regression data [44–47]. The purlin linear function is used for numerical prediction problems

where the output value is continuous, and the objective is to predict the output value. The

ANN-based approach was employed to model the relationship between input forging process

parameters and output UTS response to identify data patterns.

The RSM-based approach is a powerful statistical tool widely employed for parameter opti-

mization, experimental design, model fitting, and validation. It enables the development of a

polynomial regression equation to model the relationship between the processing parameters

and the desired response [48]. With its capacity to model quadratic, linear and interaction

effects, RSM was chosen to investigate factors influencing response. GA is a category of

numerical and combinational optimizers that are particularly helpful for solving complex lin-

ear and nonlinear problems [49–51]. It was introduced by John Holland in the 1970s based on

Darwin’s theory of evolution. This algorithm imitates life’s evolution process by modifying a

population of individual solutions in which only the fittest survive through mutation, selection,

and crossover. Each proposed solution has a set of genes or properties that can mutate or

change until the optimal solution is captured. The hybrid RSM-ML combines the strength of

both methods, leveraging RSM’s statistical rigor and the ML algorithms’ predictive power. The

prediction performance of RSM and ANN models is evaluated based on processing

parameters.

The effect of processing parameters was investigated based on low, medium and high levels.

The operating temperature levels were 450, 500, and 550˚C, and holding times were 60, 90,

and 120 minutes. In addition, three different chip types with 15.4, 34 and 52.6 mm2/mm3 sur-

face-area-to-volume ratio (AS: V). Small, medium, and large aluminum chips with measured

AS: V were recycled to evaluate the impact of the oxidation on chip welding. The oxide is typi-

cally formed on the surface of chips due to exposure to air during machining and recycling

processes. The variation in oxide content is proportional to the chip’s surface area. This oxida-

tion positively influences the properties of the recycled material with refined grain structure

[52]. However, the excessive and uneven distribution of oxide precipitate in recycled samples

may negatively impact elongation to failure and tensile strength [7, 53]. Consequently, this

work aims to comprehensively investigate the effect of chip morphology (size and AS:V) and

operational parameters on UTS using an integrated RSM-GA-ANN strategy approach. The

main objective is to attain the maximum UTS of chip-based recycled parts.
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To accomplish this goal, an experimental run was designed using a full factorial and Central

Composite Design (CCD) via Minitab 21 software to minimize costs and save time. This design

enables the creation of a diverse combination of processing parameters with different levels [48].

By systematically varying the process, the desired number of experiments are conducted. The col-

lected dataset of experimental results was statistically analyzed using Analysis of Variance

(ANOVA) to reveal the variations and input-output relationships. This analysis provides a basis

for understanding the effect of single and interactive parameters on the UTS of the recycled parts.

The novel contributions of this study lie in investigating the effect of aluminum machining

chip morphology (size and surface area) on the strength of HPF recycled parts by employing

an innovative hybrid RSM-ANN-GA approach. This study uniquely models and optimizes the

relationship between chip formation and the HPFed recycled part’s UTS. This contributes to

the advancement of the recycling process and provides a better comprehension of the complex

relationship between chip morphology and the recycled products’ strength. The outcomes

may offer valuable insights and practical solutions for manufacturing industries to estimate

the strength of chip-based recycled products by choosing specific chip size and controlling

process parameters using established model.

2. Materials and methods

This section presents the materials, methods, and experimental steps, as illustrated in process

flow in Fig 1. The experimental setup, data collection, and analysis techniques are described,

facilitating a comprehensive understanding of the research methodology. The process of devel-

oping the predictive models and optimization is explained in detail. In this work, three differ-

ent sizes of chips were produced by machining AA6061-T6 aluminum block using a CNC

Mazak NEXUS 410A-II VMC milling machine. The machining parameters were manipulated

to generate the desired chip size, as outlined in Table 1. The chips were precision-machined to

ensure an average length of 4 ± 1mm, as recommended by Gronostajski et al. [54].

The originality of the used Al6061 block was verified through a chemical composition

examination utilizing a scanning electron microscope with energy dispersive X-ray spectros-

copy (SEM-EDS), as shown in Table 2.

The different chips were prepared to investigate the effect of their formation on the recycled

part’s strength. The large-sized chips were segmented and curled, while medium-sized and

Fig 1. Experimental flow process.

https://doi.org/10.1371/journal.pone.0300504.g001
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small-sized chips were characterized by fragmented-discontinuous and thinner-spiral shapes,

respectively, as depicted in Fig 2. The average size of the chip particles was measured by a

Dino-lite microscope with a digital Nikon MM-60 camera. The chips produced were in vari-

ous forms and surface areas. The chip’s AS: V depends on its size, where small chips have a

large surface area and vice versa. The chips with a larger AS: V tend to have more oxide forma-

tion. The AS: V is a critical parameter in chip welding due to the potential accumulation of

oxide. Assuming that the machined chips are in cubic shape, Eq (1) was utilized to estimate the

average AS: V of the chips [55].

