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Abstract

In this article, Elzaki decomposition method (EDM) has been applied to approximate the

analytical solution of the time-fractional gas-dynamics equation. The time-fractional deriva-

tive is used in the Caputo-Fabrizio sense. The proposed method is implemented on homog-

enous and non-homogenous cases of the time-fractional gas-dynamics equation. A

comparison between the exact and approximate solutions is also provided to show the valid-

ity and accuracy of the technique. A graphical representation of all the retrieved solutions is

shown for different values of the fractional parameter. The time development of all solutions

is also represented in 2D graphs. The obtained results may help understand the physical

systems governed by the gas-dynamics equation.

1 Introduction

The physical laws of energy conservation, momentum conservation and mass conservation

are defined by the mathematical representation of gas-dynamics equations. Gas dynamics is

a branch of fluid dynamics that studies gas motion and its effect on physical construction.

The study of gas-dynamics has a number of useful applications in various problems of sci-

ence and engineering, such as; choked flows in nozzles and pipes, shock waves around air-

crafts, aerodynamic heating on atmospheric reentry car and others. Recently, many

researchers have investigated gas-dynamics equation in various studies owing to its signifi-

cance in different physical phenomena. The different techniques utilized to study the gas-

dynamics equation include finite-difference method [1], q-Homotopy analysis method [2], a

combination of Laplace transform and homotopy perturbation method [3], Elzaki transform

homotopy perturbation method [4], fractional homotopy analysis transform method [5],

homotopy-perturbation method [6], quadratic B-spline Galerkin method [7], combination

of integral and projected differential transform method [8] and fractional variational itera-

tion method [9].
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The nonlinear fractional order gas-dynamics equation is considered, as [10]

@
bw
@tb
þ w

@w
@c
� wð1 � wÞ ¼ 0; t 2 R; 0 < b � 1: ð1Þ

The initial condition is w(ψ, 0) = k(x), where β is a parameter that describes the fractional

order of derivative. When β = 1, Eq (11) reduces to the classical integer order gas-dynamics

equation. The fractional gas-dynamics equation has been examined using different

approaches. Das and Kumar [11] utilized differential transform method to solve the problem

considering the fractional derivative in Caputo sense. Iqbal et al. [10] presented an iterative

technique using Caputo fractional derivative to solve the fractional gas-dynamics equation.

Iyiola [2] determined the solution of fractional gas-dynamics equation using q-homotopy

analysis method with Caputo fractional derivative.

The time-fractional differential operators are more generalized than the integer order dif-

ferential equations appearing in classical calculus. The fractional calculus has become increas-

ingly popular over the last few years. The basic notions of fractional derivative are introduced

by Caputo and Riemann-Liouville, which involve the singular kernal [12]

kðt; sÞ ¼
ðt � sÞ� b

Gð1 � bÞ
; 0 < b < 1: ð2Þ

However, Caputo and Fabrizio noted in [13] that the modeling of many phenomena in physics

cannot be well-modeled using Caputo and Riemann-Liouville fractional derivatives. In order

to solve this problem, Caputo and Fabrizio introduced a novel definition of fractional deriva-

tive with a non-singular kernal [13]

kðt; sÞ ¼ e

� bðt � sÞ
1 � b ; 0 < b < 1:

ð3Þ

Presently, Caputo-Fabrizio derivative is one of the most commonly used definition of time-

fractional derivative which is employed for the solution of many mathematical problems in

engineering sciences. Caputo-Fabrizio derivative has been successfully used in the study of

general form of Walter’s-B fluid model [14], a new dynamical model of hepatitis E [15], a new

fractional differential model for COVID-19 transmission [16], mathematical modeling of

human liver [17] and others. The Caputo-Fabrizio derivative has been used to solve fractional

Sharma-Tasso-Olver-Burgers equation and (2+ 1)-dimensional mKdV equation [18, 19].

The main objective of this manuscript is to propose a novel analytical technique for the

solution of time-fractional gas-dynamics equation using the Caputo-Fabrizio derivative. The

proposed technique utilizes the Elzaki transform and Caputo-Fabrizio fractional derivative

along with the Adomian polynomials to construct the approximate analytical solution of the

time-fractional gas-dynamics equation. Two numerical applications are presented to illustrate

the proposed method for homogeneous and in-homogeneous case. The change in the solution

under the influence of fractional parameter is observed through numerical and graphical

observations.

