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Abstract

Due to the high suitability of semi-supervised learning for medical image segmentation, a

plethora of valuable research has been conducted and has achieved noteworthy success in

this field. However, many approaches tend to confine their focus to a singular semi-super-

vised framework, thereby overlooking the potential enhancements in segmentation perfor-

mance offered by integrating several frameworks. In this paper, we propose a novel semi-

supervised framework named Pesudo-Label Mean Teacher (PLMT), which synergizes the

self-training pipeline with pseudo-labeling and consistency regularization techniques. In par-

ticular, we integrate the student-teacher structure with consistency loss into the self-training

pipeline to facilitate a mutually beneficial enhancement between the two methods. This

structure not only generates remarkably accurate pseudo-labels for the self-training pipeline

but also furnishes additional pseudo-label supervision for the student-teacher framework.

Moreover, to explore the impact of different semi-supervised losses on the segmentation

performance of the PLMT framework, we introduce adaptive loss weights. The PLMT could

dynamically adjust the weights of different semi-supervised losses during the training pro-

cess. Extension experiments on three public datasets demonstrate that our framework

achieves the best performance and outperforms the other five semi-supervised methods.

The PLMT is an initial exploration of the framework that melds the self-training pipeline with

consistency regularization and offers a comparatively innovative perspective in semi-super-

vised image segmentation.

Introduction

The segmentation of medical images is a crucial part of the clinical analysis to aid experts in

the diagnosis of diseases and the formulation of treatment plans [1]. Deep learning methods

have demonstrated significant achievements in medical image segmentation recently [2–4].

However, these approaches rely heavily on annotated data, but the acquisition of labels is a
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complex and time-consuming process, which substantially encumbers the prospective evolu-

tion of deep learning methods in this domain [5]. Semi-supervised learning [6] is highly suit-

able for medical image segmentation tasks since it can effectively extract information from

large amounts of unlabelled images. Therefore, excellent approaches to semi-supervised learn-

ing are increasingly emerging.

In various semi-supervised learning methods [7–10], approaches based on self-training and

consistency regularization are widely employed due to their simplicity and efficacy. The crucial

of self-training is pseudo-labels. This approach first creates pseudo-labels for unlabeled images,

then composes an extra training dataset of pseudo-labels and unlabeled images, and finally

forces the segmentation model to learn effective information from unlabeled images by

pseudo-label supervised loss. Consequently, the precision of pseudo-labels is essential for real-

izing the best performance in self-training. In the consistency regularization domain, the stu-

dent-teacher structure is one of the most widely used structures, for example, the mean

teacher [9]. It furnishes identical inputs to both student and teacher models but adds addi-

tional noise to the inputs of the student model, and supervises the student model using the out-

puts of the teacher model, thereby enforcing output consistency between the two models and

actualizing the low-density separation between different classes in semi-supervised methods.

However, many researchers have focused on developing entirely novel semi-supervised

methods or enhancing single existing methods, neglecting the potential benefits derivable

from combining several semi-supervised approaches. In this study, we present a novel semi-

supervised method called Pseudo Label Mean Teacher (PLMT). It combines the self-training

process and the consistency regularisation method. In the PLMT framework, the student-

teacher structure based on consistency regularization can yield precise pseudo-labels, whereas

the self-training pipeline provides additional pseudo-label supervision for the student-teacher

structure. In essence, we amalgamate the two most prevalently employed semi-supervised

methods to engender a mutually reinforcing impact.

Furthermore, since the PLMT framework includes pseudo-labeled and consistency losses,

the weights of different semi-supervised losses represent the preference of the PLMT frame-

work. It is necessary to consider the impact of different weights of the semi-supervised loss

function. In response to this point, we introduce adaptive loss weights, which allow PLMT to

dynamically adjust the weights to the optimal values for different tasks during training and

thereby achieve the best segmentation accuracy.

An approach similar to ours is the UPC framework [11]. It also leverages both pseudo-labels

and consistency regularization. Nevertheless, it diverges from our technique in that it directly

utilizes the outputs of the teacher model as pseudo-labels. This strategy could compromise the

accuracy of the pseudo-labels, accumulating errors and degrading performance. In contrast,

our approach incorporates the student-teacher architecture within the self-training pipeline,

thereby facilitating the generation of more precise pseudo-labels. Overall, our main contribu-

tions to this paper are summarized as follows:

• We introduce a novel semi-supervised medical image segmentation framework named

PLMT, which integrates consistency regularization with the self-training pipeline.

• By adaptively adjusting the weights of the two kinds of unsupervised losses, the PLMT

framework can take full advantage of the benefits of both pseudo-label and consistency

regularization.

• Experimental results from three datasets demonstrate that our framework can effectively

extract task-relevant information from unlabeled samples and outperforms the other five

semi-supervised methods.
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Related works

Consistency regularization

Consistency regularization is one of the most widely applied methods for semi-supervised

learning. The basic principle is that the network presents a consistent output for noisy samples.

