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Abstract

Environmental exposures during the perinatal period are known to have a long-term effect

on adult physical and mental health. One such influential environmental exposure is the

time of year of birth which affects the amount of daylight, nutrients, and viral load that an indi-

vidual is exposed to within this key developmental period. Here, we investigate associations

between season of birth (seasonality), four mental health traits (n = 137,588) and multi-

modal neuroimaging measures (n = 33,212) within the UK Biobank. Summer births were

associated with probable recurrent Major Depressive Disorder (β = 0.026, pcorr = 0.028) and

greater mean cortical thickness in temporal and occipital lobes (β = 0.013 to 0.014,

pcorr<0.05). Winter births were associated with greater white matter integrity globally, in the

association fibers, thalamic radiations, and six individual tracts (β = -0.013 to -0.022,

pcorr<0.05). Results of sensitivity analyses adjusting for birth weight were similar, with an

additional association between winter birth and white matter microstructure in the forceps

minor and between summer births, greater cingulate thickness and amygdala volume. Fur-

ther analyses revealed associations between probable depressive phenotypes and a range

of neuroimaging measures but a paucity of interactions with seasonality. Our results sug-

gest that seasonality of birth may affect later-life brain structure and play a role in lifetime

recurrent Major Depressive Disorder. Due to the small effect sizes observed, and the lack of

associations with other mental health traits, further research is required to validate birth sea-

son effects in the context of different latitudes, and by co-examining genetic and epigenetic

measures to reveal informative biological pathways.

Introduction

Season of birth has long been hypothesised to have enduring effects on human health [1]. The

relatively recent “Foetal Origins of Adult Disease” hypothesis proposes that intra-uterine expo-

sures influence later adult health, including mental health outcomes [2,3]. Seasonality of birth
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has been associated with multiple diseases [4], including psychiatric [5–7], neurodevelopmen-

tal [8], cardiovascular [9], inflammatory [10], and genetic [11]. The mechanisms by which sea-

sonality may affect risk to these disorders are hypothesised to include interactions with

photoperiod and sunlight [12], nutrition [13], risk of pre-term birth and early life infection

[14], and maternal vitamin D deficiency [15]. These interactions could also be mediated by

genetic [16], epigenetic [17] or environmental changes [5] in utero or perinatally.

Perinatal photoperiod directly affects the physiology, brain morphology and behaviour of

many animals via transplacental signalling to melatonin receptors in the developing medio-

basal hypothalamus [18,19]. Many of these season-of-birth effects endure into adulthood,

including altered circadian timing [20], changes in affective behaviour, hippocampal volume

[21] and changes to serotonergic and dopaminergic systems in the brain [22]. The wider effects

of season of birth on human brain structure have been investigated using magnetic resonance

imaging with winter births associated with increased grey matter volume of the superior tempo-

ral gyrus in a study of over 550 individuals [23]. However, in a larger study of 13,000 Rotterdam

Study participants there was no effect of season of birth on any imaging derived measures [24].

Differences in photoperiod exposure during the perinatal and postweaning time windows

have been associated with enduring changes in anxiety and depressive-like behaviours in

developmentally stable adulthood periods within animal models [25,26], with shorter photope-

riods associated with increased presence and severity of these behaviours. Differences in brain

morphology have been associated with mental health disorders including depression [27–29],

externalizing behaviour [30] and schizophrenia [31,32]. The associations between brain mor-

phology and mental health thus warrant an investigation of associations of seasonality with

both brain morphology and mental health.

Birth seasonality potentially plays a multifaceted role in the aetiology of adult mental health,

either alongside or independently of seasonality-induced brain morphology changes. How-

ever, to date, the relationship between seasonality of birth, mental health traits and imaging

measures has not been examined at scale. This study, therefore, aims to explore associations

between seasonality of birth and (a) mental health disorders, and (b) brain imaging measures

within the UK Biobank, while also examining the potential interaction between mental health

disorders and seasonality of birth on brain imaging measures.

Materials & methods

UK Biobank

The UK Biobank (UKB) is a well-characterised community cohort of over 500,000 participants

aged 37–73 years at recruitment (2006–2010) [33]. All participants were invited to an initial

assessment in which baseline data were collected, including month of birth, birth weight, and

birth location. Mental health information was collected for all individuals at baseline using a

Touchscreen Questionnaire, and for 157,348 participants between 2016 and 2017 using a Men-

tal Health Questionnaire [34] (MHQ). A subset of the cohort (n = 42,709) was invited to the

first imaging visit in 2014 where brain scans, including T1-weighted (T1) and diffusion tensor

imaging (DTI), were obtained. Data were accessed under the UKB Application Number 4844.

UKB has approval from the NHS National Research Ethics Service as a research tissue bank

(References 16/NW/0274 and 11/NW/0382).

