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Abstract

The diversity of functional feeding anatomy is particularly impressive in fishes and correlates

with various interspecific ecological specializations. Intraspecific polymorphism can mani-

fest in divergent feeding morphology and ecology, often along a benthic–pelagic axis. Arctic

charr (Salvelinus alpinus) is a freshwater salmonid known for morphological variation and

sympatric polymorphism and in Lake Þingvallavatn, Iceland, four morphs of charr coexist

that differ in preferred prey, behaviour, habitat use, and external feeding morphology. We

studied variation in six upper and lower jaw bones in adults of these four morphs using geo-

metric morphometrics and univariate statistics. We tested for allometric differences in bone

size and shape among morphs, morph effects on bone size and shape, and divergence

along the benthic-pelagic axis. We also examined the degree of integration between bone

pairs. We found differences in bone size between pelagic and benthic morphs for two bones

(dentary and premaxilla). There was clear bone shape divergence along a benthic–pelagic

axis in four bones (dentary, articular-angular, premaxilla and maxilla), as well as allometric

shape differences between morphs in the dentary. Notably for the dentary, morph explained

more shape variation than bone size. Comparatively, benthic morphs possess a compact

and taller dentary, with shorter dentary palate, consistent with visible (but less prominent)

differences in external morphology. As these morphs emerged in the last 10,000 years,

these results indicate rapid functional evolution of specific feeding structures in arctic charr.

This sets the stage for studies of the genetics and development of rapid and parallel cranio-

facial evolution.

Introduction

The origins and maintenance of biodiversity are strongly influenced by natural selection acting

upon intraspecific variation with fitness consequences [1,2], with many traits directly affecting

survivorship and reproduction exhibiting extensive diversification. Adaptive evolution in
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vertebrates entails a substantial degree of variation in feeding behaviour and biomechanics of

prey capture and processing that may lead to speciation [3–5]. Morphological adaptations in

functional feeding elements are associated with rapid diversification of ecology in many verte-

brate groups, sometimes resulting in specialization on diverse prey types within lineages [3,6].

The development of these feeding elements is influenced by an interplay of genes and environ-

mental factors during ontogeny [e.g., 7]. Additionally, developmental remodelling can accom-

modate ontogenetic niche shifts, for instance within fishes [3,7], and may contribute to

intraspecific and interspecific variation in adult morphology.

Extensive complexity and diversification of skull anatomy among fishes correlates with

highly diverse feeding ecologies [3,8–10]. Evolution of several functional units [8] has given

rise to a diversity of feeding methods (e.g., ram, suction, biting) for optimal foraging on spe-

cific prey types, varying widely within and among species [8,9]. Independent evolution of oral

jaws, hyoid “jaws” and pharyngeal jaws for prey capture and food processing likely contributed

to trophic and morphological diversification [3]. Radiations of ecomorphology and associated

prey have occurred widely in fishes, including Pomacentridae [11], Labridae [12], and Cichli-

dae [13]. While most studies investigate morphological variation among species or higher taxa

[8–10,14–16], extensive variation in cranial morphology also exists within species [15,17].

Sympatric polymorphism, where two or more morphs within a species inhabit the same

geographic area, has been found in many lacustrine fish species and seems to be promoted by

vacant niches, habitat variance, differences in spawning preferences, and relaxation of inter-

specific competition [18,19]. Resulting morphological divergence is often due to differences in

resource use, mainly in benthic vs. pelagic habitats, leading to specializations in traits related

to foraging, prey capture and processing [20]. The occurrence of intraspecific morphs that uti-

lize different resources (e.g., prey, habitats) has been widely documented in northern freshwa-

ter fishes inhabiting recently de-glaciated systems [20,21]. Salmonid cranial morphology is less

derived compared to more divergent groups [17,22], yet within this group many cases of sym-

patric morphological polymorphism have been described [19,23–25]. Arctic charr (Salvelinus
alpinus) shows extensive phenotypic variation throughout its geographic distribution [26] and

sympatric polymorphism of lake populations is for instance found in Norway [e.g., 27,28],

Siberia [e.g., 29], Greenland [e.g., 30] and Iceland [31,32]. In Iceland, the best example of sym-

patric polymorphism is Lake Þingvallavatn, Iceland’s largest natural lake [33]. The lake formed

~10,000 years ago in a rift zone, and is currently a deep lake with lava rocks in most of its

banks and shallows [34]. It was colonized by anadromous charr [35,36] that subsequently

became isolated. The lake now hosts four morphs of arctic charr (Fig 1A and 1B), two benthic:

large benthivorous (LB) and small benthivorous (SB) charr and two pelagic: planktivorous

(PL) and piscivorous (PI) charr [37,38]. The LB-, SB- and PL-charr are genetically distinct

[36,39], while the PI-charr is more heterogeneous genetically, with similarity to either PL-

and/or LB-charr [39]. The morphs differ in adult size, diet, habitat use, life history, spawning

times, and external and fin morphology [38,40–44]. Two are large (LB and PI) and two small

(SB and PL), hereafter referred to as the morph size gradient. Benthic morphs live along the

stony littoral bottom and feed mainly on snails [40], and have subterminal mouths (i.e., short

lower jaw) and blunt snouts [44,45]. Pelagic morphs more resemble anadromous charr, being

more fusiform with a terminal mouth (i.e., long lower jaw) and pointed snout [44,45]. PL-

charr feed mostly on crustacean zooplankton, and the larger PI-charr feed mostly on three-

spined stickleback [40,45]. Most studies on arctic charr diversity have examined external mor-

phology, except studies of gill raker counts in adults [44], fin ray variation in lab reared juve-

niles [46] and an unpublished study of internal feeding elements in adults [47]. Notably

Ingimarsson [47], using linear measures, found differences among morphs in maxilla and den-

tary bone shape, relative size of several skull elements, and several teeth traits, with divergence
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mainly along the benthic–pelagic axis. The specific adaptations in cranial morphology by

morph and the degree of integration of variation in bone shape are understudied.

To investigate the functional morphology and impact of prey specialization during diver-

gence of arctic charr along the benthic-pelagic axis [32,48], we studied cranial morphology in

adults of the four sympatric morphs in Þingvallavatn. To test for divergence and integration in

internal feeding structures among morphs, we examined variation in the shape of six cranial

bones in the feeding apparatus: dentary, articular-angular, quadrate, premaxilla, maxilla and

Fig 1. External and internal morphology of Þingvallavatn arctic charr ecomorphs. A) Craniofacial variation; B) Postcranial shape and size variation; C)

Primary upper and lower jaw bones studied; D–I) Anatomy of the upper and lower jaw bones with landmarks used to capture shape.

https://doi.org/10.1371/journal.pone.0300359.g001
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supramaxilla (Fig 1C). We focus on the following questions and predictions: 1) Is there an

allometric component for size or shape of specific bones, and does this vary by morph? We

hypothesize that size will influence shape, however, do not expect this allometry to differ by

morph. 2) Does the shape of any of those six bones differ among morphs? Given divergence in

morph external shape [44], we expect bone shape to differ among the morphs, most likely in

the lower jaw and maxilla. 3) Does morphological differentiation occur along a benthic-pelagic

axis? Again based on external morphology, where benthic morphs have shorter jaws [44], we

expect shortening and compaction of the lower jaw bones (the dentary and/or articular-angu-

lar). We also hypothesize proportionally narrower maxilla (main element of upper jaw) in the

pelagic morphs, based on observed external morphology [49]. 4) Does integration differ

among pairs of bones, between the upper and lower jaw, and across morphs? We expect signif-

icant integration between elements, with high integration among bones within the same jaw,

but less integration across the upper and lower jaw due to ecological divergence in the lower

jaw bones.