In other words, tiny perturbations should not alter the classification results of the network for

the same inputs.

There are many consistency regularization approaches have been developed. For instance,

the temporal ensemble [12] method employs a self-ensembling strategy, enforcing consistency

in predictions between two augmentations and the network predictions across previous

epochs of the same sample. Tarvainen et al. [9] proposed the student-teacher structure and

explored the prediction consistency of models with different parameters. Miyato et al. [13]

introduced a virtual adversarial training method that employs adversarial training to establish

the consistency constraint between the outputs of unlabeled samples and those with adversar-

ial noise. Additionally, various studies [14–17] have also proposed other effective consistency

methods. In this paper, we utilize the student-teacher structure as the implementation mecha-

nism of the consistency regularization in the PLMT framework.

Self training

Self-training [10] is also known as pseudo-labeling, which essentially means training a model

with little labeled data and generating pseudo-labels for the unlabeled data. Recently, it has

been increasingly attracted attention and widely used in deep learning. Bai et al. [18] intro-

duced a method namely semiFCN that performs self-training for medical image segmentation

by amalgamating labeled and unlabeled data during the training process. Yang et al. [19] pre-

sented the ST++ method for semi-supervised semantic segmentation by employing strong

data augmentation on unlabeled data and adjusting the order of usage on the unlabeled data

for the reliability of pseudo-labels. Zou et al. [20] improved the quality of the pseudo-labels by

fusing pixel-level and image-level pseudo-labels and strong data augmentation. Different from

the above methods, we merge the student-teacher structure into the self-training stream to

yield more precise pseudo-labels.

Semi-supervised medical image segmentation

Since semi-supervised methods can alleviate the challenge of labeled data, several methods

have been applied to medical image segmentation recently. For example, Yu et al. [21] amal-

gamated the student-teacher structure and uncertainty to execute the left atrium segmentation

task. Shi et al. [22] introduced an uncertainty estimation semi-supervised method designed to

capture the inconsistent prediction across multiple cost-sensitive settings to diminish predic-

tion uncertainty. Luo et al. [23] explored the dual-task consistency between the segmentation

predictions and geometry-aware level-set regression through a dual-task network. Wu et al.
[24] proposed MC-Net+, which has multiple decoder outputs, for semi-supervised medical

image segmentation by establishing consistency restrictions among the outputs of multiple

decoders. Similarly, Luo et al. [25] utilized a pyramid prediction network, learning from the

unlabeled data by encouraging multiple scales to yield consistent predictions. Furthermore,

other novel semi-supervised approaches [26–29] have also demonstrated excellent perfor-

mance in specific medical image segmentation tasks. However, the aforementioned methods

seldom concentrate on the relationship between consistency regularization and self-training.

In contrast, the PLMT framework integrates the student-teacher structure into the self-training

pipeline, facilitating the extraction of additional valuable representations from unlabeled data.
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Method

Problem definition

In this section, we detail the proposed PLMT framework, as illustrated in Fig 1. Before describ-

ing our method, we introduce the formula representation of our dataset and network. Due to

the rarity of medical image annotation, we target to train the model using a small number of

images with annotation and a large number of images without labels to improve the segmenta-

tion accuracy on the test dataset. The labeld images ðxli; y
l
iÞ 2 DLð1 � i � MÞ and unlabeld

images ðxuj Þ 2 DUð1 � j � NÞ jointly constitute the training dataset, where yli refers to the

ground truth and N�M. Acquiring as many task-relevant and efficient representations as

possible from unlabelled data is the most critical problem confronted by every semi-supervised

medical image segmentation method.

As illustrated in Fig 1, the primary architecture employed in the PLMT is a student-teacher

structure, where the parameters of the teacher model are updated by the student model using

the exponential moving average (EMA) during the training process. To facilitate description,

we donate teacher and student networks by f ðyT
�
Þ and f ðyS

�
Þ. f(θ*) refers to the network with

parameters used for producing the pseudo-labels. The training sample xi is fed into f(θ) to

obtain the probability output pi. Similarly, during the generation of pseudo-labels, the unla-

beled sample xuj is fed into f(θ*) to yield puj , and generates the corresponding one-hot pseudo-

label ypj .

Framework and pipeline

From a general perspective, the PLMT is an end-to-end semi-supervised framework, but in

detail, It comprises three primary stages, similar to the self-training workflow. These stages

Fig 1. Overview of the proposed PLMT framework.

https://doi.org/10.1371/journal.pone.0300039.g001
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are: (1) training the baseline network to determine its optimal parameters, (2) leveraging the

segmentation model with the optimal parameters to produce pseudo-labels, and (3) re-training

the segmentation network from scratch while incorporating the pseudo-label supervised loss.

