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Abstract

Accurate identification of small tea buds is a key technology for tea harvesting robots, which
directly affects tea quality and yield. However, due to the complexity of the tea plantation
environment and the diversity of tea buds, accurate identification remains an enormous
challenge. Current methods based on traditional image processing and machine learning
fail to effectively extract subtle features and morphology of small tea buds, resulting in low
accuracy and robustness. To achieve accurate identification, this paper proposes a small
object detection algorithm called STF-YOLO (Small Target Detection with Swin Transformer
and Focused YOLO), which integrates the Swin Transformer module and the YOLOv8 net-
work to improve the detection ability of small objects. The Swin Transformer module extracts
visual features based on a self-attention mechanism, which captures global and local con-
text information of small objects to enhance feature representation. The YOLOv8 network is
an object detector based on deep convolutional neural networks, offering high speed and
precision. Based on the YOLOvV8 network, modules including Focus and Depthwise Convo-
lution are introduced to reduce computation and parameters, increase receptive field and
feature channels, and improve feature fusion and transmission. Additionally, the Wise Inter-
section over Union loss is utilized to optimize the network. Experiments conducted on a self-
created dataset of tea buds demonstrate that the STF-YOLO model achieves outstanding
results, with an accuracy of 91.5% and a mean Average Precision of 89.4%. These results
are significantly better than other detectors. Results show that, compared to mainstream
algorithms (YOLOvVS8, YOLOv7, YOLOV5, and YOLOXx), the model improves accuracy and
F1 score by 5-20.22 percentage points and 0.03-0.13, respectively, proving its effectiveness
in enhancing small object detection performance. This research provides technical means
for the accurate identification of small tea buds in complex environments and offers insights
into small object detection. Future research can further optimize model structures and
parameters for more scenarios and tasks, as well as explore data augmentation and model
fusion methods to improve generalization ability and robustness.
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Introduction

Tea, as one of the world’s three principal beverages, is universally esteemed and sought after by
nations across the globe. In recent years, individuals’ interest in tea has transcended beyond its
mere flavor, delving into its nutritional and medicinal virtues. With over 50 countries, includ-
ing China, India, and Vietnam, engaged in tea production on a global scale, the industry has
significantly bolstered the economies of several tea-cultivating nations in Asia and Africa [1].
In 2020, global tea production reached an impressive 6,269,000 tonnes, with the worldwide tea
cultivation area expanding to 5,098,000 hectares. Despite these strides, the tea industry’s
growth has been curtailed by the challenges of labor recruitment and the escalating costs of
labor [2]. Labor dedicated to the picking of tea buds constitutes 60% of the workforce
employed in the comprehensive management of tea plantations. To address this labor-inten-
sive issue, artificial intelligence algorithms have been synergized with machinery to facilitate
intelligent picking. However, the diverse positions, postures, and densities at which tea buds
grow pose a significant challenge to mechanized picking, particularly in complex environ-
ments characterized by wind and fluctuating light conditions [3]. In recent years, with the
advancement of computer vision technology, numerous network models boasting high preci-
sion and real-time advantages have emerged. These high-performance models have been
widely applied across various fields, achieving remarkable results and providing technical sup-
port for the realization of intelligent tea picking. Therefore, an effective approach to ensuring
the excellence of the tea production line is to accurately identify and pick tea buds.