Methods

Sample and data collection

This study involves sampling and killing of wild fishes, and for such studies a scientific fish

fieldwork from the Directorate of Fisheries in Iceland (www.fiskistofa.is) is needed. Arnar

Pálsson, an author on this study was in charge and present for all sampling efforts and, for the

period of study, had such scientific fish fieldwork permits (#0460/2021-2.0 and #0042/2014-

2.13). Sexually mature arctic charr from Lake Þingvallavatn were collected (Fall 2020/21)

using composite nets laid overnight (fish died in net) and seine nets (fish were killed by single

blow to the head). Fish were randomly sampled, except we aimed for similar representation of

morphs and sexes (LB: 49 (21%), SB: 82 (34%), PL: 61 (25%) and PI-charr: 48 (20%), S1

Appendix). Each fish was measured (weight, fork length (FL)), and photographed from left lat-

eral view (Canon EOS 77D, EFS 18–135 mm lens), and sex, sexual maturity, and stomach con-

tents were evaluated by dissection. Morph classification was based on sampling location and

date (morphs differ in spawning times and location), external morphology and stomach con-

tents [44,49,50]. Otoliths were extracted from each fish and age determined under 4X magnifi-

cation in a stereomicroscope. Six jaw bones (dentary, articular-angular, quadrate, premaxilla,

maxilla, supramaxilla) were extracted using maceration protocols [50] and photographed

(Canon EOS 77D, 50 mm Microlens). The bones from the left side of the head were arranged

stereotypically: the dentary and maxilla were photographed and landmarked in medial view,

the articular-angular, quadrate and supramaxilla in lateral view, and the premaxilla in fronto-

lateral view. To capture external morphology for morph classification, 37 2D landmarks (see

S2 Appendix) were digitized for each individual using tpsdig2 (http://www.sbmorphometrics.

org/soft-dataacq.html). To study variation in internal feeding structures, we registered 2D

landmarks on the six jaw bones with tpsdig2 (Fig 1D–1I and S3 Appendix). All landmarking

(external and internal) was conducted by one person (GOJ). To test repeatability of the bone

landmarks 168 specimens were landmarked twice. Two landmarks were excluded after the

repeatability analysis, LM 12 for premaxilla (Fig 1G and S3 Appendix) and LM 15 for the

articular-angular (Fig 1E and S3 Appendix) because they were added after the first trial. All

images of fish and bones are available on Figshare+ (doi:10.25452/figshare.plus.25118825).

Landmark data, flatfiles and R-scripts are available on Guithub (https://github.com/

GudbjorgOskJ/CharrBonesTVV).
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Statistical analyses

Landmark data were analysed using the R package geomorph version 4.0.0 [51,52]. Landmark

coordinates were aligned using Generalized Procrustes Analysis (GPA) via the function gpa-
gen. Aligned shape variables were then used for all subsequent analyses. Outliers were identi-

fied using plotOutliers and removed if the bone was damaged. We tested the repeatability of

the bone landmark sets in two ways, using Procrustes ANOVA, using procD.lm, to characterize

measurement error (differences between replicates), as well as two-block partial least squares

(PLS) analysis with the function two.b.pls to analyze the degree of association between the two

replicates (trials). Centroid size (CS) was calculated separately for each of the six bones (CSbone;

indicates use of CS of a bone, and applied to each bone separately), head (CShead) and whole-

body (CSbody). As size is an important predictor for shape in fishes [53,54] and the morphs are

known to differ in adult size and proportions [37], absolute size and the relationship between

CSbody and CShead as well as their relationship with each bone (CSbone) were examined. We

tested for differences in size and allometry of size measures between morphs using Procrustes

ANCOVA using the function procD.lm. As salmonid morphology is influenced by sex and age

[55,56], we investigated the influence of these variables on morph mean and allometry for size

and shape. We then did pairwise tests of groups using the pairwise function to test for signifi-

cant differences between groups. External morphology (whole-body and head shape) was then

examined using Procrustes ANOVA to characterize morph differences.

We tested for bone shape differences among morphs and differences in allometric relation-

ships of bone shape and bone size across morphs using Procrustes ANCOVA, using procD.lm,

with CSbone, morph and their interaction as independent variables. Null (shape = CSbone),

reduced (shape = CSbone + morph) and full models (shape = CSbone x morph) were compared

to determine best fit. When the full model had the best fit, differences in allometric trajectories

were investigated using pairwise with CSbone as a covariate. We tested for significant differ-

ences in both vector angles (vector correlation) and vector lengths (rate of shape change per

unit covariate), considering significance among both tests as robust support for biological dif-

ferences. For all tests α = 0.008 was chosen, using the Bonferroni method as a conservative cor-

rection for multiple comparisons (six bone datasets). Additionally, we considered

comparisons with Z scores <3 as poorly supported, and interpreted results below that as not

biologically meaningful and chose the reduced model for further interpretation. Differences in

allometry among morphs were investigated using plotAllometry and visualized using predicted

values from regression analyses. Principal Component Analysis (PCA, using plotTangent-
Space) was used to visually represent shape variation among individuals and morphs. For

bones that did not show significant differences in allometry among morphs, residuals from a

regression of shape on size (size-corrected shape variables) via procD.lm were used for visuali-

zation. Shape variation along PC axes was summarized with deformation grids and vector

plots from shape.predictor.
To analyze integration among bones, pairs of bones were compared using two-block partial

least squares (PLS) analysis with the function two.b.pls. We compared elements within and

among bones of the upper and lower jaws. The effect sizes were compared to determine if

there was significant variation in levels of integration across different bone pairs or morphs

using compare.pls. For all analyses we used randomized residuals in 1000 permutation proce-

dures to assess statistical significance and estimate the effect sizes (RRPP implemented in geo-
morph, [57]. For integration tests α = 0.003 was chosen as a conservative threshold

(Bonferroni correction for 15 pairwise comparisons among bones). Figures were generated

using R and formatted using Inkscape.
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Results

Differences in body size, sex and age of sympatric morphs

To capture the morphological diversity in the four sympatric morphs from Lake Þingvallavatn

we studied 240 sexually mature individuals. As was expected, morphs differed in size (fork

length FL, F = 350.94, p<< 0.001), log weight (F = 381.28, p<< 0.001) and age (F = 56.75, p

<< 0.001, S4–S6 Appendices). SB- and PL-charr were smaller at sexual maturity than the LB-

and PI-charr. The weight was influenced by sex (p< 0.001), and there was a significant sex by

morph interaction (p = 0.009). The external whole-body (p = 0.001) and head (p = 0.001)

shape differed by morph, with pelagic morphs having a more fusiform body shape and a more

pointed snout (S7 Appendix). There was significant sexual dimorphism in whole-body shape

(R2 = 0.04, p = 0.001, S8 Appendix), with males having a more humped back compared to

females (not a craniofacial trait). These results corroborate morphological descriptions of the

morphs [44] and known sexual dimorphism [56]. There was weak sexual dimorphism (R2 =

0.01, p = 0.007) for shape of head and all six bones (R2� 0.02, S8 Appendix) that will not be

discussed further. Age was strongly correlated with FL (R2 = 0.7), but always explained a lower

proportion of variation than FL (for external shape, bone size and shape variation). Therefore,

FL was used as a covariate in allometry analyses of bone size relative to body size.