S ¼
2ðlwþ wt þ tlÞ

lwt
ð1Þ

Where l, w and t are the length, width, and thickness, respectively.

2.1 Design of experiment

The experimental runs were designed using two-level full factorial and RSM Central Compos-

ite design (CCD) via Minitab statistical software ver. 21. A factorial and CCD face-centered

design enables the experimenter to evaluate the interaction between independent factors and

dependent responses systematically [56]. The two-level full factorial design is a widely utilized

experimental methodology within the industry [57]. This work’s full factorial design involved

three factors, each with two levels (23), two replications, and three center points. The CCD

face-centred design is an extension of the factorial design that incorporates both factorial and

axial points, with a standardized alpha (α) value of 1. In this design, the axial point is located

on the centres of the cube faces, as shown in Fig 3. The core concept of CCD is to investigate

the response surface systematically to comprehend the variables’ interaction and optimize the

process. The alpha (α) level controls the distance of axial points from the centre of the experi-

mental design (determines how far the axial points are from the centre). The smaller the alpha

level, the closer the axial points are to the center.

The cubic box in Fig 3 graphically represents the 23-face-centered design. The arrows in the

box denote the direction of the factor increasing and numbers ’1 to 8’ in the corners indicate

the "Standard Order" of runs. The CCD axial points are orthogonal at a distance of ±1 (alpha

level) from the center point along each axis [58].

The 23 face-cantered design matrix with three factors (X1, X2, X3) is presented in Table 3.

The low setting is denoted by (-1) and the high setting with (+1), while the centre point (0) is

taken at the midpoint between the low (-1) and high (+1) levels of each factor.

Table 1. Machining parameters and average size of chips.

Chip Type Parameters Average chip size (mm)

Cutting Speed (mm/min) Depth of Cut (mm) Feed Rate, (mm/rev) Length Width Thickness Average AS: V (mm2/mm3)

Small 1100 0.5 0.04 4.8 0.54 0.0380 52.6

Medium 1100 1 0.1 3.6 1.17 0.0628 34.0

Large 1100 1.5 0.2 4.27 1.68 0.1450 15.4

https://doi.org/10.1371/journal.pone.0300504.t001

Table 2. The chemical composition of AA6061.

Element Si Fe Cu Mn Mg Zn Cr Ni Ti
(wt. %) 0.4–0.8 0.7 Max. 0.15–0.40 0.15Max. 0.8–1.2 0.25 Max 0.04–0.35 0.06 0.15 Max.

https://doi.org/10.1371/journal.pone.0300504.t002
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The two-level 23 design scheme of the uncontrolled processing parameters is listed in

Table 4. The controlled parameters, including pressure (p) and homogenization time (th) were

fixed at 35 tons and 45 minutes, respectively, as confirmed by Kamilah et al. [59].

Nineteen experiments were designed with full factorial design. Additionally, eight axial

face-centered runs using CCD were added because the curvature effect was found to be statisti-

cally significant upon ANOVA analysis of the 19 experiments. A total of 27 runs were involved

in the experimental study, as shown in Table 5.

2.2 Hot Press Forging Process (HPF)

Hot forging is a popular solid-state recycling method, consisting of three main procedures:

chip cleaning and drying, subsequently cold compaction into a billet, and finally, hot forging.

The machined chips were cleaned and degreased in Aceton A.R solution for 30 minutes and

an Elmasonic S 60 H bath as per the ASTM G131-96 standard, and then thoroughly dried in

Fig 2. Aluminum machined chips; (a) large, (b) medium and (c) small size.

https://doi.org/10.1371/journal.pone.0300504.g002
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an oven at 100˚C for 30 minutes. Prior to cold compaction and hot forging, 12g of chips were

weighed to ensure the prepared sample size conformed to the ASTM E8M standard [60]. The

chip was then placed into a dog bone-shaped die and compacted into billet form under 35 tons

of pressure at room temperature. Afterward, the billet die was preheated for 45 minutes of

homogenization time in the forging machine, followed by the forging process following the

run order in Table 5. The proposed forging temperatures (Tp) were 450–550˚C between the

recrystallization and solidus points, while the holding time was between 60–120 min. The

exact geometric dimensions of produced specimens are based on ASTM E8M, as shown in

Fig 4. The HPFed produced samples after tensile strength testing are depicted in Fig 5.

2.3 Modeling and optimization process

The RSM and ANN models were adopted to predict the UTS of recycled samples based on dif-

ferent sets of processing parameters. Fig 6 presents the modeling and optimization processes

flow. RSM and ANN models were developed for optimization and prediction of UTS response.