For convenience of description, we denote these stages as Stage A, Stage B, and Stage C, as

depicted in Fig 1.

During Stage A of self-training, the model can solely be trained to utilize a small amount of

labeled data and cannot utilize the information from numerous unlabelled samples. In con-

trast, in Stage A of PLMT, we employ the Mean Teacher structure, which can fully exploit the

vast amount of unlabeled data, optimizing segmentation model parameters and producing

precise pseudo-labels, which are essential for achieving outstanding outcomes of the self-train-

ing approach.

Stage B of the PLMT aligns with the pseudo-label generation in the self-training approach.

In other words, the segmentation model attained from stage A is used to procure pseudo-labels

for unlabeled samples. Additional techniques, such as setting the pseudo-label confidence

threshold, are not employed to streamline the process.

In Stage C of the PLMT framework, the segmentation network is trained using a Teacher

Student structure, integrating pseudo-labels and consistency regularization. Contrasting with

the conventional Mean Teacher structure, PLMT provides additional supervision loss from

the pseudo-labels. Furthermore, relative to the self-training method, PLMT supplies consis-

tency regularization loss and more precise pseudo-labels, facilitating the extraction of effective

representations from unlabeled samples.

Algorithm 1 The training pipeline of the PLMT framework
Require: labeled samples: bl ¼ ðx

l
i;y

l
iÞ 2 D

L, unlabeled samples:
bu ¼ ðx

u
jÞ 2 D

U

Require: student and teacher model parameters in Stage A: fðySAÞ and
fðyTAÞ
Require: student and teacher model parameters in Stage C: fðySCÞ and
fðyTCÞ
Require: maximum iterations: iter_max
Require: semi-supervised loss weight: λA and λC
Require: trainable parameters: α, β and temperature factor: K
Ensure: optimized parameters of the student model in Stage A: y

∗
A

Ensure: segmentation network parameters: y
∗
C

########### Stage A ###########
1: count  0
2: while count < iter_max do
3: for bA = bl + bu do
4: LAsup  lceðfðx

l
i; y

S
AÞ, yl

iÞ

5: LAcon  lmseðfðx
u
j; y

S
AÞ, fðxu

j; y
T
AÞÞ

6: LAtotal  LAsup þ lA � L
A
con

7: Updating y
S
A by optimizer and updating fðyTAÞ by fðySAÞ

8: count  count+1
9: end for
10: end while
########### Stage B ###########

11: for bu ¼ ðx
u
jÞ in DU do

12: yp
j  fðxu

j; y
∗
AÞ

13: bp ¼ ðx
u
j;y

p
jÞ 2 DU  xuj;y

p
j

14: end for
########### Stage C ###########

15: count  0
16: while count < iter_max do
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17: for bC = bl + bp do
18: LCsup  lceðfðx

l
i; y

S
CÞ, yl

iÞ

19: LCcon  lmseðfðx
u
j; y

S
CÞ, fðxuj; y

T
CÞÞ

20: LCpse  lceðfðx
u
j; y

S
CÞ, yp

jÞ

21: LCtotal  LC
sup þ lC � ða� K � L

C
con þ b� L

C
pseÞ

22: Updating y
S
C by optimizer and updating fðyTCÞ by fðySCÞ

23: count  count+1
24: end for
25: end while
26: return y

∗
C

Loss function

In this subsection, we introduce the loss function in the PLMT framework. Overall, the PLMT

optimizes the backbone model in Stage A and Stage C, while Stage B is applied to produce

pseudo-labels that do not require a loss function. LA
total and LC

total are applied to formulate the

loss functions required in Stage A and Stage C respectively. The optimization of Stage A

resembles that of Mean Teacher. Therefore, The LA
total can be described as:

LA
total ¼ LA

sup þ lA∗LA
con ð1Þ

where λA is the trade-off weight of supervision and consistency loss.

LA
sup employs the standard cross-entropy function to calculate the supervision loss between

the labeled samples and corresponding ground truth, which is written as:

LA
sup ¼

1

jDLj

X

xli2D
L

lceðf ðx
l
i; y

S
AÞ; y

l
iÞ ð2Þ

where lce is the cross-entropy loss function. LA
con denotes the consistency loss between the out-

puts of the teacher and student models using unlabeled samples. In this study, we employ the

mean squared error function to compute this loss and the LA
con can be written as:

LA
con ¼

1

jDU j

X

xJ2DU

lmseðf ðxu; y
S
AÞ; f ðxu; y

T
AÞÞ ð3Þ

where lmse refers to the mean squared error loss function.

Fig 1 indicates that, compared to Stage A, there is an extra pseudo-label supervision loss

introduced into the optimization of Stage C. Hence the LC
total is formulated as follows.