Allometry of bone size and shape

Examination showed that all six bone landmarks sets were highly repeatable (S9, S10 and S11

Appendix), the association between replicates was high (r-PLS ~ 0.84–0.99) and variation due

to measurement error was low relative to variation among individuals (R2 = 0.002–0.005, vs.

R2 = 0.89–0.94, S11 Appendix). Thus, the landmarks developed here for shape of these six

bones in salmonids appear to be robust.

Predictably, the size of all bones (CSbone) increased with body length (loge FL, R2� 0.94,

p = 0.001, Fig 2 and S6 and S12 Appendices). Morph and morph by size interaction, while sig-

nificant, accounted for a small fraction of the variation (R2� 0.04, S6 Appendix). Additional

testing revealed small differences in bone size allometry between pairs of morphs (S13 and S14

Appendices). These differences mostly reflected differences between larger (PI-charr) and

smaller (SB-, PL-charr) morphs. PI-charr have significantly larger dentary bones than all other

morphs (p = 0.001), as well as significantly larger articular-angular, maxilla, and supramaxilla

bones than both LB- and PL-charr (p< 0.002). PL-charr also have a significantly smaller quad-

rate, premaxilla and supramaxilla compared to SB-charr (p = 0.001). As CSbone was highly cor-

related with body size (CSbody and loge FL) and a common allometric relationship was found

among morphs, we used CSbone as size measures in subsequent analyses.

For all bones, shape was significantly affected by size (CSbone), the allometric relationship

explained 20–30% of shape variation for dentary, articular-angular, quadrate, and maxilla (R2

= 0.2–0.3, Table 1, for premaxilla and supramaxilla, bone size only explained 10–15%). Note,

for the dentary and articular-angular morph explained a similar amount of the shape variation

as size (Table 1 and S15 Appendix). The allometry of all bones varied by morph (p = 0.001,

Table 1), except for the quadrate, however the effects were small for maxilla and supramaxilla.

Further comparisons of vector correlation angles and lengths indicated that allometric rela-

tionships vary only markedly by morph in the dentary (S16–S18 Appendices). For this bone,

while the common allometry and morph effects on shape were much larger than the interac-

tion, there was significant support for allometric differences among several morph pairs (S16

Appendix). Specifically, the PI-charr differed significantly in allometric trajectory orientation

from all other morphs (p� 0.003), converging on a similar shape as LB-charr at larger size.

PLOS ONE Feeding element divergence in sympatric morphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0300359 May 21, 2024 6 / 27

https://doi.org/10.1371/journal.pone.0300359


PLOS ONE Feeding element divergence in sympatric morphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0300359 May 21, 2024 7 / 27

https://doi.org/10.1371/journal.pone.0300359


While the allometric trajectories of LB- and SB-charr had similar lengths, the rate of shape

change was higher in LB- compared to SB-charr (p = 0.001). Therefore, we present below the

mean shape differences among morphs from the full model (CSbone X morph) for the dentary

but for all other bones results from the reduced model (CSbone + morph), as both common

allometry and morph affected shape variation significantly (p = 0.001). All visualizations,

unless otherwise noted, have been corrected for size to remove the effects of allometry on

shape. We focus first on the lower jaw bones and then the upper jaw.

Benthic and pelagic divergence in shape of specific lower jaw bones

For the dentary and articular-angular, the morph effect on shape variation was similar in mag-

nitude as the common allometric effect (20–30% of shape variation, Table 1). For the other

bones the size (allometry) was considerably stronger.

Most dramatically, pairwise tests revealed differences in dentary shape between all morph

pairs across the benthic-pelagic axis, except among the two smaller morphs (SB- and PL-charr,

p = 0.119, Table 2). Also, the comparison PI-SB-charr was weakly supported (Z < 3). No

shape differences were within morphotype (LB-SB-charr, PL-PI-charr). The dentary shape dif-

ferences by morph were visualized using PCA (Fig 3), and due to variation in allometry among

morphs, size effects were not removed. The morphs separated along a benthic-pelagic axis on

PC1 (50% of the total variation) with pelagic morphs, on average, having an elongated dentary,

increased length of the dental palate, more acute angle between ridges, and vertically inclined

lingual palate relative to benthic morphs, which aligns with the hypothesis of shorter lower jaw

in benthic charr. PC1 represents elongation of the dentary bone, with positive values repre-

senting a more elongate shape, with extension of the dental palate containing the teeth, and

negative values representing a compact shape with reduction in the length of the dental palate.

Positive values were also associated with a more acute angle between the dorsal and central

ridges, reducing the size of the Meckelian notch, as well as a more vertical inclination of the

lingual palate. PC2 explained 13% of the total variation, and mainly split the morphs by size,

the larger morphs (LB-, PI-charr) having positive values and taller bones. The associated shape

Fig 2. Size and shape allometry of dentary, articular-angular, premaxilla and maxilla (from top to bottom, inset

pictures of each bone). Left panels: relationships between bone size (y) and fork length (x) by morph; Right panels:

relationships between bone shape (y) and bone size (x). Inset are the associated shape changes related to each

component, grey outlines the mean shape, and black the two extremes for each PC. Shown are values for individuals

(open circles) and the predicted values (filled) of regressions for both bone size (CSbone) vs body size (loge FL) or bone-

shape versus bone-size. Loge, natural log transformation.

https://doi.org/10.1371/journal.pone.0300359.g002

Table 1. The influence of size (bone centroid size) and morph on shape variation in 6 jaw bones. Analysed with Procrustes ANCOVA, testing for main and interaction

terms. For all bones, except quadrate, was the full model with interaction the best fit.

Bone Shape Loge CS Effect Morph Effect Morph x Loge CS Interaction Effect

R2 F Z P R2 F Z P R2 F Z P

Dentary 0.237 107.58 5.29 0.001 0.228 34.49 6.35 0.001 0.026 3.89 5.09 0.001*
Articular-angular 0.190 72.95 5.26 0.001 0.184 23.43 7.43 0.001 0.020 2.61 3.56 0.002

Quadrate 0.298 102.95 6.32 0.001 0.020 2.35 2.98 0.002 - - - -

Premaxilla 0.165 55.15 9.14 0.001 0.110 12.27 9.53 0.001 0.030 3.33 5.19 0.001

Maxilla 0.199 67.56 7.75 0.001 0.096 10.87 7.54 0.001 0.022 2.53 2.83 0.001

Supramaxilla 0.099 27.66 6.27 0.001 0.074 6.90 5.29 0.001 0.027 2.55 2.75 0.003

*Pairwise tests (S17 and S18 Appendices) indicated only the dentary had true differences in allometry by morph.