Seasonality

Seasonality of birth was examined as a quantitative phenotypic trait (y) capturing the month of

birth (UKB data-field 52) following the approach of Howard et al. [35]. The birth month of

each participant (i) was transformed via a cos function, with the lowest phenotypic score (-1)
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corresponding to those born in December and the highest phenotypic score corresponding to

those born in June (+1), as below:

yi ¼ � 1� cos 2p
Month of Birthi

12

� �� �

Mental health traits

Four mental health trait phenotypes were obtained from responses to the Touchscreen Ques-

tionnaire and the “Thoughts and Feelings” section of the MHQ. Where participants had com-

pleted both questionnaires (n = 85,266), the MHQ responses were used to generate

phenotypes due to the greater specificity of this questionnaire (see S2.2.1A and S2.2.1B Meth-

ods in S1 File for UKB data-fields used). Participants who had answered “Prefer not to answer”

or “I don’t know” to any questions or with insufficient symptom data (i.e., only one reported

symptom) were removed at this stage. The remaining participants (n = 170,982) were catego-

rised into four mental health-related phenotypes: probable recurrent Major Depressive Disor-

der (P-RMDD) (n = 39,528 cases), probable single episode Major Depressive Disorder

(P-SEMDD) (n = 16,430 cases), probable Hypomania (n = 9,104 cases) and probable Mania

(n = 2,569 cases), plus a control group (n = 103,351) as previously validated by Smith et al. [36]

(see S2.2.1C and S2.2.1D Methods in S1 File for grouping specification). At this point, partici-

pants who did not report a UK or Republic of Ireland birthplace or had unrecoverable geo-

graphical birthplace co-ordinate data (n = 16,946) (See S2.1 Methods in S1 File for

geographical data processing), had missing Townsend Deprivation Index values (n = 192), or

had chosen to withdraw from further studies (n = 9) were excluded. Furthermore, participants

who reported other neuropsychiatric or sleep-related conditions (n = 28), brain cancer diagno-

ses (n = 2), or reported having done shift work (n = 13,631) were also excluded. This resulted

in a total of 30,808 exclusions with 140,174 participants remaining (see S2.3.1A Methods in S1

File for exclusion details).

Any overlaps between the groupings were removed to create distinct phenotypes that did

not share a probable diagnosis: P-RMDD (n = 32,285), P-SEMDD (n = 13,721), probable Uni-

polar Mania (P-UM) (n = 1,229) and probable Bipolar Depression (P-BD) (n = 5,278) (see

S2.2.1D Methods in S1 File for overlaps permitted). Both the P-RMDD and the P-SEMDD

groups exclude participants within the probable Mania or probable Hypomania groups. P-UM

excludes participants within either depression group, whereas the P-BD grouping allows for

participants also within either depression grouping and follows the definitions used in Sangha

et al. [37]. Participants who completed the MHQ lead questions for mania (UKB data-fields

20501 and 20502) and depression (UKB data-fields 20446, 20441), and/or the Touchscreen

Questionnaire lead questions for mania (UKB data-fields 4642, 4653) and depression (UKB

data-fields 4598, 4631) but had not been classified into one of the four phenotypes, were

defined as controls (n = 84,018). The total sample size was therefore 137,588 (see S2.3.1B

Methods in S1 File for group sample sizes). Participant demographics for the mental health

phenotypes are provided in Table 1.

Brain imaging measures

T1-weighted and DTI brain scans were obtained for 42,709 participants on their first imaging

visit [38], with complete brain imaging data available for 37,048 participants. Participants with

outlier values in global measures of cortical surface area (n = 112), mean cortical thickness

(n = 217), cortical volume (n = 117), subcortical volume (n = 90), mean diffusivity (MD)
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Table 1. Participant demographic details for mental health trait analysis.

Control

(N = 85075)

Probable Major Depressive

Disorder

(N = 13721)

Probable Single Episode

Depression

(N = 32285)

Probable Unipolar

Mania

(N = 1229)

Probably Bipolar

Depression

(N = 5278)

Total

(N = 137588)

Sex

Female 39772 (46.7%) 9433 (68.7%) 21765 (67.4%) 474 (38.6%) 3132 (59.3%) 74576 (54.2%)

Male 45303 (53.3%) 4288 (31.3%) 10520 (32.6%) 755 (61.4%) 2146 (40.7%) 63012 (45.8%)

Age (years)

Mean (SD) 62.7 (8.40) 61.4 (8.12) 60.2 (8.33) 61.1 (8.53) 59.7 (7.85) 61.9 (8.42)

Median [Min, Max] 64.0 [40.2,

80.5]

62.2 [40.3, 79.2] 60.9 [40.2, 79.6] 61.9 [40.4, 79.4] 59.4 [40.3, 80.3] 62.9 [40.2,

80.5]

Ethnicity

Prefer not to answer 177 (0.2%) 28 (0.2%) 83 (0.3%) 3 (0.2%) 12 (0.2%) 303 (0.2%)

Do not know 8 (0.0%) 4 (0.0%) 6 (0.0%) 0 (0%) 0 (0%) 18 (0.0%)

White 62 (0.1%) 7 (0.1%) 29 (0.1%) 2 (0.2%) 8 (0.2%) 108 (0.1%)

Mixed 3 (0.0%) 1 (0.0%) 4 (0.0%) 0 (0%) 1 (0.0%) 9 (0.0%)

Asian or Asian British 1 (0.0%) 0 (0%) 1 (0.0%) 0 (0%) 0 (0%) 2 (0.0%)

Black or Black British 3 (0.0%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 3 (0.0%)

Chinese 18 (0.0%) 4 (0.0%) 5 (0.0%) 0 (0%) 1 (0.0%) 28 (0.0%)

Other ethnic group 89 (0.1%) 31 (0.2%) 85 (0.3%) 3 (0.2%) 19 (0.4%) 227 (0.2%)

British 81892 (96.3%) 13129 (95.7%) 30528 (94.6%) 1152 (93.7%) 4909 (93.0%) 131610

(95.7%)

Irish 1221 (1.4%) 225 (1.6%) 590 (1.8%) 23 (1.9%) 131 (2.5%) 2190 (1.6%)

Any other white

background

834 (1.0%) 168 (1.2%) 510 (1.6%) 25 (2.0%) 93 (1.8%) 1630 (1.2%)