LC
total ¼ LC

sup þ lC ∗ ða ∗ K ∗ LC
con þ b ∗ LC

pseÞ ð4Þ

In the LC
total, α and β are the trainable parameters and respectively indicate the weights of the

different unsupervised losses in Stage C, where α + β = 1 and α, β> 0. Due to the significant

magnitude difference between values the LC
sup and LC

con, we introduce a temperature factor K to

bridge this gap, ensuring the PLMT framework does not overfit the smaller loss function dur-

ing training. This measure ensures the intended purpose of multiple semi-supervised losses by

avoiding excessive weight allocation to smaller loss values. The loss functions of LC
sup; L

C
con are

the same as the LA
sup; L

A
con. The LC

pse refers to the pseudo-label supervised loss of pseudo labels

and the outputs of the student model in unlabeled samples. It also adopts the cross-entropy
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function and is written as:

LC
pse ¼

1

jDU j

X

xuj 2D
U

lceðf ðx
u
j ; y

S
CÞ; y

p
j Þ ð5Þ

In a word, the PLMT framework enables to yield of more precise pseudo-labels using the

student-teacher model. Additionally, the novel introduced pseudo-label supervision loss aug-

ments the performance of this student-teacher architecture. Algo 1 provides an overview of

the proposed PLMT approach.

Experiments

Datasets and pre-processing

We evaluated our approach in three public datasets, which are ACDC, LA, and Spleen

Datasets.

The ACDC Dataset is a public benchmark dataset of the 2017 Automated Cardiac Diagno-

sis Challenge [30]. It contains 100 labeled MR samples in total and includes annotations for

three classes: left ventricle(LV), right ventricle(RV), and myocardium(MYO). For fair training

and inference, 80 subjects are allocated to the training set and the remaining 20 to the testing

set.

The LA dataset is the benchmark dataset for the 2018 Atrial Segmentation Challenge [31],

containing 100 gadolinium-enhanced MR imaging scans for training, with a resolution of

0.625 × 0.625 × 0.625 mm. Since the testing set on LA does not include public labels, following

[21, 24], we use 80 samples as the training set, the rest 20 samples are for testing.

The Spleen dataset is one of the ten tasks of the Medical Segmentation Decathlon Challenge

[32]. It is collected from patients who are receiving chemotherapy treatments for liver metasta-

ses and acquired in the Memorial Sloan Kettering Cancer Center. The dataset consists of 61

CT scans in total but only 41 have expert annotations. Following [33], 33 samples compose the

training set and the remaining 8 samples are used as the testing set.

Table 1 describes the division of the samples of the three datasets in detail, with * referring

to labeled samples and Δ to unlabeled samples. Due to varying image sizes in three original

datasets, we resize all the 3D scans into 256 × 256 2D slices. Afterward, we performed 2D rota-

tion and flip operations across the three datasets for data augmentation and normalized the

samples to zero mean and unit variance.

Implementation details

In this paper, our method implementation utilizes the PyTorch framework, executed on an

Intel(R) i7 13700k CPU and an NVIDIA 4090 GPU. During the optimization stage, we employ

the SGD optimizer with a weight decay of 0.001 and momentum of 0.9, training for 36,000

Table 1. The split of labeled and unlabeled samples in the training and test datasets.

Dataset

LA Spleen ACDC

Samples * Δ * Δ * Δ

10% 492 4216 84 764 176 1516

Train set 20% 983 3810 172 676 342 1350

All 4753 0 848 0 1692 0

Test set 1194 203 210

https://doi.org/10.1371/journal.pone.0300039.t001
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iterations. An initial learning rate of 0.1 is adopted, with the “poly” strategy dictating the learn-

ing rate decay. The batch size is set at 24, the size of supervised and unsupervised samples at 12

each. The total semi-supervised loss weight λA and λC are set to 0.1. The temperature factor K

is set to 1000. Following [9, 21], we apply a time-dependent Gaussian warming-up function

l
d
ðtÞ ¼ e � 5 1� t

tmaxð Þð Þ
2

to balance the supervised and unsupervised losses, where t represents the

current iteration count and tmax denotes the maximum iterations.

In addition, we employ a 2D UNet with initial channels of 16 and four downsampling and

upsampling modules as the segmentation backbone network. Mean Teacher [9], Self-training

[10], Entropy minimization [34], DCT [35] and UAMT [21] are adopted as the comparison

methods.

We employ four widely used metrics to evaluate the segmentation performance of all meth-

ods, including the Dice similarity coefficient (Dice), Jaccard Index (Jaccard), 95% Hausdorff

Distance (HD95), and Average Surface Distance (ASD). Specifically, Dice and Jaccard measure

the similarity between the segmentation output and the ground truth. ASD and HD95 capture

the boundary differences between the output and the label.