R2 = coefficient of determination; F = F-statistic; Z = Z-statistic; P = P-value,� 0.008 in bold (significant after Bonferroni correction).

https://doi.org/10.1371/journal.pone.0300359.t001
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changes mainly affected the height of the whole bone, with negative PC values associated with

thinner bones overall, reduced height of the mandibular symphysis, coronoid process, and

ventral shelf. Together, PC1 and PC2 separated all morphs clearly in shape space, but they

overlap (possibly due to overlapping sizes ranges and/or more size variation within LB-charr).

Pairwise tests for articular-angular shape also revealed differences between all morph pairs

across the benthic-pelagic axis. Biologically meaningful differences were not found within

morphotypes (Z<3, see Table 2). The morphs aligned along a benthic-pelagic axis on PC1

which explained 37% of the variation. The two pelagic morphs were largely overlapping

Table 2. Morph differences in bone shape estimated by pairwise distances in mean shape, from the best fit ANCOVA models for each bone (Table 1).

Bones Morph pairs d UCL (95%) Z P-value

Dentary LB-PI 0.176 0.129 3.91 0.001

SB-PL 0.106 0.110 1.24 0.119

LB-PL 0.154 0.131 3.15 0.001

PI-SB 0.131 0.117 2.65 0.005

LB-SB 0.070 0.072 1.47 0.070

PI-PL 0.042 0.051 0.60 0.270

Articular-angular LB-PI 0.088 0.023 6.77 0.001

SB-PL 0.063 0.022 4.43 0.001

LB-PL 0.104 0.035 5.12 0.001

PI-SB 0.059 0.038 3.04 0.001

LB-SB 0.055 0.039 2.72 0.005

PI-PL 0.038 0.035 1.98 0.021

Quadrate LB-PI 0.024 0.025 1.54 0.065

SB-PL 0.022 0.021 1.73 0.045

LB-PL 0.037 0.037 1.58 0.050

PI-SB 0.048 0.038 2.65 0.006

LB-SB 0.038 0.040 1.43 0.080

PI-PL 0.046 0.035 2.91 0.004

Premaxilla LB-PI 0.094 0.036 5.62 0.001

SB-PL 0.087 0.030 6.30 0.001

LB-PL 0.086 0.054 3.70 0.001

PI-SB 0.098 0.053 4.56 0.001

LB-SB 0.034 0.054 -0.38 0.653

PI-PL 0.049 0.053 1.31 0.090

Maxilla LB-PI 0.024 0.019 2.35 0.010

SB-PL 0.051 0.017 5.93 0.001

LB-PL 0.053 0.028 4.06 0.001

PI-SB 0.048 0.031 3.28 0.001

LB-SB 0.033 0.032 1.83 0.037

PI-PL 0.050 0.028 4.04 0.001

Supramaxilla LB-PI 0.022 0.038 0.002 0.490

SB-PL 0.083 0.033 4.60 0.001

LB-PL 0.061 0.056 1.89 0.028

PI-SB 0.102 0.061 3.41 0.001

LB-SB 0.096 0.059 3.37 0.001

PI-PL 0.051 0.056 1.33 0.092

UCL = upper confidence level; Z = Z-statistic; P-value� 0.008 in bold (Bonferroni correction).

https://doi.org/10.1371/journal.pone.0300359.t002
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(positive values), with elongated anterior process of the angular “wing”, shorter coronoid pro-

cess, and narrower quadrate facet. The benthic morphs had more shape variation (especially

the LB-charr, as in dentary) and more compact bone shape and wider quadrate facet overall,

with LB-charr individuals being most compact (Fig 3). PC1 represents changes in relative sizes

of the anterior process of the angular ‘wing’, retroarticular, and quadrate facet. Individuals

with positive PC1 values show anterior extension of the anterior process of the angular “wing”,

Fig 3. Strong morph effects on shape variation in the lower jaw bones, dentary (top) and articular angular (bottom). For the dentary, size effects were not

removed, but effects of size were removed for articular angular (and other bones, see below). PC-plots of specimens and deformation grids show how shape

differences by morphs (grey outlines the mean shape and black lines the two extremes for each PC). None of the shape warps are magnified. Each dot

represents an individual and the ellipses 95% CI for the distribution by morph (large dot represents the mean for each morph in these dimensions). PC1 and 2

explain 50% and 13% of the variation in dentary, respectively. For the articular angular (bottom) PC1 and 2 explain 37% and 13%.

https://doi.org/10.1371/journal.pone.0300359.g003
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increase in the size of the anterior process of the retroarticular but dorso-ventral compression

of the retroarticular, and narrow quadrate facet. Negative values associate with a more com-

pact shape overall, particularly with restrictions to the length of the anterior process of the

angular "wing”, however the coronoid process is extended anteriorly, a more square retroarti-

cular, and wider quadrate facet. PC2 explains 13% of the variation and mainly represents dif-

ferences in the ventral process of the retroarticular, with individuals with negative PC values

with a shorter process. The morphs did not separate along PC2.

In sum, the morph differences in the articular-angular and in particular the dentary were

large. In contrast, for the third lower jaw bone the quadrate morph had weak effects on shape

(R2 = 0.02, Z< 3, Table 1). PCA and pairwise tests for mean quadrate shape differences did

not reveal shape divergence among morphs (Table 2 and S19 Appendix).

Weaker divergence in shape of upper jaw bones

For the upper jaw bones the magnitude of the morph and size effects on shape were similar

(~10–15%, Table 1) but notably lower than in the dentary and articular-angular. Morph had

strongest effect on the premaxilla and weakest (nearly none) on the supramaxilla. The analyses

were done on size corrected data, assuming common allometry.

Pairwise tests for mean premaxilla shape differences among morphs indicated significant

differences in all morph pairs across the benthic-pelagic axis (p� 0.001, Table 2). No differ-

ences were found within morphotype. The morphs separated along a benthic-pelagic axis on

PC1 (25% of the variation) which captured morphological shape differences of the posterior

and anterior limbs. The PL- and PI-charr had positive PC1 values with elongated and narrow

limbs, while SB- and LB-charr overlapped with more negative PC1 values, having compact and

wide limbs (Fig 4). PC2 explained 14% of the variation, representing variation due to differ-

ences in the curvature of ascending limb but did not separate morphs.

For maxilla shape, pairwise tests of mean shape between morphs revealed significant sepa-

ration between all morphs (p = 0.001), except the SB-LB-charr and LB-PI-charr (Table 2).

Therefore, maxilla diverged neither exclusively along the benthic-pelagic axis nor the size gra-

dient. The morphs separated on the benthic-pelagic axis on PC3 (10% of variation). This com-

ponent represents the height of the maxilla (positive: tall and negative: short) aligning with our

hypothesis, but the distributions overlapped substantially (Fig 4). PC1 explained 33% of the

total variation, but it represents technical variation (either due to rotation or tilting of the bone

during photographing, that was randomly distributed with respect to morph). PC2 (23% of

total variation), representing biological variation due to differences in the curvature of the

maxillary head and angle of the maxillary neck, and separated the PL slightly from other

morphs. In combination, PC2 and PC3 indicate that PL-charr has reduced morphological vari-

ation and appears to have a thinner maxillary body and caudal lobe than the other morphs.