White and Black

Caribbean

73 (0.1%) 16 (0.1%) 35 (0.1%) 1 (0.1%) 13 (0.2%) 138 (0.1%)

White and Black

African

24 (0.0%) 6 (0.0%) 29 (0.1%) 4 (0.3%) 4 (0.1%) 67 (0.0%)

White and Asian 75 (0.1%) 16 (0.1%) 61 (0.2%) 1 (0.1%) 23 (0.4%) 176 (0.1%)

Any other mixed

background

73 (0.1%) 16 (0.1%) 61 (0.2%) 2 (0.2%) 18 (0.3%) 170 (0.1%)

Indian 116 (0.1%) 11 (0.1%) 55 (0.2%) 6 (0.5%) 9 (0.2%) 197 (0.1%)

Pakistani 37 (0.0%) 4 (0.0%) 23 (0.1%) 2 (0.2%) 6 (0.1%) 72 (0.1%)

Bangladeshi 3 (0.0%) 0 (0%) 2 (0.0%) 0 (0%) 0 (0%) 5 (0.0%)

Any other Asian

background

13 (0.0%) 2 (0.0%) 6 (0.0%) 0 (0%) 3 (0.1%) 24 (0.0%)

Caribbean 292 (0.3%) 44 (0.3%) 141 (0.4%) 5 (0.4%) 19 (0.4%) 501 (0.4%)

African 58 (0.1%) 7 (0.1%) 23 (0.1%) 0 (0%) 6 (0.1%) 94 (0.1%)

Any other Black

background

3 (0.0%) 2 (0.0%) 8 (0.0%) 0 (0%) 3 (0.1%) 16 (0.0%)

Month of Birth

January 6987 (8.2%) 1152 (8.4%) 2720 (8.4%) 110 (9.0%) 454 (8.6%) 11423 (8.3%)

February 6785 (8.0%) 1099 (8.0%) 2518 (7.8%) 95 (7.7%) 390 (7.4%) 10887 (7.9%)

March 7727 (9.1%) 1256 (9.2%) 2989 (9.3%) 112 (9.1%) 460 (8.7%) 12544 (9.1%)

April 7372 (8.7%) 1191 (8.7%) 2858 (8.9%) 125 (10.2%) 446 (8.5%) 11992 (8.7%)

May 7664 (9.0%) 1221 (8.9%) 2961 (9.2%) 103 (8.4%) 464 (8.8%) 12413 (9.0%)

June 7016 (8.2%) 1151 (8.4%) 2852 (8.8%) 113 (9.2%) 454 (8.6%) 11586 (8.4%)

July 7251 (8.5%) 1161 (8.5%) 2741 (8.5%) 115 (9.4%) 452 (8.6%) 11720 (8.5%)

August 7011 (8.2%) 1186 (8.6%) 2588 (8.0%) 99 (8.1%) 443 (8.4%) 11327 (8.2%)

September 7010 (8.2%) 1139 (8.3%) 2581 (8.0%) 93 (7.6%) 474 (9.0%) 11297 (8.2%)

October 6818 (8.0%) 1096 (8.0%) 2518 (7.8%) 92 (7.5%) 425 (8.1%) 10949 (8.0%)

(Continued)
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(n = 105), or fractional anisotropy (FA) (n = 232) were excluded. Global measures were

derived by conducting principal component analyses (PCA) on data from the entire sample

[39], and measure outliers were defined as values ±3 standard deviations from the sample

mean for that measure. Participants with non-UK/Republic of Ireland, non-specified

(n = 2,635) or unrecoverable geographical (n = 590) birthplace, with a missing Townsend Dep-

rivation Index value (n = 26), or who wished to withdraw from future studies (n = 3) were also

excluded. No participants had to be removed due to head motion in the scanner. A total of

33,212 participants were included after 3,254 exclusions. Demographics of participants

included in the analyses of brain imaging measures are provided in Table 2. An additional sen-

sitivity analysis was conducted using only individuals with birth weight data (n = 21,417).

Brain morphology measures. Brain morphology measures were obtained by the UK Bio-

bank with FreeSurfer 6.0 toolkit [40–42] and included volumes of seven subcortical structures

(SV) for each hemisphere, as well as cortical volume (CV), mean cortical thickness (CT) and

cortical surface area (CSA) measures of 31 cortical regions for each hemisphere, based on the

Desikan-Killiany-Tourville atlas [43] (n = 33,212, see S1.1 Methods in S1 File for full pre-anal-

ysis QC). Similar measures were analysed in Harris et al. [39] (UKB category 192) and Shen

et al. [29]. Global and lobar CT, CSA and CV measures were derived manually for each hemi-

sphere (n = 33,212). Lobar measures were obtained for the frontal, parietal, temporal, occipital

and cingulate lobes (see S2.2.2A Methods in S1 File for group composition). All brain morpho-

metric measures were normalised.

White matter microstructure measures. White matter (WM) microstructure measures

consisted of FA and MD values for 12 bilateral tracts and 3 unilateral tracts derived by the UK

Biobank with the FSL probabilistic tractography toolkit (See S1.1 Methods in S1 File) [38,44].

Additional fiber-related FA and MD measures were derived as the scores on the first unrotated

principal components from PCA, which combined bi-hemispheric (left and right) and unilat-

eral measures from all relevant individual fiber tracts. The three whole-brain fiber bundles

derived were the association fibers (gAF), projection fibers (gPF) and thalamic radiations

(gTR) (see Methods S2.2.2A in S1 File for fiber definitions). Global FA (gFA) and MD (gMD)

measures were derived as the scores on the first unrotated principal components from PCA

analyses which combined all bi-hemispheric and unilateral tract measures. Proportions of vari-

ance explained by the first principal components are provided in Methods S2.2.2B in S1 File.