Results

Performance on the LA dataset

We present the quantitative results of the LA segmentation task in Table 2. This shows the per-

formance of our proposed method and other five comparative methods, alongside the results

of a U-Net model trained with 10%, 20%, and all labeled samples as the reference. Table 2 indi-

cates that the PLMT framework outperforms the other five semi-supervised methods across all

evaluation metrics. Specifically, compared with the UNet model without any semi-supervised

methods, the Dice coefficient of the PLMT increased by 5.06% and 2.57% when trained with

only 10% and 20% of the labeled data, respectively. Compared to the best results obtained by

other semi-supervised methods, PLMT shows an improvement of 2.14% and 1.44% in the

Dice coefficient. Furthermore, when trained with only 20% of the labeled data, the PLMT

Table 2. Quantitative comparison results on the LA dataset. Best results are in bold and suboptimal results are in underlined. * and ** indicate p� 0.05 and p� 0.02

from two-sided paired t-test when comparing the PLMT with other methods, respectively.

Metrics

Method Sample Dice(%) Jaccard(%) HD95(p) ASD(p)

FullSupervision 100% 92.11** 85.42** 3.90** 1.14**
UNet 10% 85.56** 75.36** 9.47** 2.90**
MT 10% 88.48** 79.61** 8.06** 2.32**

DCT 10% 87.65** 78.19** 12.11** 3.52**
EM 10% 87.37** 77.82** 8.23** 2.49**

UAMT 10% 87.16** 77.48** 12.34** 3.68**
Self-Training 10% 87.61** 78.15** 8.99** 2.64**
PLMT(Ours) 10% 90.62 82.95 6.63 1.93

UNet 20% 88.62** 79.73** 8.03** 2.50**
MT 20% 89.75** 81.52** 6.82* 2.06*

DCT 20% 89.55** 81.21** 8.04** 2.47**
EM 20% 89.20** 80.62** 7.87** 2.39**

UAMT 20% 89.39** 80.93** 7.84** 2.36**
Self-Training 20% 89.68** 81.38** 7.67** 2.29**
PLMT(Ours) 20% 91.19 83.88 6.24 1.81

https://doi.org/10.1371/journal.pone.0300039.t002
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framework shows a marginal difference of only 0.92% in the Dice coefficient compared to the

results obtained from the UNet model with fully labeled data. It demonstrates that the PLMT

framework could effectively leverage unlabeled data to extract more efficient representation

and significantly enhance performance over other semi-supervised methods.

To intuitively express the excellent segmentation performance of the PLMT method, we

also provide several visualized examples of our framework and other comparison methods in

Fig 2. The red portions indicate the segmentation masks resulting from different methods, and

the “label” is derived from the corresponding labels of the samples. Compared with other

semi-supervised methods, the segmentation masks produced by the PLMT exhibit a closer

alignment with the ground truths. It shows that the PLMT could efficiently separate the

regions of interest.

Performance on the Spleen dataset

Similar to the evaluation on the LA dataset, Fig 3 and Table 3 show the corresponding results

and visual segmentation examples of the PLMT framework and other comparative methods

on the Spleen dataset. It demonstrates that: (1) Relative to the other five semi-supervised meth-

ods, our model outperforms in all evaluation metrics, although the ASD is marginally inferior

to the self-training framework trained with 10% labeled data. (2) By efficiently leveraging rep-

resentations from unlabeled data, our model delivers a Dice score improvement of 3.96% and

3.77% over the supervised UNet model trained with 10% and 20% labeled samples, respec-

tively. Compared to the best results obtained by other semi-supervised methods, PLMT shows

an improvement of 0.93%(92.88%, DCT with 10% labeled data) and 1.76%(93.81%, DCT with

20% labeled data) in the Dice coefficient. (3) Fig 3 depicts that compared with other segmenta-

tion masks, the masks yielded by PLMT enable clear recognition of the target region and

exclude erroneous predictions.

Fig 2. Visual comparison examples on the LA dataset.

https://doi.org/10.1371/journal.pone.0300039.g002
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Performance on the ACDC dataset

Different from the LA and Spleen binary classification datasets, ACDC is a multi-classification

dataset that includes the right ventricle(RV), myocardium(MYO), and left ventricle(LV) com-

ponents. Table 4 and Fig 4 show the quantitative results and visualization segmentation

Fig 3. Visual comparison examples on the Spleen dataset.

https://doi.org/10.1371/journal.pone.0300039.g003

Table 3. Quantitative comparison results on the Spleen dataset. Best results are in bold and suboptimal results are in underlined. * and ** indicate p� 0.05 and p� 0.02

from two-sided paired t-test when comparing the PLMT with other methods, respectively.