Pairwise comparisons of mean supramaxilla shape differences among morphs indicated SB

deviated from all other morphs (p = 0.001, Table 2). PC1 and PC2 explained 62% of variation,

but no combination of PCs revealed clearly how SB-charr shape deviated (S19 Appendix). We

note the morphological variation in SB appeared reduced relative to other morphs.

Covariation in shape change among bones

Lastly, we tested for covariation in shape among bones. Within the upper jaw and within the

lower jaw, shape covaried significantly among all bones (p = 0.001). The degree of covariation

was greatest for the dentary and articular-angular (r-PLS = 0.92; Z = 7.08, S20 Appendix) and

much higher compared to the other pairs (r-PLS = 0.54–0.69). Among the jaws, all covariation

among bones was significant (p = 0.001) and the degree of covariation was moderate (r-PLS ~
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0.54–0.78, S20 Appendix). We did not find significant differences in effect size among pairs in

the lower jaw, however in the upper jaw integration between the premaxilla and supramaxilla

was found to be lower (p = 0.006) than all other comparisons, and integration between the

maxilla and supramaxilla was found to be higher (p = 0.002) (S20 Appendix). In addition, anal-

yses did not reveal significant differences in effect size between morphs for any of the bone

Fig 4. Pronounced divergence in premaxilla of the upper jaw and subtle changes in maxilla shape. Size corrected PC-plots of specimens and deformation

grids showing how the morphs differ in mean (top) premaxilla and (bottom) maxilla shape (grey outlines the mean shape and black lines the extremes for each

PC). None of the warps (are magnified, representation of PC plots and warps as in Fig 3. For premaxilla (top) PC1 and PC2 explain 25% and 14% of the

variation respectively. For maxilla (bottom) PC2 and PC3 explain 23% and 10% respectively (PC1 was biased by sampling error, and not depicted).

https://doi.org/10.1371/journal.pone.0300359.g004
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pairs (comparisons limited to bones that showed significant covariation or biological impor-

tance as described above, quadrate and supramaxilla excluded).

Discussion

Evolutionary divergence along the benthic-pelagic axis occurs repeatedly among fishes [58–

61]. Body elongation is a consistent trend along the benthic-pelagic axis in marine and fresh-

water fishes [58] as well as fin adaptations for sustained swimming in pelagic environments

and manoeuvrability in benthic habitat [59,62]. Craniofacial responses to benthic and pelagic

prey resources are quite complex [3,63–65]. Prey specialization along this axis leads to mor-

phological adaptation of multiple traits that can be either integrated or modular, with known

examples of functional convergence via a range of morphological solutions [66]. Salmonids are

known for extensive variation in feeding specializations and morphology but to date few stud-

ies have investigated variation in internal structures among or within a salmonid species

[except see, 17,23,24,46,47,67,68]. Notably, in addition to pioneering work of Ingimarsson

[47], one study reported differences in dentary and articular-angular shape in parr, between

several salmonid species and also within rainbow trout (Oncorhynchus mykiss, [17]).

We report morph differences in body, head and bone shape, with bones showing more pro-

nounced differences. The whole-body and head shape differences by morph are consistent

with previous studies [44,56]. We examined six cranial bones tied directly to feeding and prey

capture in recently evolved sympatric morphs of arctic charr, and the results corroborate our

hypothesis (1), of clear allometric shape variation in all six bones. Surprisingly, shape allometry

did differ between morphs for the dentary. In accordance with hypothesis (2) we found the

strongest benthic-pelagic contrast in the most anterior bones in lower jaw bone (dentary). We

did not expect premaxilla divergence, however. These bones interact directly with prey, but

shape differences were also seen in the articular-angular and maxilla. Shape differences in den-

tary and maxilla are consistent with hypothesis (3) (shorter lower jaw and more round maxilla

in benthics). Also, curiously, for both the dentary and articular-angular the morph effects

(benthic-pelagic axis, on PC1 for both) were stronger than the effects of size (PC2 for both). In

contrast, the shape of the two posterior bones, quadrate and supramaxilla, did not vary

strongly between morphs. Following hypothesis (4), shape variation in bones were highly cor-

related with each other, with bones of the same jaw more integrated than bones among jaws.

We discuss these results in the context of functional feeding morphology and its mechanics,

the putative genetic and environmental sources of these traits and suggest future studies of cra-

niofacial diversity in salmonids. Here we focus on cranial bone shape and potential relation-

ships to prey and mechanics of prey capture, but acknowledge that postcranial divergence

allows access to preferred prey habitat and also aids in locating, approaching, and capturing

individual prey [3,59].

Bone shape variation and functional divergence

We found strong divergence in the lower jaw along the benthic-pelagic axis. The characteristic

subterminal mouth of the benthic morphs associates with a shortening of the dentary and to

lesser extent articular-angular (relative to the quadrate facet) aligns with our hypothesis (3).

Additionally, the anterior region of the dentary around the mandibular symphysis is angled

ventrally relative to pelagic charr (Fig 3). This may aid in creating a more optimal angle to grip

attached prey or perform scraping behaviours on a surface to dislodge prey, such as snails. The

benthic morphs may use a combination of biting and ramming behaviours, as suction forces

are likely weak. Taller dentary and articular-angular bones could be adaptations for feeding on

benthic prey, increasing size of the mouth cavity and efficiency of consuming benthic
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organisms [69]. The coronoid processes of the dentary and articular-angular are enlarged in

benthic charr, which could associate with a larger mandibular portion of the adductor mandi-

bulae and a larger aponeurosis maxillaris [70], thus allowing for greater bite forces in benthic

morphs which could aid in dislodging attached prey items [63,71,72]. Relatively more elon-

gated lower jaw was expected and observed in pelagic morphs. Consistently, previous study on

lower jaw bone shape in juveniles of O. mykiss found the anadromous population (with pre-

sumed pelagic lifestyle) had a more elongated and streamlined lower jaw than the resident

population [17]. The authors postulated that elongated, streamlined lower jaws could be adap-

tations to the pelagic ocean environment. It would be interesting to see if this holds in more

salmonid populations, and also if this is accompanied by notable allometric changes in the

dentary as we found here.

In the upper jaw, we found premaxilla shape to diverge along the benthic-pelagic axis more

strongly than the maxilla. PL-charr had smaller premaxilla overall (importantly relative to SB

which is of same size), with shorter ascending limbs and narrow anterior and posterior limbs.