Thirty-eight WM integrity measures were analysed in total (19 FA and 19 MD) (n = 33,212)

and all WM microstructure measures were normalised.

Table 1. (Continued)

Control

(N = 85075)

Probable Major Depressive

Disorder

(N = 13721)

Probable Single Episode

Depression

(N = 32285)

Probable Unipolar

Mania

(N = 1229)

Probably Bipolar

Depression

(N = 5278)

Total

(N = 137588)

November 6567 (7.7%) 999 (7.3%) 2420 (7.5%) 92 (7.5%) 394 (7.5%) 10472 (7.6%)

December 6867 (8.1%) 1070 (7.8%) 2539 (7.9%) 80 (6.5%) 422 (8.0%) 10978 (8.0%)

Birth Location Cluster

1 5707 (6.7%) 932 (6.8%) 1958 (6.1%) 111 (9.0%) 395 (7.5%) 9103 (6.6%)

2 49494 (58.2%) 7964 (58.0%) 18786 (58.2%) 683 (55.6%) 2977 (56.4%) 79904 (58.1%)

3 8727 (10.3%) 1466 (10.7%) 3283 (10.2%) 115 (9.4%) 559 (10.6%) 14150 (10.3%)

4 21147 (24.9%) 3359 (24.5%) 8258 (25.6%) 320 (26.0%) 1347 (25.5%) 34431 (25.0%)

SD = Standard deviation. Birth location was obtained using k-means clustering (see Statistical models section for full details).

https://doi.org/10.1371/journal.pone.0300449.t001
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Table 2. Participant demographic details for neuroimaging analysis.

Total

(N = 33212)

Sex

Female 17731 (53.4%)

Male 15481 (46.6%)

Age (years)

Mean (SD) 63.6 (7.45)

Median [Min, Max] 64.0 [45.0, 82.0]

Ethnicity

Prefer not to answer 73 (0.2%)

Do not know 5 (0.0%)

White 16 (0.0%)

Mixed 1 (0.0%)

Asian or Asian British 0 (0%)

Black or Black British 0 (0%)

Chinese 10 (0.0%)

Other ethnic group 56 (0.2%)

British 31812 (95.8%)

Irish 578 (1.7%)

Any other white background 409 (1.2%)

White and Black Caribbean 31 (0.1%)

White and Black African 12 (0.0%)

White and Asian 40 (0.1%)

Any other mixed background 32 (0.1%)

Indian 44 (0.1%)

Pakistani 11 (0.0%)

Bangladeshi 2 (0.0%)

Any other Asian background 4 (0.0%)

Caribbean 61 (0.2%)

African 14 (0.0%)

Any other Black background 1 (0.0%)

Birth Weight (kg)

Mean (SD) 3.36 (0.614)

Median [Min, Max] 3.37 [0.740, 6.78]

Missing 11795 (35.5%)

Month of Birth

January 2763 (8.3%)

February 2701 (8.1%)

March 3056 (9.2%)

April 2906 (8.7%)

May 2905 (8.7%)

June 2789 (8.4%)

July 2838 (8.5%)

August 2744 (8.3%)

September 2698 (8.1%)

October 2669 (8.0%)

November 2475 (7.5%)

December 2668 (8.0%)

(Continued)
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Statistical models

Mental health traits. To investigate associations between the four mental health pheno-

types and seasonality, logistic binomial regression analyses were performed, covarying for sex,

age, age2, Townsend Deprivation Index (TDI), assessment centre attended and place of birth

location. Place of birth locations were derived with k-means clustering of participant birth

north / east co-ordinates from the Ordnance Survey data (UKB variables 129 and 130), per-

formed using “kclust” function in the R “stats” package. Twenty clustering iterations were run

to identify four birth location clusters (see S2.1.1 Methods and S1-S3 Fig in S1 File), and each

participant was assigned to a cluster to define place of birth. TDI was included as a covariate to

capture sociodemographic factors known to be associated with psychiatric disorders in UK

Biobank [45,46]. The inclusion of place of birth as a covariate was based on previous associa-

tions between birth location and genetic variants in UK Biobank [47], as well as findings of

associations between higher latitude births and lifetime risk for depression [48]. Age2 was

included to account for the non-linear relationship between age and mental health symptoms,

namely for depressive symptoms [49], especially when modelling early-life events [50]. Sex,

assessment centre and place of birth were coded as categorical variables. A Bonferroni multiple

analysis correction was applied over the four phenotypes examined (P< 0.0125 (α = 0.05 / 4)).

Effect sizes were standardised throughout. No other statistical models were tested in this study.

Post-hoc analysis was conducted to test the robustness of this model by reducing the number

of covariates to sex, age and assessment centre attended and sequentially adding birth location,

TDI and age2 as covariates to further binomial logistic regressions per mental health trait

(n = 16) (i.e., covariates = age, sex, assessment centre; age, sex, assessment centre, birth loca-

tion; age, sex, assessment centre, birth location, TDI; age, sex, assessment centre, birth loca-

tion, TDI, age2). A Bonferroni multiple analysis correction was applied consistent with that

applied in the main study.