Metrics

Method Samples Dice(%) Jaccard(%) HD95(p) ASD(p)

FullSupervision 100% 96.10** 92.55** 1.13** 0.30**
UNet 10% 89.85** 82.56** 2.40** 0.67**
MT 10% 91.19** 84.55** 1.83** 0.84**

DCT 10% 92.88** 86.95** 3.37** 1.49**
EM 10% 92.10** 85.75** 3.10** 0.72**

UAMT 10% 91.97** 85.78** 1.96* 1.37**
Self-Training 10% 90.50** 83.83** 2.85** 0.38

PLMT(Ours) 10% 93.81 88.58 1.52 0.39

UNet 20% 91.80** 85.52** 2.43** 0.46

MT 20% 93.50** 88.26** 1.81** 0.80*
DCT 20% 93.81** 88.58** 1.52** 0.40

EM 20% 93.68** 88.44** 1.45* 0.50

UAMT 20% 93.22** 87.92** 1.70** 1.10**
Self-Training 20% 93.09** 87.45** 1.81** 0.37

PLMT(Ours) 20% 95.57 91.59 1.18 0.36

https://doi.org/10.1371/journal.pone.0300039.t003
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examples of the PLMT approach and other methods on the ACDC dataset. It can be seen from

Table 4 that the PLMT framework obtains the best performance in most of the evaluation met-

rics. In 10% labeled sample results, the PLMT achieves a Dice gain of 4.75%, 2.80%, and 2.72%

than the UNet without any semi-supervised method in RV, MYO, and LV, respectively. And

Table 4. Quantitative comparison results on the ACDC dataset. Best results are in bold and suboptimal results are in underlined. * and ** indicate p� 0.05 and p� 0.02

from two-sided paired t-test when comparing the PLMT with other methods, respectively.

Metrics

RV MYO LV

Method Samples Dice(%) Jaccard(%) HD95(p) ASD(p) Dice(%) Jaccard(%) HD95(p) ASD(p) Dice(%) Jaccard(%) HD95(p) ASD(p)

FullSupervision 100% 94.30** 89.29** 1.02** 0.17** 90.98** 83.55** 1.00** 0.24** 95.99** 92.40** 1.01** 0.16**
UNet 10% 84.45** 75.05** 2.31** 0.62** 84.44** 73.40** 1.38 0.73** 90.54** 83.60** 5.25** 1.51**
MT 10% 88.61** 80.38** 1.74* 0.48* 86.43** 76.36** 1.41 0.38 93.11* 87.48 1.80 0.41

DCT 10% 87.64** 78.84** 3.29** 1.04** 85.84** 75.57** 2.11** 0.61 92.44** 86.40** 3.42 1.04*
EM 10% 87.82** 79.29** 2.25** 0.69** 86.13** 75.92** 4.68** 0.97** 91.78** 85.60** 5.76** 1.83**

UAMT 10% 88.35** 79.85** 1.99** 0.56** 86.26** 76.09** 2.05** 0.62 91.43** 85.20** 5.09* 1.43**
Self-Training 10% 86.61** 77.74** 1.74* 0.40 85.68** 75.30** 1.95* 0.47 91.90** 85.76** 3.97 1.09*
PLMT(Ours) 10% 89.20 81.19 1.31 0.36 87.24 77.60 1.34 0.57 93.26 87.66 4.76 0.92

UNet 20% 87.61** 78.91** 2.01** 0.51** 85.29** 74.72** 7.70** 1.75** 92.17** 86.01** 9.04** 2.33**
MT 20% 89.17** 81.07** 1.64* 0.49** 87.27** 77.68** 1.13 0.60 93.55** 88.13** 4.09** 0.92*

DCT 20% 89.33** 81.45** 1.42 0.39* 87.09** 77.40** 7.07** 1.32** 93.24** 87.76** 9.99** 2.14**
EM 20% 88.99** 80.97** 1.54* 0.39* 87.73* 78.40** 1.10 0.35 93.52* 88.15** 1.12 0.38

UAMT 20% 89.15** 81.20** 1.53* 0.44** 87.57** 78.14** 1.18 0.31 93.66* 88.35** 1.17 0.37

Self-Training 20% 88.23** 80.01** 1.58* 0.40* 87.54** 78.10** 3.04** 0.74* 93.67* 88.38** 4.08** 0.74*
PLMT(Ours) 20% 91.52 84.55 1.30 0.21 88.64 79.76 1.12 0.39 94.23 89.39 2.02 0.64

https://doi.org/10.1371/journal.pone.0300039.t004

Fig 4. Visual comparison examples on the ACDC dataset.

https://doi.org/10.1371/journal.pone.0300039.g004
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in 20% labeled sample results, the PLMT achieves a Dice gain of 3.91%, 3.35%, and 2.06%,

respectively. In all three categories, the PLMT also achieves the highest Dice score compared

to the other five semi-supervised methods. It demonstrates that the approach of combining

consistency regularization and self-training indeed yields superior segmentation performance

than a single semi-supervised method.