Reductions in the height of the ascending process and elongation of the anterior-posterior axis

of the premaxilla has been found in other pelagic fishes [64,73,74] that use ram feeding in the

water column [75] while suction feeders with highly protrusible jaws have long ascending

limbs [76]. Moreover, shortening and steeper angles of the ascending limb of the premaxilla

can also be associated with increased biting forces [77] and possibly linked to biting behav-

iours. The ascending limb of the premaxilla has been found to extend more dorsally in pelagic

fish [78] and in highly protrusible jaws [79], however, in our study the ascending limb was pro-

portionally longer in the benthic morphs. As the premaxilla, and the skull as a whole, is rela-

tively rigid in salmonids [sensu 70], the biomechanics of similar morphological changes in

fishes with protrusible jaws could be incomparable. For the maxilla, the third shape PC associ-

ated with the benthic-pelagic axis. The maxilla of fishes is generally involved in the protrusion

of the upper jaw maxillary apparatus, while moveable in salmonids such function may not be

present [70] and the proposed movement of these components to aid in salmonid feeding [80]

has been criticized [70]. The shape change seen in the bone matches hypothesis 2, based on

observations done on external photographs in pelagic charr [49].

Neither the quadrate nor supramaxilla diverged along a benthic-pelagic axis (but showed

some weak morph differences). While shape variation in them could reflect biomechanical dif-

ferences due to size [81,82], they did not vary along a morph size gradient. In salmonids, the

function of the supramaxilla (if any) is unknown. The morph differences in supramaxilla may

reflect correlations with linked bones (like the maxilla), as the high level of integration between

these bones indicates. In contrast, the quadrate is a critical linkage in the suspensorium, its

main function to allow rotation of the lower jaw. Since changes to the maximum angle of

opening potentially needed to capture different prey would likely only require subtle morpho-

logical changes in this bone, it is unlikely we could detect these differences given our methods,

or divergent selection may not have acted strongly on quadrate shape.

While adult morphology should reflect long-term prey consumption (e.g., higher pelagic

prey consumption associates with stronger pelagic features), variation in the mechanisms of

capturing and processing of different prey items within and between sympatric charr morphs,

and potential impacts on morphological variation, is poorly understood. To our knowledge

biomechanical studies of salmonids have not yet been done on fishes that specialize on such

divergent prey as snails and zooplankton. Feeding was compared in PL- and SB-charr, reveal-

ing reduced efficiency of zooplankton feeding (pelagic) in SB-charr juveniles due to lower

attack rates [40], increased handling time [83], increased ejection of prey [83] and poorer

retention in the branchial apparatus likely due to shorter gill rakers [40]. Both morphs likely

capture zooplankton using a similar strategy, i.e., suction [40], however may exhibit differences
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in capture efficiency as a result of morphological differences associated with ecological diver-

gence [40]. Prior studies are limited to biomechanics of piscivorous feeding in brook trout

(Salvelinus fontinalis) [84] or theoretical models of suspensorium and lower jaw movement

[85]. Salmonid jaw elements are likely to be largely immobile due to rigid attachments of the

components [70]. Therefore, the use and efficiency of suction is likely limited compared to

pelagic fishes with highly mobile jaws [86], and perhaps not highly differentiated among arctic

charr morphs.

Benthic-pelagic divergence can manifests in lower jaw length relative to head length [65], as

seen in subterminal mouths of benthic arctic charr [37,44,87]. Shelled freshwater snail (Lym-
naea peregra) is the main prey of the derived SB- and LB-charr in Þingvallavatn [37,40]. In

general, hypertrophied pharyngeal jaws [88–92], molariform pharyngeal teeth [93,94], and

decreased gill raker length and density [40,44,95,96] are all morphological adaptations widely

employed across fishes that consume large quantities of hard-shelled benthic prey. Also, mech-

anisms for capturing attached prey vary widely among species [63,71,72]. Use of strong suc-

tion, gripping and biting, lateral movements, and highly protrusible jaws are commonly

utilized traits [63,71,72]. However, details of the intersection of these biomechanical and beha-

vioural components for feeding on divergent prey resources in Þingvallavatn morphs is cur-

rently unexplored. In many groups of fishes, strong benthic-pelagic ecological divergence has

led to modification in morphology and behaviour to allow for optimal feeding performance

[16,58,59,63,65,74,76,78,97–100]. Clearly, investigation of the behavioural and biomechanical

strategies individuals and morphs use to both capture and process prey, and bone shape in the

same individuals, is needed to reveal how arctic charr specialize on such divergent prey types.

While we expected adaptions to divergent prey resources to be expressed in shape diver-

gence of cranial elements among morphs, other morphological modifications can occur that

do not impact bone shape as studied here. Internal bone size and architecture has been shown

to diverge along the benthic-pelagic axis, with benthic feeders exhibiting more robust hollow

cranial bones with complex internal structure, similar to mammalian long-bones, and plankti-

vores having thin solid bones [101]. Bones of benthic scrapers also have higher rates of miner-

alization [102] and are more resistant to bending [101]. We found benthic morphs (LB- and

SB-charr) to have thicker and more robust bones overall (relative to PL- and PI-charr), but

variation in their internal structure and mineralization is unknown. The differences in adult

bone size and shape found here may associate with differentiation in muscle mass and surface

area of attachment sites, and as skeletal and musculature may contribute independently to bio-

mechanical diversity [103], adaptive changes to soft tissues may both be more critical in forag-

ing divergence (i.e. proportionally larger impact on biomechanics of feeding related to speed,

force, and mode of prey capture) and be more apparent than associated changes in bone shape

in these morphs.

Influence of extrinsic and intrinsic factors on bone variation within and

among morphs

The observed shape variation in the jaw bones within and between morphs could be influ-

enced by differences in their ecology and food preferences [see above, 40,41], genetic composi-

tion of the morphs [36,104] and/or interactions of specific genes and environmental factors.

Adaptive plasticity may contribute to ecological and morphological divergence among sym-

patric and allopatric charr [21,105,106]. We studied wild caught individuals of the four morphs

that mostly operate in different habitats and feed on different prey items that vary seasonally

in abundance and nutrition, all factors that may influence their development and adult mor-

phology [40,41,45]. Because the morphs differ in the location, timing and synchronicity of
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spawning [43], their juveniles may receive different maternal provisions and encounter differ-

ent juvenile habitats. Arctic charr shows developmental plasticity in body shape, size and

behaviour in response to benthic vs. pelagic diet treatment in experimental settings

[105,107,108]. Behavioural traits related to habitat choice, prey capture and processing can

influence variation in bone traits [97]. For example, in sheepshead wrasse (Archosargus proba-
tocephalus), individuals consuming a higher proportion of hard-shelled prey had larger adduc-

tor mandibulae and jaw bones but also employed biting mode of feeding to dislodge prey as

well as buccal manipulations to crush shells and separate hard and soft parts before ingestion

[109]. Thus, some of the morphological differences between (and/or within) morphs revealed

here could reflect this developmental plasticity. Note however, not all environmentally induced

variation in bone shape (plastic response) may be adaptive [110].

Genetic differences by groups can be assessed with experiments and population genetics.

Common garden rearing of offspring of Þingvallavatn morphs indicate genetic influence on

many aspects of juvenile and adult morphology [46,49,56,67,111], though maternal and/or

transgenerational parental effects could also play a role [112]. Three of the morphs (PL-, SB-,

and LB-charr) are genetically separable [36] and genomic data revealed substantial allele fre-

quency differences between them, on nearly all linkage groups [35,39]. We saw the strongest

morph differences in the dentary and premaxilla bones of the lower and upper jaws, respec-

tively, that may reflect alleles influencing these bones specifically. Models indicate these three

morphs have been separate for thousands of generations, with limited gene flow between them

[35,36]. Curiously, the PI-charr is genetically more heterogeneous, most individuals are geneti-

cally similar to PL-charr, but others have either LB-charr or mixed PL-/LB-charr ancestry [39].