Brain imaging measures. Linear regression models were applied to assess associations

between seasonality and all unilateral, fiber-related or global brain measures. Mixed-effects mod-

els were applied to assess associations between seasonality and all bilateral brain measures

(“nlme” package in R version 3.2.3). Sex, age, age2, Townsend Deprivation Index, assessment

centre, four UKB head position covariates (X, Y, Z and table position) and place of birth cluster

index (see S4-S6 Fig in S1 File) were included as covariates in all analyses. The rationale for these

covariates is similar to that of the mental health traits models with TDI included due to previous

Table 2. (Continued)

Total

(N = 33212)

Birth Location Cluster

1 2658 (8.0%)

2 12037 (36.2%)

3 6175 (18.6%)

4 12342 (37.2%)

Scanner Site

Cheadle 20377 (61.4%)

Reading 4042 (12.2%)

Newcastle 8793 (26.5%)

SD = Standard deviation. Birth location was obtained using k-means clustering (see Statistical models section for full

details).

https://doi.org/10.1371/journal.pone.0300449.t002

PLOS ONE A study of season of birth, mental health, and neuroimaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0300449 May 22, 2024 7 / 21

https://doi.org/10.1371/journal.pone.0300449.t002
https://doi.org/10.1371/journal.pone.0300449


associations with brain structure in this cohort [51], age2 to account for non-linearity in the rela-

tionship between age and brain imaging measures [29], and birth place given its associations

with genetic variants also within this cohort [47]. Sex, assessment centre and place of birth were

coded as categorical variables. Hemisphere was controlled for as a random effect in the mixed-

effect models for all bi-hemispheric measures (see S2.1.2 Methods in S1 File). Standardised intra-

cranial volume was also covaried for in all analyses of brain morphometric measures.

False Discovery Rate (FDR) correction was applied separately across individual and

regional brain morphology and white matter microstructure measures per modality (Methods

S2.4.1 in S1 File) [29,39]. Global measures were not corrected. A P-value threshold for signifi-

cance was set to 0.05 and effect sizes were standardised throughout. All statistical analyses

were performed using R (version 3.2.3). A sensitivity analysis was conducted to reassess the

brain imaging measures for an association with seasonality after fitting birth weight as an addi-

tional fixed effect covariate.

Further analyses were conducted to explore associations between brain imaging measures

and additional mental health phenotypes. First, models to examine associations between brain

imaging measures and probable Major Depressive Disorder cases (P-MDD) were constructed.

P-MDD included all participants who had been previously classified as P-RMDD or P-SEMDD

cases, with P-MDD controls defined as those participants who were controls for both P-RMDD

or P-SEMDD (See S2.5.1 in S1 File for demographic table). Secondly, models were constructed

to explore associations between brain imaging measures and winter birth P-MDD cases com-

pared to summer birth P-MDD cases. Seasonality was split into winter births (December, Janu-

ary, February) and summer births (June, July, August) and coded as a categorical variable (See

S2.5.2 in S1 File for demographic table). Thirdly, additional models were constructed to investi-

gate associations between brain imaging measures and P-RMDD cases compared to P-SEMDD

cases (See S2.5.3 in S1 File for demographic table). All covariates were kept consistent with the

main analysis. Lastly, models were constructed to investigate associations between mental health

traits and neuroimaging measures in the context of seasonality. For each neuroimaging measure

a linear/fixed effect model was applied, retaining the same covariates as in the main analysis

plus one mental health trait (n = 4: P-RMDD, P-SEMDD, P-BD and P-UM) and an interaction

term between the mental health trait and seasonality. As in the main analysis, mixed-effects

models were used for bi-hemispheric measures. The same multiple correction strategy was

applied as in the main analysis. No other statistical models were tested in this study.

Results

Seasonality associations with mental health traits

P-RMDD was associated with seasonality, with a higher prevalence observed in summer births

(β = 0.026, pcorr = 0.028). No other mental health traits were associated with seasonality

(Table 3). Effect sizes are reported as log-transformed odd ratios.

Table 3. Mental health traits associated with seasonality.

Mental Health Trait Effect Size(β) / Log(OR) S.E. p-uncorr p-corr

Probable recurrent Major Depressive Disorder 0.026 0.010 0.007 0.028

Probable single Episode Major Depressive Disorder 0.017 0.013 0.212 0.847

Probable Unipolar Mania 0.066 0.041 0.108 0.432

Probable Bipolar Depression 0.009 0.020 0.665 1.000

p-uncorr = p-uncorrected value; p-corr = Bonferroni p-corrected value; S.E = standard error.

https://doi.org/10.1371/journal.pone.0300449.t003
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Post-hoc robustness analysis for mental health trait associations with seasonality revealed a

consistent pattern of associations across all models tested. P-RMDD was significantly associ-

ated with summer births across all models tested (n = 4; β range: 0.024–0.026, pcorr <0.05),

with the largest effect size observed within the model utilised in the main analysis (β = 0.026)

(see S3.3 Results in S1 File).

Seasonality associations with brain imaging measures

Greater temporal lobe CT (β = 0.014, pcorr = 0.037) and greater occipital lobe CT (β = 0.013,

pcorr = 0.037) were associated with summer births (Fig 1).

Winter births were associated with higher gFA (β = -0.017, p = 0.001), higher gAF and gTR

(respectively β = -0.022, pcorr = 9.855−05 and β = -0.014, pcorr = 0.01), and higher FA in six of 15

individual WM tracts (effect sizes ranging from β = -0.013 to β = -0.021) (Fig 2 and S3.1

Results in S1 File). No MD measures were associated with seasonality.

Fig 1. Standardised effect sizes of brain morphology measures associated with seasonality mapped onto the Desikan-Killiany-Tourville atlas for (A) mean cortical

thickness of the temporal and occipital lobes in the main analyses and (B) mean cortical thickness of the temporal, occipital and cingulate lobes in the sensitivity analyses.