The RSM quadratic polynomial regression model is an algebraic representation describing the

relationship between the input terms and output response to estimate each factor effect and

their interaction. RSM regression equation is derived by Minitab software based on experi-

mental data analysis to assess the relationship between input factors and output response.

The three-factor interaction of the full model is expressed in Eq (2) as follows:

Y ¼ b0 þ
Xn

i¼1

bi xi þ
Xn

i¼1

bii x
2

i � ε ð2Þ

Where Y is response, β0 is the constant, xi is the coded level of the factor, and ε is the experi-

mental error.

The ANN model was developed to predict tensile strength for similar combinations of pro-

cessing factors. Based on the training data, the ANN model can approximate the relationship

Fig 3. The 23 full factorial and face-centred central composite design [58].

https://doi.org/10.1371/journal.pone.0300504.g003
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between the input factors and the output response. The input factors (forging temperature,

pressing time and AS: V of chip) were set in the input layer neurons, while the UTS response

was the output layer. The ANN architecture employed in this investigation is depicted in Fig 7.

The ANN was trained using an experimental dataset (27 samples) with ratios of 70%, 15% and

15% for training, testing and validation, respectively. Unlike RSM, ANN modeling requires a

comprehensive set of experimental data.

Nevertheless, ANN can model a small database with a strong statistical correlation between

variables using techniques such as leave-one-out cross-validation (LOOCV) [61]. To prevent

overfitting in training a limited dataset of 27 points, LOOCV was employed to improve the

performance of the NN model. In LOOCV, the model is repeatedly trained using all but one

data point left out for testing. This is repeated for each data point within the dataset to ensure

that each data point is used for testing exactly once, to estimate the model’s generalization per-

formance and to mitigate the impact of overfitting on a small dataset [62]. The regularization

of 0.5 was also adopted to prevent overfitting by adding a penalty term to the error function

during training. Regularization is a function that penalizes large weights. By penalizing large

weights, regularization encourages the model to have simpler weight configurations and

reduces the risk of overfitting [63, 64].

Table 3. The 23 face-centred design matrix.

Run Order Centre points Blocks Input Factors

X1 X2 X3

1 1 1 -1 -1 -1

2 1 1 +1 -1 -1

3 1 1 -1 +1 -1

4 1 1 +1 +1 -1

5 1 1 -1 -1 +1

6 1 1 +1 -1 +1

7 1 1 -1 +1 +1

8 1 1 +1 +1 +1

9 1 1 -1 -1 -1

10 1 1 +1 -1 -1

11 1 1 -1 +1 -1

12 1 1 +1 +1 -1

13 1 1 -1 -1 +1

14 1 1 +1 -1 +1

15 1 1 -1 +1 +1

16 1 1 +1 +1 +1

17 0 1 0 0 0

18 0 1 0 0 0

19 0 1 0 0 0

20 -1 2 -1 0 0

21 -1 2 +1 0 0

22 -1 2 0 -1 0

23 -1 2 0 +1 0

24 -1 2 0 0 -1

25 -1 2 0 0 +1

26 0 2 0 0 0

27 0 2 0 0 0

https://doi.org/10.1371/journal.pone.0300504.t003
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The backpropagation (BP) learning algorithm was utilized with a single hidden layer

improved by a Levenberg-Marquardt numerical optimization technique and "poslin" activa-

tion function, which works well with small datasets. The transfer function for the layer’s output

calculation from net input was set to linear (purelin). The purelin linear function is used for

regression or numerical prediction problems where the output value is continuous, and the

objective is to predict numerical values [65]. The ANN training performance was assessed by

mean squared error (MSE) and coefficient of determination (R2). The optimal ANN architec-

ture was found with eight neurons in the hidden layer, resulting in the 3-8-1 configuration

shown in Fig 8(A). Fig 8(B) illustrates the flow of the ANN training process. The trained ANN

Table 4. The design scheme of the process parameters (uncontrolled variables).

Factor symbol Parameter Levels

Low (−1) Center (0) High (+1)

Tp Operating temperature, (˚C) 450 500 550

HT Holding Time (minutes) 60 90 120

CSA Chip Surface Area (mm2) 15.4 34 52.6

https://doi.org/10.1371/journal.pone.0300504.t004

Table 5. Experimental design runs with UTS test results.

Run

Order

Centre

Point

Input Factors Response Design Runs

Temp.