One hypothesis is that PI-charr result from ontogenetic niche shifts of juvenile PL-charr that

learn to catch sticklebacks, abandoning zooplankton feeding, which may allow individuals to

attain larger size and develop piscivorous characteristics [44]. Another suggestion [39] is that

juvenile LB-charr and/or LB/PI hybrids also shift to piscivory. For most bones studied here,

the PI-charr tended to align with PL-charr (consistent with ancestry), except in the maxilla

where PI clustered closer to LB-charr. This heterogeneity of phenotypes in PI-charr could

either reflect variation in genes, or the impact of piscivory on development of specific bones.

Piscivory and associated size increase may place high functional demands on bone shape [113]

and enhance divergence in shape and even suppress morphological variation among piscivo-

rous charr of different genetic origins. As mapping can identify loci, genes or specific polymor-

phisms impacting variation in shape [114–116], QTL or association studies of bone shape

variation in PI-, LB- and PL-charr could identify alleles and pathways of relevance for bone

shape variation in salmonids.

Most likely, interactions between particular alleles and specific environmental factors, act-

ing at specific times or over broader developmental windows [117], produce the observed

morph differences in bone shape. Considering a hypothetical case, SB-charr may have alleles

that influence the development of the dentary and articular-angular (lower jaw bones), that

will induce the subterminal morphology–in individuals that eat snails as juveniles. Tests of

such hypotheses require joint study of genetic and environmental influences on specific

aspects of how bones develop and acquire their shape and functions. To distinguish between

genetic and transgenerational environmental effects, mapping, crosses between morphs and

multigenerational studies are needed. One could test the sensitivity of shape-alleles to environ-

mental factors, like specific juvenile food types (e.g., benthic or pelagic). Analyses of gene

expression can also reveal developmental pathways that respond differently to environment by

morph. Already RNA-, methylation- and miRNA-sequencing of embryos of these morphs and

aquaculture charr have demonstrated differences by morphs [118,119]. For instance, in PL-,

LB- and SB-charr reared in a common garden ~2000 genes were differentially expressed by

PLOS ONE Feeding element divergence in sympatric morphs

PLOS ONE | https://doi.org/10.1371/journal.pone.0300359 May 21, 2024 16 / 27

https://doi.org/10.1371/journal.pone.0300359


morphs during development (from formation of the gill-arches to establishment of the viscero-

cranium primordia) [104]. This proves the morphs differ in genes influencing multiple devel-

opmental systems that could induce these bone shape differences. Specifically, as common

garden experiments revealed ossification of skull elements in juveniles starts earlier in SB-

compared to PL-charr [111], it would be interesting to explore effects of genes and environ-

mental factors on ossification and bone shape. Most probably interactions of specific environ-

mental attributes and genetic composition cause the observed morph differences in bone

shape, for instance via differences in patterns of growth or differentiation in the bone primor-

dia or linked tissues.

Future avenues in research of bone shape variation in salmonids

We studied variation in six dentary bones in sexually mature fish of derived morphs from one

lake. This study could be expanded in several ways. First, size, age and sex can influence traits

[37,120]. We studied sexually mature individuals, and average age and size varied quite sub-

stantially by morph. It would be interesting to study the emergence of bone shape variation

during ontogeny in these morphs, by sampling age classes and genotyping individuals (to

assign them to morph). For bone shape, size (fork length) had stronger effect on shape than

age. Also, despite significant difference among morphs in allometries (age-size relationship as

well as between size measures of head, body, bones), these effects were rather small, and we

concluded bone size was a robust proxy for overall size (and was used to account for size varia-

tion). But with more samples it might be possible to disentangle and better estimate these

effects. The same applies to potential sexual dimorphism or morph specific sex-dimorphism in

bone size or shape allometry. Secondly, as four derived morphs were studied, the phenotypes

could not be polarized with respect to an outgroup. Studies of anadromous charr could iden-

tify ancestral vs. derived character states. Arctic charr in Iceland have repeatedly evolved along

a benthic-pelagic axis and subsequently experienced modification to allow for capture and

processing of diverse prey items (e.g., benthic macroinvertebrates, fish, snails) [31,32,35,87]. It

would be interesting to study the degree of parallelism in bone shape variation and integration

in more sympatric benthic-pelagic morphs or the miniaturized SB-charr. Thirdly, the salmo-

nid head contains several dozens of bones and the cranial case. Ingimarsson [47] found a signal

(but weak) of morph differences in linear measures of several other bones, but geometric mor-

phometrics on these and other bones (in 2D or 3D from CT-scans) may reveal this more sys-

temically and highlight potentially adaptive changes [54,121,122]. Analyses of associated

variation in soft tissues (muscles and ligaments), cartilage and ossification would also be inter-

esting. We found rather high integration in shape and size variation among bones within and

between the upper and lower jaws. However, covariation of shape and univariate traits (like

teeth numbers) or variation in cranial kinesis, how the bones lie together in the skull and how

they move together [84], was not analysed here. The feeding structures of fishes are highly

functionally integrated [3,86]. Study on the seven dolly varden trout (Salvelinus malma)

morphs in Lake Kronotskoe indicated morph specific combinations of morphological traits

and differences in benthic-pelagic ecologies manifest in mouth position and jaw length diver-

gence early in ontogeny [24]. Three cranial bone sets had with coordinated shifts in ossifica-

tion: jaws (premaxilla, maxilla and dentary), intraoral tongue-bite apparatus (vomer and

lingual bone, gill arch elements) and skull dermal bones (supraethmoid, frontal and

preopercle), most likely reflecting differences in early ossification [24]. Studies on additional

internal skull elements and their integration are needed to understand the functional capacity

of different jaw elements and how they relate to the remarkable feeding divergence in arctic

charr.
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Conclusions

The diversity of feeding morphology in fishes provides opportunities to examine variation in

functional elements, to determine rates of evolution, integration among morphological units,

and how specialization occurs along a benthic-pelagic axis. We gathered unique data on intra-

specific variation in feeding related bones. The results indicate a clear benthic-pelagic separa-

tion that was most prominent in the dentary bone. Further work is needed to understand the

causes of variation in feeding elements within species, how it evolves and develops. Are the

axes of jaw bone shape variation in salmonids shared with other fishes or even other verte-

brates? Does rapid evolution of these traits in other salmonids also lead to changes in allome-

tric relationships, like we observed for the dentary? Work along these lines may aid in our

understanding of the processes that still generate the great biodiversity we observe and must

protect.

Supporting information

S1 Appendix. Sampling scheme and summary statistics for the four sympatric charr

morphs. Numbers of individuals, average fork length (FL), weight and age and the standard

deviation (SD) for length, weight and age of the 240 individuals. 1Fork length: Length from tip

of snout to the posterior tip of middle caudal fin ray. Log: Natural logarithmic transformation.