Darker colour designates greater effect size for associations with summer births.

https://doi.org/10.1371/journal.pone.0300449.g001
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When birth weight was additionally covaried for in the sensitivity analyses, one additional

cortical morphometric measure was identified as associated with seasonality: cingulate CT (β =

0.015, pcorr = 0.037) (Fig 1). With regard to WM measures, an additional association of FA in

the forceps minor with winter births was identified when correcting for birth weight (β =

-0.015, pcorr = 0.044), while all previous associations remained significant with larger effect sizes

(see Fig 2, S3.2.5-S3.2.7 Results in S1 File for further details). Additionally, volume of the amyg-

dala was associated with summer births (β = 0.021, pcorr = 0.042) (See S3.2.4 Results in S1 File).

Mental health trait associations with brain imaging measures

There were no observed differences between summer P-MDD and winter P-MDD births

across all brain imaging measures (See S3.5 Results in S1 File). Furthermore, there were no sig-

nificant interactions between any of the mental health traits and seasonality (See S3.6.5 Results

Fig 2. Standardised effect sizes for white matter microstructure neuroimaging measures significantly associated with seasonality (pcorr<0.05 for regional/individual

measures, p<0.05 for global measures) in the main analysis and sensitivity analysis. A negative effect size for seasonality in the main and sensitivity analyses represents

an increase in FA for winter births compared to summer births.

https://doi.org/10.1371/journal.pone.0300449.g002
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in S1 File). Individually, both P-RMDD and P-SEMDD were associated with increases in gMD

(β = 0.059 and 0.045, p =<0.05) and decreases in gFA (β = -0.058 and -0.049, p =<0.001) with

the effect being more marked for P-RMDD (Fig 3). (See S3.4.5 Results in S1 File).

Regional WM microstructure associations with P-RMDD were observed for lower FA in

gTR (β = -0.090, pcorr =<0.0001) and gAF (β = -0.058, pcorr =<0.05) and higher MD in gTR (β
= 0.072, pcorr =<0.0001), gAF (β = 0.039, pcorr =<0.05) and gPF (β = 0.068, pcorr =<0.001)

(Fig 4 and S3.4.6 Results in S1 File). P-BD was also associated with lower FA in gTR (β =

Fig 3. Associations between mental health traits and global white matter microstructure and brain morphology measures. P-RMDD = Probable Recurrent Major

Depressive Disorder; P-SEMDD = Probable Single episode Major Depressive Disorder; P-BD = Probable Bipolar Disorder; P-UM = Probable Unipolar Mania;

CSA = cortical surface area; CV = cortical volume; FA = fractional anisotropy; MD = mean diffusivity. Each bar represents β coefficients for associations with global

measures. Striped bars signify significant associations (p<0.05). Error bars represent the 95% confidence interval of the estimated coefficient.

https://doi.org/10.1371/journal.pone.0300449.g003
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-0.053, pcorr =<0.047) (Fig 4). Decreased frontal lobe CV was associated with P-SEMDD (β =

-0.104, pcorr =<0.016) (Fig 4 and S3.4.2 Results in S1 File).

There were no associations between seasonality and brain imaging measures when adjusted

for mental health traits (See S3.7 Results in S1 File). The direction of effect for associations

across all analyses is available in Supplementary Information (S4 Results in S1 File). Extended

results are available in S5 Results, S7 and S8 Figs in S1 File.

Fig 4. Significant associations (pcorr<0.05) between mental health traits and seasonality for regional white matter microstructure and brain morphology measures.

Effect sizes for seasonality associations are from the sensitivity analysis. P-RMDD = Probable Recurrent Major Depressive Disorder; P-SEMDD = Probable Single episode

Major Depressive Disorder; P-BD = Probable Bipolar Disorder. Each bar represents β coefficients for associations with regional measures. Error bars represent the 95%

confidence interval of the estimated coefficient.

https://doi.org/10.1371/journal.pone.0300449.g004
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Discussion

This study investigated associations between seasonality, mental health traits and neuroimag-

ing measures in a large-scale cross-sectional dataset. Seasonality was associated with

P-RMDD, as well as with a range of brain morphology and white matter microstructure brain

imaging measures. Summer births were associated with a higher prevalence of P-RMDD, as

well as greater CT in the temporal, occipital and cingulate lobes and greater SV of the amyg-

dala. Winter births were associated with more constrained water molecule diffusion and thus

higher white matter integrity globally, in two white matter fiber tract bundles and in seven

individual white matter tracts. P-RMDD was associated with decreased global, regional and

individual WM integrity and decreased thalamic SV. P-SEMDD was associated with decreased

global and regional WM integrity to a lesser degree as well as decreased brain morphology

across all global measures and decreased CSA in the frontal lobe. P-BD was associated with

reduced FA in the gTR and posterior thalamic radiations. A single significant seasonality inter-

action was observed with P-BD for reduced amygdala volume.

These results cautiously lend additional support to existing evidence [6,52,53] of season of

birth effects in adult health in the context of a modest sized cross-sectional sample of a healthy

UK-based population. They also support previous evidence of globally [39,54]and regionally

[29] reduced WM integrity across a range of depression phenotypes, tract-specific reductions

in recurrent MDD [55] and BD [56,57], as well as brain morphology changes in MDD [58–

60]. They do not, however, fully characterise the relationship between lifetime mental health

traits, brain imaging measures and seasonality of birth.