Elzaki transform was first introduced by Tarig Elzaki [20]. Adomian decomposition

method [21] is a well-known mathematical technique to solve the nonlinear partial differential

equations. Many researchers have applied Elzaki transform combined with the Adomian

decomposition method on a variety of problems to find their solution such as; epidemic model

[22], fifth-order Korteweg-De Kries equations [23], sine-Gordon equation [24], linear and

nonlinear Schrödinger equation [25] and nonlinear equation for water inflation in unsaturated

soil [26].
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2 Fundamental definitions and results

Definition 1 [27] Let 0< β< 1 and w be a continuously differentiable function. The CF frac-

tional derivative of w of order β is given by

Db
t wðtÞ ¼

1

1 � b

Z t

0

exp �
bðt � sÞ
1 � b

� �

w0ðsÞds: ð4Þ

Definition 2 [28] The Elzaki transform is defined over the set of functions

B ¼ fgðtÞ=9M; k1; k2 > 0; jgðtÞj < M exp
jtj
kj

 !

; if t 2 ð� 1Þ
j
� ½0;1Þg; ð5Þ

by the following integral

EjgðtÞj ¼ TðsÞ ¼ s
Z 1

0

gðtÞexp
� t
s

� �

dt; t > 0; ð6Þ

where s is the factor of variable t.
Elzaki transform exhibits the following useful properties [28].

1. Convolution property

E½wðtÞ∗gðtÞ� ¼
1

s
E½wðtÞ�E½gðtÞ�: ð7Þ

2. Differentiation property

If w(m)(t) is the m-th time-derivative of the function w(t) 2 B then its Elzaki transform is

given by

E wðmÞðtÞ½ � ¼
1

sm
TðsÞ �

Xm� 1

n¼0

s2� mþnwðnÞð0Þ: ð8Þ

Theorem 3 [29] The Elzaki transform of the CF fractional derivative can be expressed, as

E Db
t ðwðtÞÞ

� �
¼

s
WðsÞ

s
� swð0Þ

� �

1 � bð1 � sÞ
:

ð9Þ

In general,

E Dmþb
t ðwðtÞÞ

� �
¼

s
WðsÞ
smþ1

�
Xm

n¼0
s1� mþnwðnÞð0Þ

� �

1 � bð1 � sÞ
:

ð10Þ

3 Description of methodology

The fractional differential equation for w(ψ, t) is considered, as

Db
t wðc; tÞ þ Pwðc; tÞ þ Qwðc; tÞ ¼ kðc; tÞ; r 2 N; r � 1 < b � r: ð11Þ

where P and Q are nonlinear and linear terms and Db
t denotes the time-fractional Caputo-Fab-

rizio differential operator. The initial condition is considered in accordance with [2, 10, 11], as

wðc; 0Þ ¼ vrðcÞ: ð12Þ
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Applying Elzaki transform with fractional order Caputo-Fabrizio derivative and using The-

orem 3, Eq (11) implies

s
Wðc; sÞ

s
� swðc; 0Þ

� �

1 � bð1 � sÞ
¼ E½kðc; tÞ � Pwðc; tÞ � Qwðc; tÞ�:

ð13Þ

Using the initial condition given by Eq (12), the following relation is obtained.

Wðc; sÞ � s2vrðcÞ

1 � bð1 � sÞ
¼ E½kðc; tÞ � Pwðc; tÞ � Qwðc; tÞ�; ð14Þ

or

Wðc; sÞ ¼ s2vrðcÞ þ ½1 � bð1 � sÞ�E½kðc; tÞ � Pwðc; tÞ � Qwðc; tÞ�: ð15Þ

Applying inverse Elzaki transform on both sides of Eq (15),

wðc; tÞ ¼ E� 1½s2vrðcÞ þ ½1 � bð1 � sÞ�E½kðc; tÞ � Pwðc; tÞ � Qwðc; tÞ��; ð16Þ

wðc; tÞ ¼ vrðcÞ þ E� 1½1 � bð1 � sÞ�E½kðc; tÞ � Pwðc; tÞ � Qwðc; tÞ�: ð17Þ

Using the Adomian decomposition technique [21], the series expansion of the solution is

assumed, as

wðc; tÞ ¼
X1

n¼0

wnðc; tÞ: ð18Þ

Using the decomposition defined by Eq (18), Eq (17) can be rewritten in the following form.