In Fig 4, the red, green, and blue portions indicate the segmentation parts of the right ven-

tricle, myocardium, and left ventricle, respectively. These visual examples show that compared

with the segmentation results of other methods, our segmentation maps are very fitted to the

ground truths, particularly for the segmentation of the right ventricle, and the mask of the

PLMT is significantly better than the results of other semi-supervised methods. Furthermore,

the PLMT framework is significantly more precise than other methods in terms of detecting

ambiguous boundaries and complex regions.

In a word, based on the results of three datasets, our PLMT framework demonstrates supe-

rior performance than the other five semi-supervised methods for medical image segmenta-

tion. It should be noted that to purely validate the efficacy of the combination of consistency

regularization and self-training pipeline, we do not employ strong data augmentation in the

PLMT approach, even though injecting strong data augmentation into the input samples has

the potential to improve the performance of semi-supervised segmentation methods, such as

those employed in [19, 36].

Ablation studies

The PLMT framework is an approach that integrates the student-teacher structure into the

self-training process with two semi-supervised losses and adaptive loss weights. In addition,

the temperature factor K is introduced to bridge the magnitude gap between different semi-

supervised loss values. Therefore, in the ablation experiments, we focus on verifying the effec-

tiveness of the PLMT structure and the temperature factor K.

Effect of the PLMT structure

Since the PLMT structure is the combination of the Mean Teacher and self-training methods,

we have demonstrated that the proposed PLMT has superior performance over the single

Mean Teacher or self-training by quantitative results on three datasets in Tables 2–4 of the

comparison experiments. Therefore, in the ablation experiment, we show more visualization

examples to illustrate the PLMT has superior segmentation performance.

Figs 5–7 show the visual samples of PLMT versus MT and self-training on the three datasets,

where “Label” refers to the ground truth corresponding to the sample, “SgeMap” and “CAM”

refer to the segmentation maps and corresponding gradient localization maps produced by dif-

ferent semi-supervised methods. As can be seen from Fig 4 the segmentation challenge in the

ACDC dataset is primarily in the right ventricle denoted in red portion. Thus we only focus on

the right ventricle part for the comparison in Fig 7. From the above figures, we can see that the

gradient localization maps resulting from PLMT are more accurate and the segmentation maps

are better matched to the labels compared to the single Mean Teacher or self-training methods.

It demonstrates that the PLMT framework which integrates two semi-supervised methods is

both more accurate and generalizable than a single semi-supervised method.

Effect of the temperature factor K

The ablation study about the temperature factor K is performed on the LA dataset by using

10% labeled samples, to primarily demonstrate the effectiveness of the value of K and the

weights of different unsupervised losses(see Eq 4). Table 5 shows the quantitative results of the
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Fig 5. Visual comparison examples on the LA dataset in ablation study.

https://doi.org/10.1371/journal.pone.0300039.g005

Fig 6. Visual comparison examples on the Spleen dataset in ablation study.

https://doi.org/10.1371/journal.pone.0300039.g006
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Fig 7. Visual comparison examples on the ACDC dataset in ablation study.

https://doi.org/10.1371/journal.pone.0300039.g007

Table 5. Quantitative results of the temperature factor K and the adaptive weights α and β of different unsupervised losses on the LA dataset. Best results are in bold

and suboptimal results are in underlined.

Metrics

K α β Dice(%) Jaccard(%) HD95(p) ASD(p)

0 0.292 0.708 86.97 77.20 9.84 3.03

1 0.316 0.684 89.19 80.63 7.28 2.07

500 0.612 0.388 90.29 82.42 6.96 2.01

550 0.617 0.383 90.43 82.65 6.77 2.01

600 0.641 0.359 90.61 82.93 6.48 1.87

650 0.637 0.363 90.48 82.70 7.24 2.16

700 0.684 0.316 90.44 82.64 7.02 2.13

750 0.701 0.299 90.09 82.12 7.51 2.20

800 0.706 0.294 90.62 82.94 6.19 1.82

850 0.720 0.280 90.45 82.67 6.80 1.96

900 0.736 0.264 90.61 82.94 6.34 1.85

950 0.749 0.251 90.78 83.20 6.03 1.76

1000 0.759 0.241 90.62 82.95 6.63 1.93

1050 0.745 0.255 90.74 83.13 6.20 1.74

1100 0.780 0.220 90.65 82.99 6.82 1.97

1150 0.754 0.246 90.62 82.94 6.18 1.83

1200 0.767 0.233 90.64 82.97 7.00 2.03

https://doi.org/10.1371/journal.pone.0300039.t005
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ablation study, in which α refers to the weight of the consistency loss, β refers to the weight of

the pseudo loss, the bolded parts indicate the best results and the underlined parts indicate the

suboptimal results.

As we can observe from Table 5, there is only pseudo-label loss in the PLMT framework

when K = 0, which has the same pipeline as the self-training, but since the PLMT remains with

smaller weights for the pseudo-labeling loss, it is unable to take full advantage of the pseudo-

labeling loss. Therefore, the performance of the PLMT is inferior compared to the f the corre-

sponding self-training method in Table 2 (Dice score: 87.61%! 86.97%). When K = 1, due to

the relatively small value of the consistency loss, the PLMT framework blindly increases the

weight of the consistency loss to minimize the overall loss, resulting in the overfitting problem.