(Tp)˚C

Holding Time (HT)

min

Chip Surface Area (CSA)

mm2
UTS

1 1 450 60 15.4 28.500 Full Factorial Design with 2 Replications and 3 Center

Points2 1 550 60 15.4 191.70

3 1 450 120 15.4 58.200

4 1 550 120 15.4 235.30

5 1 450 60 52.6 20.700

6 1 550 60 52.6 172.01

7 1 450 120 52.6 42.300

8 1 550 120 52.6 206.70

9 1 450 60 15.4 26.900

10 1 550 60 15.4 193.80

11 1 450 120 15.4 54.800

12 1 550 120 15.4 237.40

13 1 450 60 52.6 18.300

14 1 550 60 52.6 171.40

15 1 450 120 52.6 43.700

16 1 550 120 52.6 210.60

17 0 500 90 34.0 154.20

18 0 500 90 34.0 152.93

19 0 500 90 34.0 155.30

20 -1 450 90 34.0 33.010 Additional Axial Points-RSM Runs with 2 Center

Points21 -1 550 90 34.0 202.66

22 -1 500 60 34.0 135.00

23 -1 500 120 34.0 164.60

24 -1 500 90 15.4 161.40

25 -1 500 90 52.6 140.83

26 0 500 90 34.0 151.24

27 0 500 90 34.0 154.97

https://doi.org/10.1371/journal.pone.0300504.t005
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model was saved when the lowest MSE (0.443) of the trained network performance was

achieved, and the desired scatter plot regression line was obtained, as depicted in Fig 9. The

scatter regression plot of ANN training revealed remarkable outcomes with high R2s values of

0.999 for the training, validation, testing set, and overall process, respectively. These values

reflect training accuracy, robust generalizability, and consistency across diverse data subsets,

indicating the model’s high prediction.

Integrating GA and RSM allows for more effective optimization of process parameters. GA

is inspired by the principles of selection and evolution and operates by iteratively enhancing a

population of candidate solutions through mutation, crossover, and selection until an optimal

or near-optimal solution is attained [49]. RSM is a statistical modeling approach for analyzing

and optimizing processes by fitting response surfaces to experimental data [66]. To integrate

Fig 4. Plate-type tension test specimen (ASTM E8M).

https://doi.org/10.1371/journal.pone.0300504.g004

Fig 5. Recycled samples after tensile test.

https://doi.org/10.1371/journal.pone.0300504.g005
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GA into the optimization process, the RSM model was used as a fitness function to evaluate

the performance of different solutions. The RSM-GA approach aims to determine the input

factor combination that results in the highest tensile strength.

2.4 Experimental tensile test

In order to analyze the effect of experimental process parameters on chip consolidation, the

tensile test specimens were prepared according to the ASTM E8 M subsize. The tensile test was

conducted using a Universal Testing Machine (Shimadzu EHF-EM0100K1-020-0A), chosen

for its ability to perform precise tensile tests and ensure reliable and consistent data collection.

The tensile test was conducted with an initial strain rate of 2.5 x 10−3 s-1 and pulled to failure at

room temperature under 1 kg load.

3. Results and discussion

The experiments were conducted according to the run order outlined in section 2.1 Table 5,

and the corresponding UTS results for each factor combination were collected. The curvature

Fig 6. Block diagram of modeling and optimization processes flow.

https://doi.org/10.1371/journal.pone.0300504.g006
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effect was found to be statistically significant upon ANOVA analysis of the 19 experiments’

results. This means the linear model may not accurately represent the relationship between

independent and dependent variables. In other words, the response is not affected by any

curved pattern in the independent factors. Therefore, ANOVA results suggested a further anal-

ysis of the higher order model. To facilitate this, six CCD experiments were added to the previ-

ously done factorial design for RSM analysis. Additionally, two center points were added to

experimental designs to estimate the curvature effect better.

3.1 Ultimate tensile strength

The UTS results of samples are plotted in a grouped bar chart, as shown in Fig 10. The x-axis

denotes the input of process parameters, and the y-axis is the UTS (MPa). The graph illustrates

the relationship between the combination of process parameters and UTS. In this study, the

UTS was examined in the context of three process parameters: forging Temperature (Tp),

holding time (HT), and the chip surface area (CSA). Deviations in UTS values are attributable

to process parameter variations and their interactions. Significant outliers and variations in

the UTS value in the bar heights allow for several insightful observations. The maximum UTS

value of 237.4 MPa was obtained in a sample processed with 550˚C, 120 min and 15.4 mm2 of

CSA, while the lowest UTS value is linked to 450˚C, 60 min and 52.6 mm2 of CSA. The highest

temperature, at 550˚C, was observed to exert the most influence on UTS results, regardless of

the holding duration and chip size. At elevated temperatures, recrystallization was accelerated,

resulting in smaller, more equiaxed grains with improved mechanical properties. The forging

process deforms the material plastically, breaking the grains and forming smaller grains. As

the forging temperature increases, the extent of plastic deformation increases, further reducing

grain size [11, 67]. Additionally, the homogenization of the microstructure contributed to

enhancing tensile strength.

Consequently, the rise in forging temperature correlates with increased UTS. It also

improved material flow, minimized defects, and enhanced grain bonding. These arguments

Fig 7. The ANN configuration for UTS prediction.

https://doi.org/10.1371/journal.pone.0300504.g007
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are supported by experimental investigations on the mechanical performance of aluminum

chip-based recycled products [15, 16, 68].