X1

n¼0

wnðc; tÞ ¼ vrðcÞ þ E� 1½1 � bð1 � sÞ�E½kðc; tÞ

� P
X1

n¼0

wnðc; tÞ � Q
X1

n¼0

wnðc; tÞ�:
ð19Þ

The following recursive relation is obtained by the term by term comparison on both sides

of Eq (19).

w0ðc; tÞ ¼ vrðcÞ; ð20Þ

wnþ1ðc; tÞ ¼ E� 1½1 � bð1 � sÞ�E½kðc; tÞ � Pwnðc; tÞ � Qwnðc; tÞ�; n � 0: ð21Þ

The approximate analytical solution can be determined, as

wðc; tÞ � w0ðc; tÞ þ w1ðc; tÞ þ w2ðc; tÞ þ . . . :wmðc; tÞ; m ¼ 0; 1; 2 . . . ð22Þ

4 Applications

Example 3.1 Consider the fractional order gas-dynamics equation of the form

Db
t wþ

1

2
ðw2Þ

c
¼ w � w2; 0 < b � 1; t > 0; ð23Þ
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with the initial condition

wðc; 0Þ ¼ e� c: ð24Þ

Applying Elzaki transform on both sides of Eq (23) with fractional order Caputo-Fabrizio
derivative and using Eq (34), the following equation is obtained.

Wðc; sÞ ¼ s2e� c þ ½1 � bð1 � sÞ� Eðw � w2 �
1

2
ðw2Þ

c
Þ

� �

: ð25Þ

Applying inverse Elzaki transform on (25), the resulting equation becomes.

wðc; tÞ ¼ e� c þ E� 1½1 � bð1 � sÞ� Eðw � w2 �
1

2
ðw2Þ

c
Þ

� �

: ð26Þ

The recursive relation given by Eqs (20) and (22) can be expressed, as

w0ðc; 0Þ ¼ e� c: ð27Þ

X1

n¼0

wnþ1ðc; tÞ ¼ e� c þ E� 1½1 � bð1 � sÞ½Eð
X1

n¼0

wnðc; tÞ

�
X1

n¼0

w2

nðc; tÞ �
1

2
ð
X1

n¼0

w2

nðc; tÞÞcÞ��:
ð28Þ

The successive terms are determined, as follows:

w1ðc; tÞ ¼ E� 1 f1 � bð1 � sÞg Eðw0 � w2
0
�

1

2
ðw2

0
Þ
c
Þ

� �� �

¼ e� cE� 1f1 � bð1 � sÞgs2

¼ e� cð1 � bþ btÞ;

ð29Þ

w2ðc; tÞ ¼ E� 1½f1 � bð1 � sÞg½Eðe� cð1 � bþ btÞ � ðe� cð1 � bþ btÞÞ2

�
1

2
ðe� 2cð1 � bþ btÞ2Þ

c
Þ

##

¼ e� cE� 1½f1 � bð1 � sÞg½ðs2 � bs2 þ bs3Þ��

¼ e� c½ð1 � bÞ2 þ btð2 � 2bþ btÞ�:

ð30Þ

The solution is expressed, as:

wðc; tÞ ¼ e� c þ e� cð1 � bþ btÞ þ e� c½ð1 � bÞ2 þ btð2 � 2bþ btÞ� þ . . . : ð31Þ

The exact solution of the problem at β = 1 available in literature [2, 10, 11], as

wðc; tÞ ¼ exp� cþt: ð32Þ

Example 3.2 Consider the nonlinear non homogenous fractional order gas-dynamics equa-
tion

Db
t wþ wwc � wð1 � wÞ þ e� cþt ¼ 0; 0 < b � 1; ð33Þ
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with the initial condition

wðc; 0Þ ¼ 1 � e� c: ð34Þ

Applying Elzaki transform on both sides of Eq (33) with fractional order Caputo-Fabrizio
derivative and using Eq (34), the following relation relation is obtained.

Wðc; sÞ ¼ s2ð1 � e� cÞ þ f1 � bð1 � sÞgE½wð1 � wÞ � e� cþt � wwc�: ð35Þ

Application of inverse Elzaki transform on both sides of Eq (35) implies

wðc; tÞ ¼ ð1 � e� cÞ þ E� 1½f1 � bð1 � sÞgE½wð1 � wÞ � e� cþt � wwc��: ð36Þ

The recursive relation given by Eqs (20) and (21) takes the following form.

w0ðc; tÞ ¼ 1 � e� c; ð37Þ

X1

n¼0

wnþ1ðc; tÞ ¼ ð1 � e� cÞ þ E� 1

"

f1 � bð1 � sÞgE

"
X1

n¼0

wnðc; tÞ

 

1 �
X1

n¼0

wnðc; tÞ

!