When K is approximately 1000, the framework effectively bridges the magnitude gap between

pseudo-label loss and consistency loss. In this setting, PLMT efficiently leverages the strengths

of both semi-supervised losses, resulting in superior segmentation performance. The ablation

study demonstrates that fine-tuning the value of the temperature factor K in the PLMT frame-

work further improves the model performance in medical image segmentation tasks.

Discussion

In the medical image analysis domain, it is expensive and time-consuming to obtain a lot of pre-

cisely labeled images. Semi-supervised learning methods can decrease the reliance on labeled

data and reduce the cost and time of data preparation. Furthermore, for some rare diseases

where it is difficult to obtain enough labeled data, semi-supervised methods could better utilize

the small amount of labeled data for more effective research. However, traditional semi-super-

vised learning methods usually focus only on certain perspectives, such as consistency regulari-

sation or pseudo-labeling. To design a more accurate and robust semi-supervised method, we

propose the PLMT framework. Unlike other semi-supervised methods, the PLMT framework

integrates the student-teacher structure into the self-training pipeline and combines pseudo-

labeling with the consistency regularization method to achieve much more precise segmentation

performance. In particular, in the PLMT framework, we utilize the teacher-student structure to

obtain more accurate pseudo-labels in Stage A. At Stage C, we establish the teacher-student

structure with consistency loss and pseudo-label loss. To better trade off the contribution of two

semi-supervised losses for different segmentation tasks, we used adaptive loss weights for differ-

ent semi-supervised losses, and PLMT could adaptively adjust the weights of different semi-

supervised losses, which could achieve more accurate segmentation performance with limited

labels. In addition, we introduce the temperature factor K to eliminate the gap between the val-

ues of different semi-supervised losses to avoid the risk of overfitting in the PLMT framework.

To validate the performance of the PLMT framework, we evaluate it on three different med-

ical image segmentation tasks to demonstrate its effectiveness and robustness. The comparison

results in Tables 2–4 show that the PLMT achieves the best results compared to the other five

semi-supervised segmentation methods. In addition, the visual examples in Figs 5–7 also show

that the PLMT can achieve more accurate segmentation of lesions or regions of interest with

limited labels. From the results in Table 5, it can be observed that the temperature factor K

could effectively avoid the overfitting risk arising from the adaptive semi-supervised loss

weights in the PLMT framework.

Overall, PLMT is a framework for medical image segmentation that incorporates two semi-

supervised methods, which achieves a significant improvement in segmentation performance

over single semi-supervised methods such as consistency regularisation or pseudo-label. The

PLMT framework demonstrates that incorporating multiple semi-supervised methods from

different perspectives can improve the performance of the segmentation backbone from
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different perspectives. In other words, the PLMT framework illustrates that combining multi-

ple semi-supervised methods can improve the accuracy and robustness of the segmentation

model more than a single semi-supervised method. It should be noted that when combining

multiple semi-supervised losses, the different semi-supervised loss values must be adjusted to

the same magnitude by the temperature factor K to avoid overfitting the framework. In future

work, we aim to investigate the framework that can integrate further semi-supervised methods

to improve the accuracy and generalization of the medical image segmentation model and to

reduce the dependence of segmentation models on labeled data.

Traditional semi-supervised methods due to the training of the segmentation model in

both Stage A and Stage C. In future work, the use of more efficient methods to generate more

accurate pseudo-labels can further improve the performance of the PLMT framework. In

future work, adopting more efficient methods to generate more accurate pseudo-labels can

further improve the performance of the PLMT framework.

Conclusion

In this study, we introduce a novel and efficacious semi-supervised learning framework

named PLMT, for medical image segmentation. By synergistically integrating self-training

with the Mean Teacher structure, our method outperforms these two standalone semi-super-

vised learning approaches. Additionally, our method allows for the adaptive adjustment of the

loss weights between the consistency and pseudo-label to further optimizer segmentation per-

formance, especially under constraints of limited labeled samples. Extension experiments

demonstrate our framework has achieved superior performance compared with the other two

methods on three medical datasets. While this research represents an initial exploration into

the confluence of self-training and consistency regularization, future work will incorporate

diverse strategies to enhance the efficacy of semi-supervised methods in medical image

segmentation.

Supporting information

S1 Fig. The setup of different semi-supervised methods. (a) refers to the setting of the mean

teacher, (b) refers to the setting of the self-training, and (c) refers to the setting of the proposed

PLMT. Since the PLMT framework is the combination of Mean Teacher and self-training

methods, the settings in the PLMT framework are the same as in the mean teacher and self-

training methods.

(TIF)
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