However, prolonged forging to 120 minutes at high temperatures enhanced the UTS. There

was an observable increase in the UTS of samples with longer HT than those with shorter

ones. The grain size is induced by the holding time, in which a longer forging duration allows

for increased grain growth [55]. However, when the chip’s surface area is small, the grains tend

Fig 8. (a); ANN architecture, (b); Flowchart of ANN training process.

https://doi.org/10.1371/journal.pone.0300504.g008
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to proliferate excessively, resulting in brittle recycled material. As a result, the long duration of

holding resulted in a further rise in UTS due to grain refining.

Another underlying parameter is the CSA. The findings showed that the larger surface area

of the chip (corresponding to small chip size) is associated with lower UTS values. The UTS of

large CSA-based recycled samples was lower than those recycled from small CSA because of

the inverse relationship between the CSA and grain size. At elevated forging temperature and

high deformation, smaller CSA exhibited finer grains and fewer grain boundaries, which act as

barriers to dislocation movement and contribute to strengthening the material due to crystal-

lographic changes [16].

Moreover, it can be attributed to oxide formation layers and microstructural variations. A

larger CSA size tends to introduce more oxide amount, stress concentrators, and variations in

the material’s microstructure, resulting in poor bonding. Researchers support and emphasize

these justifications that the larger chip surface areas based on smaller chip size less than 2 mm in

length negatively impact the strength of aluminum recycled parts [21, 55, 69]. The chips are sig-

nificantly strengthened when exposed to high temperatures. It was observed that the samples

produced from large and small CSA under high-temperature conditions demonstrated

Fig 9. Scatter plots of ANN training, validation, testing and overall UTS dataset.

https://doi.org/10.1371/journal.pone.0300504.g009
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comparable strength. The heat increment enhanced the material’s plasticity, facilitating better

consolidation. Additionally, promotes higher diffusion, which results in strong interfacial adhe-

sion between the chips. Consequently, voids are reduced, and overall strength is improved [4–6].

In summary, findings showed that the forging temperature had the most significant impact

on UTS, followed by holding time and chip surface area. Optimizing these process parameters

can further enhance the material’s strength by considering other influencing factors and con-

ducting further research to validate these findings in practical applications.

3.2 Analysis of Variance (ANOVA) of UTS

Analyzing and identifying the variations in results can provide valuable insights for process

optimization and control. The final ANOVA for tensile strength is presented in Table 6. The

backward elimination method was employed with a significant threshold to ensure the exclu-

sion of nuisance (non-significant factors) while retaining the primary factor in the model. This

method reduces the model’s complexity and enhances its interpretability [48]. By eliminating

non-significant factors, the model becomes more efficient and concentrates on the factors sig-

nificantly affecting the response.

In ANOVA analysis, the probability value (p-value) is vital in assessing the significance of

each factor in the model. The p-value determines whether or not that factor has a statistically

significant influence on the output response by testing the null hypothesis for each term when

the coefficient has no effect [57]. The statistical significance level of the p-value (typically

<0.05) indicates that the null hypothesis can be rejected, as the coefficient is deemed equal to

zero. The p-values of all terms in the ANOVA results (Table 6) were less than 0.05, indicating

that the UTS model is statistically significant. The model effectively represents the relationship

Fig 10. The UTS result based on different process parameters.

https://doi.org/10.1371/journal.pone.0300504.g010
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between input and output variables, as indicated by the highly significant model fit (p< 0.05).

The Lack-of-fit refers to the discrepancy between the model and the relationship between

dependent and independent variables. In this case, the insignificant lack-of-fit value in the

ANOVA result indicates that the model is appropriate and accurately describes the functional

relationship between input factors and response [57]. The coefficient of determination (R2)

denotes the proportion of variation in the response variable that the model can explain. The R2

value of 99.9% in the given model summary indicates that the model accounts for a high pro-

portion of the variability in the response variable. The high value shows the ability of the

model to explain the observed variation in the output responses firmly.

Fig 11 displays the ANOVA Pareto chart of the standardized effects contribution ratio of

the input factors and their interaction. The operating temperature, holding time, and chip

Fig 11. Pareto chart of factor contribution effect ratio on UTS.

https://doi.org/10.1371/journal.pone.0300504.g011

Table 6. ANOVA result of UTS.