� e� cþt �
X1

n¼0

wnðc; tÞ
@

@c

X1

n¼0

wnðc; tÞ

##

:

ð38Þ

Table 2. Approximated solution of Example 3.1 at t = 0.005.

ψ/β 0.5 0.6 0.7 0.8 0.9 1

0.1 1.587995323 1.416440637 1.262802184 1.270799653 1.009273979 0.909384226

0.2 1.436877588 1.281648489 1.142630668 1.019824125 0.913228612 0.822844875

0.3 1.300140607 1.159683510 1.033894983 0.922775028 0.826323644 0.744540832

0.4 1.176415870 1.049325032 0.935506867 0.834961374 0.747688553 0.673688404

0.5 1.064465098 0.949468553 0.846481618 0.755054294 0.676536580 0.609578476

0.6 0.963167851 0.859114674 0.765928242 0.683608554 0.612155612 0.551694145

0.7 0.871510311 0.777359103 0.693040533 0.618554599 0.553901303 0.499080644

0.8 0.788575140 0.703383604 0.627089006 0.559691346 0.501190625 0.451586842

0.9 0.713532293 0.636447804 0.567413597 0.506429673 0.453496031 0.408612672

1 0.645630718 0.575881788 0.513417054 0.458236517 0.410340178 0.369728035

https://doi.org/10.1371/journal.pone.0300436.t002

Table 1. Approximated solution of Example 3.1 at t = 0.01.

ψ/β 0.5 0.6 0.7 0.8 0.9 1

0.1 1.592536477 1.421351190 1.267902527 1.132190487 1.014215069 0.913976275

0.2 1.440986593 1.286091741 1.147245649 1.024448317 0.917699945 0.826999933

0.3 1.303858588 1.163703930 1.038070790 0.926959170 0.830636906 0.748300484

0.4 1.179780039 1.052962859 0.939285294 0.838743420 0.751349003 0.677090278

0.5 1.067509124 0.952760195 0.849900480 0.758929979 0.679848692 0.612656193

0.6 0.965922199 0.862093075 0.769021756 0.686708243 0.615152535 0.554354633

0.7 0.874002549 0.780054072 0.695839660 0.621359313 0.556613031 0.501600815

0.8 0.790830210 0.705822112 0.629621761 0.562229156 0.503644298 0.453867186

0.9 0.715572765 0.638654258 0.569705329 0.508725978 0.455716206 0.410676013

1 0.647477013 0.577878269 0.515490699 0.460314301 0.412349075 0.371595023

https://doi.org/10.1371/journal.pone.0300436.t001
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The next term in the series can be computed, as

w1ðc; tÞ ¼ E� 1 f1 � bð1 � sÞgE w0ð1 � w0Þ � e� cþt � w0

@w0

@c

� �� �

¼ � e� cðet � bÞ:

ð39Þ

Table 3. Comparison between exact and approximated solutions of Example 3.1 at β = 1.

ψ/t Exact at 0.01 Approximated at 0.01 Exact at 0.005 Approximated at 0.005

0.1 0.913931185 0.913976275 0.909372934 0.909384226

0.2 0.826959133 0.826999933 0.822834658 0.822844875

0.3 0.748263567 0.748300484 0.744531587 0.744540832

0.4 0.677056874 0.677090278 0.673680039 0.673688404

0.5 0.612626394 0.612656619 0.609570907 0.609578479

0.6 0.554327284 0.554354633 0.551562566 0.551569414

0.7 0.501576069 0.501600815 0.499074447 0.499080644

0.8 0.453844795 0.453867186 0.451581284 0.451586842

0.9 0.410655752 0.410676013 0.408607598 0.408612672

1 0.371576691 0.371595023 0.369723444 0.369728035

https://doi.org/10.1371/journal.pone.0300436.t003

Table 5. Approximated solution of Example 3.2 at t = 0.005.