In this study P-RMDD was associated with summer births, aligning with northern hemi-

sphere spring associations with MDD risk in English outpatients (n = 16,726) [6], severity in a

small MDD case-control study (45 cases and 90 controls) [52] and earlier disease onset in 855

Korean MDD patients [53]. However, there exist idiosyncrasies in the seasonality phenotypes

derived in these studies, which range from monthly, to two- and four-season seasonality cate-

gories per participant, making for an inexact comparison. A hemispheric six-month shift has

also been observed between seasonality and depression symptoms, with higher scores associat-

ing with spring births (March-May) in the Northern hemisphere and autumn births (Septem-

ber-November) in the Southern hemisphere, in a small young adult and adolescent cohort

[61]. Although an excess of August births in MDD patients has also been observed in the

Southern hemisphere within a Brazilian retrospective study of MDD cases and controls

(n = 98,457) [62]. However, no associations between month of birth and depression symptoms

were found in a similarly aged cohort in a recent Europe wide study (n = 72,370) [63]. For

P-RMDD, therefore, our findings provide a seasonality association within a UK population

sample adding another datapoint to the ambiguous literature.

Unlike P-RMDD, single episode MDD was not associated with seasonality in this study.

The more than two-fold reduction in sample size for P-SEMDD (n = 13,721) may have limited

statistical power to detect associations. However, an unshared aetiology may also be a factor,

with more severe neurophysiological observations made in clinically comparable recurrent

MDD cases versus single episode MDD cases [64], and an earlier age of onset and familial risk

for recurrent MDD [65,66]. Gene environment effects [67] and genetic variants [68,69] associ-

ated with recurrent MDD support this distinction. Therefore, seasonality effects may vary

within depressive subtypes, with a more marked effect on persistent cases in response to sea-

sonal perinatal and natal environments. Ultimately, the discrepancy in findings for seasonality

associations with recurrent and single episode MDD could be better addressed within a clinical

sample, given factors such as the recall bias involved in enumerating lifetime depressive
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episode measures within UK Biobank [34], and the overall reliance on self-reported measures

to distinguish these diagnoses.

Bipolar affective disorder has been associated with January births [6] (OR = 1.09, 95%

CI = 1.03–1.15, p = 0.002), and for DSM-III bipolar disorder cases a seasonal pattern has been

observed with significant excess births in December and a total of 5.8% seasonal excess births

to expected births [70]. However, the current study did not find a seasonal association, possibly

due to the inclusion of both P-RMDD and P-SEMDD within P-BD since only the former asso-

ciated with seasonality. It is also possible that the self-reported phenotype used may not fully

capture cases with sufficient fidelity to yield associations. UM, a relatively unexplored BD-sub-

type [71], had the largest effect size of the mental health traits but was not associated with sea-

sonality potentially due to the small number of cases available. Re-examination of this

phenotype in a larger UM sample is therefore warranted.

In line with previous studies, we find seasonality to be associated with a cluster of white

matter microstructure measures, with novel findings for brain morphology regional measures.

Overall, three regional measures were associated with seasonality, all of which were in the

mean thickness category, despite the lack of associations for volumetric measures and season-

ality expressed as daylength in similarly powered UKB studies [16]. Thickness of the temporal

lobe has been shown to be significantly reduced in schizophrenic patients [72], and the disor-

der’s own association with winter births [73], may offer an opportunity for further study.

The observation of multiple negative associations for FA measures in association with sum-

mer births, corroborates previous findings in which sections of the corpus callosum, the inter-

nal capsule, the corona radiata, the posterior thalamic radiation and the sagittal striatum were

found to have decreased FA values in summer compared to winter births [74]. For summer

births, lower FA measures, or less restricted and more isotropic diffusivity, may point to

greater tissue disorganisation, itself generally accompanied by reduced axonal myelination,

axonal loss, or a higher proportion of crossing fibers. Since global and regional measures

yielded the strongest associations, alongside seven individual measures, seasonality may exert

a non-localised effect on white matter integrity and thus warrant further analysis to specify

possible mechanisms. The overall association of the thalamic radiations bundle and the associ-

ation fibers bundle, composed of two and three individual tracts with individual associations

respectively, provides novel evidence for lower values in summer births.

Lastly, although amygdala volume has not previously been associated with summer births

as it was in his study, seasonal fluctuations in amygdala volume measures, with increases in the

summertime and during longer photoperiods, have been found in UKB [75]. The biological

underpinnings for these shifts are unknown but hormonal mediation, specifically via melato-

nin, is one proposed mechanism due to its role in photoperiod-induced adaptations, alongside

the presence of melatonin receptors in the amygdala. It is, however, unclear at this stage

whether perinatal photoperiodicity differentially affects grey matter development and if these

effects are stable through development and into adulthood.

Birth seasonality effects, therefore, may independently induce penetrable changes in white

matter integrity in a subset of tract bundles, an effect discernible through DTI-ascertained

measures. Brain structure and connectivity measures are a promising endophenotype for men-

tal, neurological, and physiological illness. The range of neuroimaging associations with sea-

sonality found here offers a starting point for further probing into the mechanistic relationship

between them. These findings, however, do not hold when adjusted for mental health traits.

However, a notably reduced sample size (~71% less participants) for models examining both

mental health traits and brain imaging measures could have incurred a loss of power to detect

associations. Given the adverse effects of mental health disorders on the brain, the presence of
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a probable mental health trait is also likely to be a stronger predictor of brain imaging mea-

sures than seasonality.