(CSV)

S2 Appendix. Explanation of 37 landmarks used for landmarking the external shape, X-S

indicates sliding landmark.

(CSV)

S3 Appendix. Explanation of landmarks used to capture the shape of the six bones (den-

tary, articular-angular, quadrate, premaxilla, maxilla and supramaxilla). X-S indicates slid-

ing landmark. See Fig 1D-1E for placement of landmarks on bones.

(CSV)

S4 Appendix. Variation in size and age of sexually mature fish of the four sympatric

morphs. (A) Histogram, showing age (years) distribution for all morphs by sex (NA indicates

SB that could not be sexed). (B) The variation in fork length (FL, cm) by morph by sex repre-

sented by a boxplot. (C) The variation in loge weight (g) by morph by sex are represented in

boxplots.

(PDF)

S5 Appendix. ANOVA results from tests of the influence of morph and sex effects on

length (cm FL), loge weight (g) and age (years). F = F-statistic, P = P—value, < 0.05 in bold.

(CSV)

S6 Appendix. Results from the Procrustes ANOVA, for effects of morph and loge FL on

the size (centroid size) of the six bones. *Despite the p-values, all R2 for the interaction term

were small and no pairwise test of slope by morph were significant. R2 = coefficient of determi-

nation; F = F-statistic; Z = Z-statistic; P = P-value, < 0.008 in bold.

(CSV)

S7 Appendix. Size corrected PC-plots of specimens and deformation grids showing shape

variation in (top) external whole-body shape and (bottom) head shape. Plots of shape

warps on X- and Y-axis are unmagnified. Each dot represents an individual and the ellipses

represent 95% CI for the distribution by morph (large dot represents the mean of each morph

distribution in these two dimensions of shape). For the whole-body (top) PC2 and 3 explain
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18% and 8% of the variation respectively (PC1 was biased by sampling error, and not depicted)

and for the head shape (bottom) PC3 and 4 explain 40% and 22% respectively (PC1 and PC2

were biased by sampling error, and not depicted).

(PDF)

S8 Appendix. Shape variation in the two external shapes and 6 head bones. Analysed with

Procrustes ANOVA, testing for influence of sex and size (centroid size). R2 = coefficient of

determination; F = F-statistic; Z = Z-statistic; P = P-value,� 0.008 in bold.

(CSV)

S9 Appendix. PC-plots of specimens showing shape differences between replicates (trials),

for dentary, premaxilla, articular-angular, maxilla, quadrate and supramaxilla (from top

to bottom, left to right). Each dot represents an individual and the ellipses represent 95% CI

for the distribution by replicates (large dot represents the mean for each morph replicates in

these dimensions).

(PDF)

S10 Appendix. Ordination plot (from partial least squares analysis (PLS)) showing the

degree of association between the two replicates (trials) for dentary, premaxilla, articular-

angular, maxilla, quadrate and supramaxilla (from top to bottom, left to right). Block 1 (x-

axis) is replicate 1 and Block 2 (y-axis) is replicate 2. For all bones association between the rep-

licates was always significant (p< 0.001). With the correlation coefficient being, dentary:

0.989, premaxilla: 0.939, articular-angular: 0.994, maxilla: 0.986, quadrate: 0.942 and supra-

maxilla: 0.835.

(PDF)

S11 Appendix. ANOVA results from tests of the influence of individual variation and mea-

surement error (replicates) effects on shape variation in 6 jaw bones. Analysed with Pro-

crustes ANCOVA. R2 = coefficient of determination; F = F-statistic; Z = Z-statistic; P = P-

value,< 0.008 in bold.

(CSV)

S12 Appendix. Size and shape allometry of (top) quadrate and (bottom) supramaxilla).

Left panels: Relationships between bone size and fork length by morph; Right panels: Relation-

ships between bone shape and bone size. On the right are inset the associated shape changes

related to each component, grey outlines the mean shape, and black the extremes for each PC.

Shown are values for individuals (open circles) and the predicted values (filled) of regressions

for both bone size (CSbone) vs body size (loge FL) or bone-shape vs bone-size. Loge, natural log

transformation.

(PDF)

S13 Appendix. Estimates of regression for the relationships between the size of the individ-

ual and the size of the bone, per morph. See also Fig 2 and S6 and S12 Appendices.

(CSV)

S14 Appendix. Results from pairwise comparisons of variation in bone size between

morphs for the six bones (dentary, articular-angular, quadrate, premaxilla, maxilla and

supramaxilla). Based on a model assuming no difference in allometry by morphs.

D = pairwise distances between means; UCL = upper confidence level; Z = Z-statistic; P-

value < 0.008 in bold (Bonferroni).

(CSV)
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S15 Appendix. Information on PCA, for all bone shapes, when size effects have not been

removed. Symbols indicate how morphs align, # for when morphs align along morphotype, *
when morphs align along the size- gradient. Double Symbols (* or #) for prominent separation

and symbol in brackets for minor.

(CSV)

S16 Appendix. Pairwise distances from tests of dentary shape allometry by morph,

between vector angles and absolute differences between vector lengths. Following

ANCOVA model with the interaction of size (bone centroid size) and morph. r = slope vector

correlations; angle: Between the two vectors being compared; d = pairwise distances between

means; UCL = upper confidence level; Z = Z-statistic; P-value,� 0.008 in bold (Bonferroni

correction).

(CSV)

S17 Appendix. Results from pairwise tests of shape by morphs, for differences between

absolute vector lengths (D) used to examine possible shape differences by morph in five

bones. These bones had significant shape differences according to ANOVA model with main

effects and interaction of morph by bone size. Used to verify results from ANOVA and test for

true allometry (i.e., different group slopes). D = pairwise differences between vector lengths;

UCL = upper confidence level; Z = Z-statistic; P-value, < 0.008 in bold.

(CSV)

S18 Appendix. Results from “Significant Vector Angle test” examining possibly allometric

shape differences by morph for five bones, that showed significant allometric differences

according to ANOVA model with main and interaction effects (morph x bone size). Used

to verify results from ANOVA and test for true allometry (i.e., different group slopes).

R = slope of vector correlation; UCL = upper confidence level; Z = Z-statistic; P-value < 0.008

in bold.

(CSV)

S19 Appendix. Size corrected PC-plots of specimens and deformation grids showing shape

variation in (top) quadrate and (bottom) supramaxilla. On each axis are the associated

shape changes related to each component, grey outlines the mean shape and black the

extremes for each PC. Plots of shape warps on X- and Y-axis are unmagnified. Each dot repre-

sents an individual and the ellipses represent 95% CI for the distribution by morph (large dot

represents the mean of each morph distribution in these two dimensions of shape). For the

quadrate (top) PC1 and 2 explain 30% and 14% of the variation respectively and the supramax-

illa (bottom) PC1 and 2 explain 40% and 22% respectively.

(PDF)

S20 Appendix. Tests of integration among craniofacial bones in arctic charr. The six bones

were compared using partial least squares (PLS), within anatomical regions (upper and lower

jaws) and between regions. *Effect size of maxilla-supramaxilla were significantly higher than

premaxilla-maxilla. **Effect size of dentary-maxilla and articular-angular were significantly

higher than articular-angular-supramaxilla.

(CSV)
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