Source DF Adj SS. Adj MS F-Value P-Value

Model 8 137435 17179 4968.30 0.000 Significant

Linear 3 130487 43496 12579.07 0.000

Tp 1 124195 124195 35917.39 0.000

HT 1 4844 4844 1400.96 0.000

CSA 1 1448 1448 418.85 0.000

Square 1 4710 4710 1362.02 0.000

Tp*Tp 1 4710 4710 1362.02 0.000

2-Way Interaction 3 418 139 40.30 0.000

Tp*HT 1 199 199 57.68 0.000

Tp*CSA 1 183 183 52.88 0.000

HT*CSA 1 36 36 10.33 0.005

Error 18 62 3

Lack-of-Fit 7 29 4 1.40 0.296 Insignificant

Pure Error 11 33 3

Total 26 1375

Standard deviation = 5.00, R2 = 99.9%, R2 adjusted = 99.9%, R2 predicted = 99.8%

DF is the degree of freedom, Adj SS is the adjacent sum of squares, Adj MS is the adjacent mean squares, and the p-value is the significance level.

https://doi.org/10.1371/journal.pone.0300504.t006
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surface area are denoted by A, B and C, respectively. The length of each bar indicates the effect

ratio of the factor. As observed, temperature (A) had the highest contribution effect on the

UTS of the recycled part, as indicated by the large ratio of 189.52, followed by holding time (B)

and the interaction between temperatures (AA). Moreover, the chip surface area (C) exhibited

a significant effect, albeit to a lesser extent than A and B. The AB and AC interactions also

showed a relatively minor effect, while the BC interaction had no significant effect on the UTS.

Higher forging temperature and time enhance the diffusion rate in the chip, improving adhe-

sion and uniformity [70]. Additionally, a larger chip promotes higher contact points, increas-

ing adhesion strength [71, 72].

The residual plot in Fig 12 shows that most scatter points fell on the line, suggesting that the

regression model fits the data well. There is a slight trend of the residuals increasing as the fit-

ted values increase. This indicates that the regression model underestimated the UTS values

for higher-fitted values. However, the residuals are still randomly scattered around the line,

suggesting that the regression model fits the data well.

The ANOVA main effect plot in Fig 13 illustrates the positive correlation between the UTS

with forging Temperature (Tp) and Holding time (HT). However, the relationship between

UTS and the size chip’s SA is inverse; the average UTS score was higher with a smaller SA.

This can be attributed to reduced oxide formation on smaller SA, as the higher formation of

the aluminum oxide layer acts as weak points, causing poor bonding and lower UTS.

3.3 Modeling and optimization result

Modeling and optimizing the processing parameters can result in the desired material

strength. The ultimate tensile strength was modeled and optimized using the ANN and

RSM-GA approach.

Fig 12. Residual plot for UTS.

https://doi.org/10.1371/journal.pone.0300504.g012
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3.3.1 RSM vs. ANN models in UTS prediction. The RSM empirical model was developed

to describe the relationship between the output response and the input factors in the model.

The model was derived based on experimental data analysis using regression techniques. The

model can predict the UTS for new values of the input variables (Tp, HT, and CSA). The final

regression model is expressed in (3).

UTS ðMPaÞ ¼ � 4095:0þ 15:253 ðTpÞ � 0:539 ðHTÞ þ 1:576 ðCSAÞ � 0:013680 ðTpÞ2

þ 0:002354 ðTpÞ ðHTÞ � 0:003635 ðTpÞ ðCSAÞ � 0:0026878 ðHTÞ ðCSAÞ ð3Þ

The coefficients (including 15.253, -0.539, 1.576, -0.01368, 0.002354, -0.003635 and

-0.002678) represent the estimated effects of the variables on UTS.
The developed RSM empirical model accurately predicted the UTS of chip-based forged

parts under various untested conditions and provided valuable insight into tensile strength

prediction. The prediction accuracy was assessed using the coefficient of determination (R2),

mean square error (MSE), root mean square error (RMSE) and mean absolute error (MAE)

metrics shown in Eqs 4–8.

R2 ¼

Pn
i¼1
ðyai � ypiÞ

2

Pn
i¼1
ðypi � ya:mnÞ

2
ð4Þ

R2� adjusted ¼ ð1 � R2Þ �
n � 1

n � k � 1

� �

ð5Þ

Fig 13. Main effect plot for UTS.

https://doi.org/10.1371/journal.pone.0300504.g013
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MSE ¼
1

n

Xn

i¼1

ðypi � yaiÞ
2

ð6Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

ðypi � yaiÞ
2

s

ð7Þ

MAE ¼
1

n

Xn

i¼1

jðyai � ypiÞj ð8Þ

Where and represent the actual and predicted values, respectively. The denotes the mean

value of the observed response, k and n are the number of input factors and observed data

points, respectively.

The RSM prediction’s accuracy evaluation yielded promising results, showcasing an MSE

of 3.6%, RMSE of 1.89%, MAE of 1.56%, and R2 value of 99.9%, as outlined in Table 7. The

small value of metrics result signified a good performance of the predictive model in estimat-

ing UTS values, although further comparisons with other models are recommended to validate

its superiority. Overall, the results highlighted the model’s accuracy in predicting the UTS

response compared to the observed data, as plotted in Fig 14(A).

The ANN model was used to predict UTS values based on a combination of input factors.