ψ/β 0.5 0.6 0.7 0.8 0.9 1

0.1 −0.36791643 −0.27130790 −0.18082415 −0.09034041 0.000143323 0.090627065

0.2 −0.24322000 −0.15032695 −0.06845388 0.013419132 0.095292266 0.177165341

0.3 −0.11494069 −0.04085887 0.033222946 0.107304768 0.181386590 0.255468412

0.4 −0.00884006 0.058191942 0.125223946 0.192255951 0.259287956 0.326319960

0.5 0.087163762 0.147816828 0.208469894 0.269122960 0.329776026 0.390429092

0.6 0.174031616 0.228912779 0.283793943 0.338675106 0.393556270 0.448437434

0.7 0.252632900 0.302291430 0.351949960 0.401608491 0.451267052 0.500092555

0.8 0.323754283 0.368687179 0.413620075 0.458552972 0.503485868 0.548418765

0.9 0.388107571 0.428764537 0.469421503 0.510078469 0.550735435 0.591392401

1 0.446336834 0.483124778 0.519912723 0.556700672 0.593488611 0.630276555

https://doi.org/10.1371/journal.pone.0300436.t005

Table 4. Approximate solution of Example 3.1 at t = 0.01.

ψ/β 0.5 0.6 0.7 0.8 0.9 1

0.1 −0.36634989 −0.27586615 −0.18538241 −0.09489668 −0.00441492 0.086068814

0.2 −0.23632451 −0.15445143 −0.07257835 0.929471544 0.092116779 0.173040866

0.3 −0.11867267 −0.04459085 0.029490966 0.103572788 0.177654610 0.251736432

0.4 −0.01221698 0.548151070 0.121847111 0.188879116 0.255911120 0.322943125

0.5 0.084108275 0.144713419 0.205414407 0.266067473 0.326720539 0.387373605

0.6 0.017126689 0.226148060 0.281029224 0.335910388 0.390791551 0.445672715

0.7 0.250131279 0.299789809 0.349448339 0.399106870 0.448765400 0.498423930

0.8 0.321490722 0.366423619 0.411356515 0.456289411 0.548687281 0.546155204

0.9 0.386059417 0.426716383 0.467373349 0.508030315 0.548687281 0.599344247

1 0.444483588 0.481271532 0.518059476 0.554847420 0.591635364 0.628423308

https://doi.org/10.1371/journal.pone.0300436.t004
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Table 6. Comparison between exact and approximated solutions of Example 3.2 at β = 1.

ψt Exact at 0.01 Approximated at 0.01 Exact at 0.005 Approximated at 0.005

0.1 0.086068814 0.086068814 0.090627065 0.090627065

0.2 0.173040866 0.173040866 0.177165314 0.177165314

0.3 0.251736432 0.251736432 0.255468412 0.255468412

0.4 0.322943125 0.322943125 0.326319960 0.326319960

0.5 0.387373605 0.387373605 0.390429092 0.390429092

0.6 0.445672715 0.445672715 0.448437434 0.448437434

0.7 0.498423930 0.498423930 0.500925552 0.500925552

0.8 0.546155204 0.546155204 0.548418765 0.548418765

0.9 0.589344247 0.589344247 0.591392401 0.591392401

1 0.628423308 0.628423308 0.630276555 0.630276555

https://doi.org/10.1371/journal.pone.0300436.t006

Fig 1. Approximated solution of Example 3.1 at different values of β, (a): β = 0.5, (b): β = 0.7, (c): β = 0.9.

https://doi.org/10.1371/journal.pone.0300436.g001
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The solution can be expressed, as

wðc; tÞ ¼ 1 � e� c � e� cðet � bÞ þ . . . ð40Þ

The exact solution of the problem for β = 1 is available in literature [10], as

wðc; tÞ ¼ 1 � exp� cþt: ð41Þ

Fig 2. Comparison of exact and approximate solutions of Example 3.1 at β = 1, (a): Exact Solution, (b): Approximated Solution.

https://doi.org/10.1371/journal.pone.0300436.g002

Fig 3. Variation in the solution of Example 3.1 for different values of β at t = 0.01.

https://doi.org/10.1371/journal.pone.0300436.g003
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5 Results and simulations

The approximated numerical values for Example 3.1 are summarized in Tables 1 and 2. Com-

parison between the exact and approximated solution provided in Table 3 show the accuracy

of the determined solution. The approximated mathematical calculations for Example 3.2 are

summarized in Tables 4 and 5. The efficacy of the proposed method is established through

comparison between the exact and approximated solutions as shown in Table 6.

The physical behavior of the solution of gas-dynamics equation gained by using the pro-

posed methodology involving the Elzaki transform with the Caputo-Fabrizio fractional differ-

ential operator is observed through graphs. The solution obtained by the presented method is

in series form and its value changes with the change in the fractional order β of derivative.