Global reductions in FA alongside increases in MD have been associated with self-reported,

probable, and recurrent depression in UKB [39] with reductions in global FA also observed

within a small ENIGMA sample of MDD patients (ncases = 921, ncontrols = 1265) [54]. There is

also compelling evidence that regional FA and MD measures associate with overall depression,

with previous studies reporting lower FA in the association fibers and thalamic radiations for

self-reported, probable, recurrent, and clinical depression [39], and for both principal MDD

and recurrent MDD [29]. Likewise, increased MD in the thalamic radiations and projection

fibers have been associated across the same range of depression phenotypes [39], with higher

MD in the association fibers also associated with self-reported depression. MDD associations

with reduced FA in a number of individual tracts have also been reported in UKB, notably in

the left superior longitudinal fasciculus, and bi-hemispheric superior thalamic radiation [29],

posterior thalamic radiations and forceps minor [39], akin to the findings in this study, with

16 out of 25 individual WM tracts examined also found to associate with MDD patients in a

large ENIGMA sample [55]. The lack of observed differences in WM microstructural measures

between P-RMDD and P-SEMDD cases, was also reported in an ENIGMA study, as well as

similar lack of findings for associations between MDD and brain morphometry measures [54].

Regardless of seasonal MDD trends, this study supports previous evidence of a general asso-

ciation between depression and reduced WM integrity. For BD, although both increased and

decreased FA measures have been reported, a review of WM microstructural changes in the

disorder also point to mostly FA decreases in the thalamic radiations [56], with a region of

interest study reporting reduced FA in the posterior thalamic radiation for both BD patients

and unaffected siblings [57]. Morphologically, we find a reduction in thalamic volume for

P-RMDD cases, a finding previously reported in the largest study to date [58] examining sub-

cortical volumes (ncases = 142) for current MDD patients compared to healthy controls, in a

meta-analysis of 143 studies [59] and in a study of ~600 community-dwelling lifetime MDD

participants [76], whilst left hemispheric reductions in thalamic volume was also associated

with MDD in a smaller study (ncases = 30) [60]. Given the role of the thalamus in sensory infor-

mation relay as well as various modes of higher order executive and cognition functioning

[77], volumetric reductions here could be relevant to the pathology of MDD, with functional

imaging abnormalities for MDD patients in this structure also having been reported [78].

Limitations

This study was limited in geographical scope with the aim of keeping latitudinal and longitudi-

nal variation minimal between subjects. Since season of birth effects have been shown to be

greater at higher latitudes [73], possibly mediated by larger annual photoperiod shifts, studies

in these regions, or meta-studies encompassing them might provide further insight.

Although our mental health trait phenotypes align well with DSM-5 diagnostic criteria [34],

they do not reflect formal diagnoses and therefore may under- or over-extend seasonality asso-

ciations present under stricter definitions. A symptom-by-symptom study could also elucidate

individual patterns in associations, such as MDD sleep aberrances and evidenced seasonality

mediated sleep differences [16]. The natural patterns of distribution in birth seasonality [79]

with April and May annual birth-rate peaks in UKB [16] should also be accounted for, as

should the seasonal pattern in procreation habits observed in psychiatric disorders such as

schizophrenia, which may be tied to heritable components [80] of mental health disorders

independently. Here, birth seasonality variation was assessed comparing winter births with

summer births. However, this provides those born in spring and autumn with similar
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phenotypic scores and therefore will not model differences between those born in those peri-

ods. Future studies could co-model a range of seasonality phenotypes to contextualise the

extent of these potential differences.

Since historically, seasonality effects on psychiatric conditions have been more pronounced

in public versus private hospitals [81] and affected by urbanicity and education level, studies

that account for these variables could provide a better picture of seasonality associations,

although TDI may be a sufficient proxy for these measures. Generally, the lag between the

time of birth and seasonality-related outcomes in later life makes their association prone to

confounders which must be further considered. Overall, the small effect sizes found in this

study suggest a limited role for seasonality in adult health, although usage of larger sample

sizes and inclusion of more covariates could modify this.

Lastly, although our study supports an association between seasonality and adult health,

identification of the mechanisms by which these effects are actualised is beyond the scope of

the current study. Longitudinal studies tracking changes in mental health and neuroimaging

measures would more precisely quantify within-individual shifts over the lifetime and ease the

identification of key developmental periods in which these take place. Since circadian patterns

of gene expression have been demonstrated to be weaker in post-mortem human subjects with

MDD [82], further studies examining deficiencies in circadian rhythmicity at the transcrip-

tomic level and their associations with mental health traits in the context of month of birth

could also be beneficial. A combinatorial approach including genetic and gene expression data

would give insight into differential seasonality programming and begin to specify possible bio-

logical pathways.

In summary, we demonstrated both seasonality of birth associations with adult health as

measured by mental health traits and neuroimaging measures, as well as associations between

mental health traits and neuroimaging measures. Although the reported association between

seasonality and P-RMDD could be specific to the parametrizations of this study and those of

UK Biobank cohort, we are hopeful that they may spur further research. A continuation of the

examination of seasonality associations with a wide range of mental health traits is encouraged

within higher powered studies or those utilising clinical cases, especially given the limited

number of interactions between mental health traits and seasonality found here. Overall, the

small effect sizes of all our associations with global, regional, and individual brain imaging

measures, as well as probable recurrent Major Depressive Disorder warrant replication in

larger and more diverse datasets as well as those offering wider latitudinal ranges.
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clinical hypothyroidism and symptoms of depression: Evidence from the National Health and Nutrition

Examination Surveys (NHANES). Comprehensive Psychiatry. 2021; 109:152253. https://doi.org/10.

1016/j.comppsych.2021.152253 PMID: 34147730
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