The accuracy of predicted data was evaluated by MSE, RMSE, MAE, and R2 metrics, as shown

in Table 7. These metrics provide different perspectives on the accuracy of the prediction. The

evaluation metrics between actual and predicted UTS revealed that ANN prediction is more

accurate than RSM. While both models exhibited slightly close prediction performances, the

ANN outperformed RSM. The predicted values demonstrated that the trained ANN model

was able to simulate the UTS results of recycled samples based on various combinations of Tp,

HT and CSA process parameters, as given in Fig 14(B). The predicted UTS values of RSM and

ANN models are listed in Table 8, along with input factors, observed UTS and the percentage

error between predicted and actual values. The RSM and ANN predicted data were plotted

versus the observed UTS, as shown in Fig 15.

3.3.2 RSM vs. GA optimization process. RSM and GA optimization were executed to

determine the optimum processing parameters and maximize UTS response. RSM-GA can

provide advantages over performing either method alone, mainly when the optimization pro-

cess is intricate and the parameter space has a high dimension. The RSM analyzed the input

factors to acquire the optimal values that result in maximum UTS. Table 9 and Fig 16 depict

the optimal parameters and response derived from the RSM optimization process. The solu-

tion suggested 550˚C, 120 min, and 15.4 mm2 as the optimal parameters for attaining UTS val-

ues of 235.3 MPa. The optimization result corresponds to the experimentation findings. The

composite desirability evaluates the solution’s quality from 0 to 1, with 1 being the optimal

Table 7. Evaluation metrics for the accuracy of data predicted by the RSM and ANN models.

Metrics RSM Model ANN Model

MSE (%) 3.595 1.476

RMSE (%) 1.896 1.214

MAE (%) 1.562 0.944

R2 (%) 99.9 0.999

https://doi.org/10.1371/journal.pone.0300504.t007
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solution [57]. The desirability of 0.99, in this case, indicates good solution performance across

the considered criteria.

In the GA optimization process, the maximum number of generations and population size

were set to 100 and Function Tolerance to 10−6. The number of variables to optimize was 3; Tp,

HT, and CSA with lower and upper limits. The optimization was terminated when the maximum

number of generations was reached. The GA process iteratively evaluated different combinations

of input factors and calculated the corresponding tensile strength by employing the ANN and

RSM models. The ideal condition was 550˚C, 120 min, and 15.4 mm2, while the optimal UTS was

235.15 MPa, as depicted in the GA-RSM optimization plot in Fig 17 and Table 10. The GA-ANN

optimization result was identical to the GA-RSM result, except the optimal UTS was 236.2. The

optimal process variables and response were consistent with the experiment result. Remarkably,

Fig 14. (a); Observed vs. predicted UTS by RSM, (b); by ANN model and (c); RSM vs ANN model data training performance.

https://doi.org/10.1371/journal.pone.0300504.g014
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both approaches generated identical optimal input and output values, signifying reliable and con-

sistent convergence toward the best solution. This finding supports the idea that GA can yield

accurate results. The optimization process is considered robust as it consistently converges to the

identical optimal solution, validating the efficacy of the methodology.

3.4 Confirmation test and validation

The optimum settings outlined in Table 10 were validated experimentally. Five samples were

processed based on optimal parameters and tested for tensile strength, as presented in Fig 18.

The obtained UTS results of the five samples (Table 11) corresponded to the RSM, GA-RSM

and GA-ANN optimum UTS values. The calculated error % between the averaged UTS value

of five experimental samples and the optimized values was found to be less than 2% for the

ANN model, as listed in Table 11. This result confirmed the reproducibility of the experimen-

tal data. Thus, the predicted UTS agreed well with the observed UTS.

The percentage error between confirmatory experiments and the empirical result was cal-

culated using the formula in Eq (9) as follows:

Error % ¼
jE � Pj

E
x 100 ð9Þ

Table 8. Experimental design matrix with actual and predicted UTS values.