Fig 1 describes the three-dimensional graph of Example 3.1 for different values of fractional

parameter i.e. β = 0.5, 0.7, 0.9. It demonstrates the variation in the numerical results obtained

for different values of β. Fig 2 shows the comparison between the exact and the approximate

solutions of Example 3.1 at β = 1. This comparison shows a strong agreement between the

obtained solution and exact solution.

The behavior of the solution of Example 3.1 at time 0.01 and 0.005 is shown through line

graphs presented in Figs 3 and 4. Different colors are used to depict the line graph at different

values of β to show the comparison. The yellow, red, green and blue lines indicated the plots of

solution at β = 0.5, β = 0.7, β = 0.9 and β = 1, respectively.

The effect of fractional order β on the solution of Example 3.2 is graphically illustrated in

Figs 5–8. The graph in Fig 5 shows the physical behavior of the obtained solution using the

presented technique at β = 0.5, 0.7 and β = 0.9. Fig 6 shows the comparison between the exact

and the approximate solutions of Example 3.2 at β = 1. This comparison shows a strong con-

nection among the solution and the exact solution. Figs 7 and 8 present the line plots of the

solution of Example 3.2 for β = 0.5, 0.7, 0.9 at t = 0.01 and t = 0.005 respectively.

Fig 4. Variation in the solution of Example 3.1 for different values of β at t = 0.005.

https://doi.org/10.1371/journal.pone.0300436.g004
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6 Discussion of the results

The numerical illustration of the proposed method is presented using two examples in Section

3. These two examples have been previously studied with different fractional time-derivatives

and their exact solutions are known at β = 1 [2, 10, 11]. Thus, the selected numerical examples

allow a comparison of the obtained results with the results available in literature. It is worth

mentioning that the CF derivative is utilized for the first time to solve the fractional order gas-

dynamics equation in this work. On comparing the graphs for different values of the fractional

order β with the graphs given in [2, 10, 11], it is observed that the CF derivative employed in

the proposed Elzaki Adomian decomposition method provides results with good accuracy

Fig 5. Approximated solution of Example 3.2 at different values of β, (a): β = 0.5, (b): β = 0.7, (c): β = 0.9.

https://doi.org/10.1371/journal.pone.0300436.g005
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with only a small number of terms calculated in the power series solution. The obtained results

are compared with the exact solutions at β = 1 which are given in [2, 10, 11] and the results are

summarized Tables 3 and 6, Figs 2 and 6 which confirm the accuracy of the obtained results.

Based on the above comparisons, it can be concluded that the proposed technique can be

effectively applied to determine the solution of homogeneous and non-homogeneous gas-

dynamics equations with given initial conditions with high accuracy. Since the theory of

Fig 6. Comparison of exact and approximate solutions of Example 3.2 at β = 1, (a): Exact Solution, (b): Approximated Solution.

https://doi.org/10.1371/journal.pone.0300436.g006

Fig 7. Variation in the solution of Example 3.2 for different values of β at t = 0.01.

https://doi.org/10.1371/journal.pone.0300436.g007
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fractional calculus and fractional order models is still evolving, the physical applications of the

use of fractional derivative are yet to be fully explored. However, we can observe that the solu-

tion surface for the gas-dynamics equation continuously changes for increasing value of frac-

tional order β. Ultimately, the solution surface at β = 1 coincides with the solution of the

classical integer order gas-dynamics equation which confirms that CF derivative is indeed a

generalization of the classical integer order derivative.

7 Conclusion

The fractional gas-dynamics equation arises in the study of gas motion and its effect on physi-

cal construction. In this work, a novel analytical method is proposed to retrieve the analytical

approximate solutions of the time-fractional gas-dynamics equation with a fractional temporal

operator defined in the Caputo-Fabrizio sense. The proposed method employs the concepts of

the Elzaki transform along with the Adomian decomposition. The presented method is dem-

onstrated with the help of two numerical applications. Numerical and graphical observations

for the applications are also provided which show the efficiency of the proposed method for

accurate solutions of fractional-order homogenous and non-homogenous gas-dynamics equa-

tions. From Tables 1 and 2 for Example 3.1 and Tables 4 and 5 for Example 3.2, it is evident

that the solution of the gas-dynamics equation varies with increasing value of β. The accuracy

of the obtained solutions is established through the comparison of the obtained solutions at β
= 1 with the exact solutions available in the literature as shown in Tables 3 and 6. The obtained

results are also explained through the graphical simulations presented in Figs 1–8. The

reported results establish the accuracy of the developed mathematical technique. Moreover,

the obtained solution may help to explore many problems related to the gas-dynamics

equation.
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