Run Order Input Factors Experiment UTS Predicted UTS % error ×100

Tp (˚C) HT (min) CSA mm/mm2 RSM ANN RSM ANN

1 450 60 15.4 28.50 26.6050 27.4730 6.649 3.604

2 550 60 15.4 191.7 192.434 191.709 -0.38 -0.005

3 450 120 15.4 58.20 55.3430 56.4720 4.91 2.969

4 550 120 15.4 235.3 235.294 235.949 0 -0.276

5 450 60 52.6 20.70 18.4150 19.4940 11.04 5.826

6 550 60 52.6 172.01 170.721 171.435 0.75 0.334

7 450 120 52.6 42.30 41.1750 42.2730 2.66 0.064

8 550 120 52.6 206.7 207.604 208.660 -0.44 -0.948

9 450 60 15.4 26.90 26.6050 27.4730 1.1 -2.13

10 550 60 15.4 193.8 192.434 191.709 0.7 1.079

11 450 120 15.4 54.80 55.3430 56.4720 -0.99 -3.051

12 550 120 15.4 237.4 235.294 235.949 0.89 0.611

13 450 60 52.6 18.30 18.4150 19.4940 -0.63 -6.525

14 550 60 52.6 171.4 170.721 171.435 0.4 -0.02

15 450 120 52.6 43.70 41.1750 42.2730 5.78 3.265

16 550 120 52.6 210.6 207.604 208.660 1.42 0.921

17 500 90 34.0 154.2 152.650 153.165 1.01 0.671

18 500 90 34.0 152.93 152.650 153.165 0.18 -0.154

19 500 90 34.0 155.3 152.650 153.165 1.71 1.375

20 450 90 34.0 33.01 35.3840 33.1590 -7.19 -0.451

21 550 90 34.0 202.66 201.513 202.620 0.57 0.02

22 500 60 34.0 135.0 136.245 134.982 -0.92 0.013

23 500 120 34.0 164.6 169.055 164.595 -2.71 0.003

24 500 90 15.4 161.4 161.620 161.966 -0.14 -0.351

25 500 90 52.6 140.83 143.680 140.782 -2.02 0.034

26 500 90 34.0 151.24 152.650 153.165 -0.93 -1.273

27 500 90 34.0 154.97 152.650 153.165 1.5 1.165

https://doi.org/10.1371/journal.pone.0300504.t008
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Where and denote experimental and predicted values, respectively.

4. Conclusion

This paper investigated the strength of AA6061 chip-based forged parts prepared by the solid-

state recycling method. The effect of forging temperature, holding time, and chip’s SA factors

were investigated. The high forging temperature and prolonged holding time enhanced tensile

strength by promoting chip welding. Moreover, findings exhibited that the higher chip SA is

associated with inferior UTS values, possibly due to the presence of oxide layers. Based on the

findings, the main conclusion can be summarized as follows:

i. The highest UTS of 237.4 MPa was recorded based on 550˚C and 120 min, and 15.4 mm2 of

Tp, HT and CSA, respectively. In contrast, the lowest UTS value was achieved at 450˚C, 60

min and 54.6 mm2.

ii. ANOVA analysis revealed that both factors had a statistically significant influence on the

UTS response. However, the forging temperature and its interaction had higher contribu-

tion ratios.

iii. The RSM, GA-RSM and GA-ANN optimization processes suggested 550˚C, 120 min, and

15.4 mm2 are the optimal processing parameters. Notably, the ideal UTS response was

nearly identical across all optimization methods.

Fig 15. The observed UTS versus predicted by RSM and ANN model.

https://doi.org/10.1371/journal.pone.0300504.g015

Table 9. RSM optimal solution.

Tp HT CSA UTS Fit Composite Desirability

550 120 15.4 235.3 0.99

https://doi.org/10.1371/journal.pone.0300504.t009
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iv. The accuracy of optimized processing parameters was experimentally confirmed. The

error % between confirmatory experiment samples and the optimized values was less than

1%.

v. The deviation between actual and predicted UTS values by RSM and ANN models was

minimal, with an average error of less than 2%.

Fig 16. RSM optimization plot for UTS.

https://doi.org/10.1371/journal.pone.0300504.g016

Fig 17. GA-RSM optimization plot for UTS.

https://doi.org/10.1371/journal.pone.0300504.g017
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vi. The statistical metrics evaluation of predicted results indicated that the ANN model was

more accurate in simulating UTS values across different combinations of process

parameters.

A study on the chip size and surface area over the resulting recycled strength provides a

valuable guideline for industry practitioners implementing the HPF process to estimate the

strength of chip-based recycled products. They can control the processing parameters, such as

forging temperature and time, to produce the desired strength of recycled products by select-

ing optimal chip sizes using the developed model. Future investigations could consider

expanding this method to diverse alloys and manufacturing techniques, thereby achieving a

comprehensive comprehension and practicality across multiple sectors in the metalworking

field. Further future work is warranted to model the mechanism of aluminum chip bonding in

the HPF recycling process. This can contribute to enhancing the strength of chip welding and

overall quality. This research contributes to promoting sustainable manufacturing and high-

lights the potential of integrating the RSM statistical method with the predictive power of

machine learning techniques to optimize complex manufacturing processes.

Table 10. The optimal conditions of process parameters and response by RSM and GA-ANN optimization

processes.

Method Optimal parameters Optimal response

TP HT CSA UTS

RSM 550 120 15.4 235.30

GA-RSM 550 120 15.4 235.15

GA-ANN 550 120 15.4 236.20

https://doi.org/10.1371/journal.pone.0300504.t010

Fig 18. The confirmatory experiment sample (a) before and (b) after testing.

https://doi.org/10.1371/journal.pone.0300504.g018
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