So far, there have been many researchers who have contributed to the field of tea object
detection. Xu, Wenkali, et al. [3] proposed an approach for detecting and classifying tea buds
that combines the fast YOLOv3 network with the highly accurate DenseNet 201. One of the
biggest highlights of the study is the use of datasets taken from two different viewpoints: the
side view and the top view. Interestingly, the accuracy of the datasets obtained from the side
view is higher than that of the top view on the proposed network. This finding provides valu-
able empirical guidance for the subsequent production of the tea bud dataset. However, it is
important to note that the study overlooks the potential impact of the shooting distance and
the size of the detected object on the accuracy of the results. Xie, Shuang, and Hongwei Sun [3]
proposed the Tea-YOLOvV8s network to reduce interference from complex backgrounds in
detecting tea buds, resulting in improved precision. However, the mean average precision
(mAP) was not sufficiently high, reaching only 88.27%. Xue, Zhenyang, et al. [4] proposed a
method that utilizes YOLO-based networks and incorporates modules such as attention mech-
anisms. However, their approach still faced limitations in achieving high precision and effec-
tively addressing challenges such as leaf occlusion, lighting conditions, and the detection of
extremely small objects. Wu, Yanxu, et al. [5] pointed out that existing models are based on
RGB images, limiting the detection of partial information. They utilised the multimodal fea-
tures of RGB-D for recognition, and introduced a unidirectional complementary multimodal
fusion method to mitigate the impact of negative depth information. Despite reaching an
AP50 of 91.12%, the parameter count increment amounts to 17.8% of the original YOLOV7,
which is not favorable for practical deployment in production. Concurrently, this approach
results in the acquisition of depth information consuming more material and financial
resources. Wang, Tao, et al. [6] et al. proposed an R-CNN based Mask-RCNN network for tea
picking point detection. The network achieves an average accuracy of 93.95% and a recall of
92.48% and is robust under natural conditions. Within the realm of tea pest and disease target
detection, a novel deep learning framework proposed by Hu, Gensheng, et al. [7] has been
introduced to address the challenge of detecting tea wilt and discerning its severity. This inno-
vative framework enhances the detection of tea pests and diseases, even in the presence of
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fuzzy, occluded, and diminutive targets. Soeb, Md Janibul Alam, et al. [8], on the other hand,
pre-processed five pest and disease datasets before feeding them into the YOLOv7 network
and achieved 96.7% accuracy and 96.4% recall.

In order to solve the problems of poor visual characteristics and high noise of small objects
in small object detection, this research constructed an end-to-end small object detection
framework STF-YOLO. For small object detection of tea buds, Swin Transformer is innova-
tively introduced, using its local perception and global correlation to enhance the detection
capabilities of tea buds. Furthermore, to enhance accuracy and speed, we incorporate modules
such as Focus, Depthwise Convolution, SPPCSPC (Spatial Pyramid Pooling with Contextual
Spatial Pyramid Convolution), and the C2 module into STF-YOLO. Our model successfully
detects fresh tea buds measuring 2-3cm in length, even in complex background scenarios,
while maintaining high accuracy. Evaluation of our dataset confirms the superior performance
of the proposed model, surpassing other detectors with a precision of 91.5% and an mAP of
0.894, and the FPS reached 60.98. Compared with other current mainstream algorithms, its
average accuracy improved by 5-20.22 percentage points, and the F1-score improved by 0.03-
0.13 percentage points. The key contributions of this paper can be summarized as follows:

1. A dataset of tea bud images in natural environments was constructed. The dataset consists
of 2898 original images, which were augmented to a total of 6242 images using data aug-
mentation techniques.

2. This study introduces a novel tea bud detection model called STE-YOLO. Based on
YOLOVS8, we incorporate modules such as Swin Transformer, Focus, Depthwise Convolu-
tion, Spatial Pyramid Pooling with Contextual Spatial Pyramid Convolution (SPPCSPC),
and the C2 module.

3. By utilizing the improved single-stage recognition technique, the recognition of tea buds is
achieved, leading to improved accuracy in small object detection. Compared to other dark
detectors and low-light enhancement models, our STF-YOLO achieves advanced results on
the tea bud dataset.

4. This research explores the effectiveness of mainstream attention mechanisms for small
object detection. The study involves the use of over ten different attention mechanism mod-
ules, including Res CBAM, CA, and SEAttention, for detecting tea buds.

Related work
Object detection

Object detection has always been one of the fundamental challenges in the field of computer
vision. With the improvement in GPU computing power, deep learning-based object detection
has gradually become mainstream. It can be mainly divided into two categories: one-stage and
two-stage algorithms. The main difference lies in the fact that two-stage networks generate
candidate regions after feature extraction and then perform classification or regression.
Among the two-stage series, R-CNN, proposed by Girshick, Ross, et al. [9], can be considered
a pioneering work in deep learning-based object detection. It utilizes the Selective Search algo-
rithm to generate candidate bounding boxes and employs CNN for feature extraction.
Although it significantly improves the mean average precision (mAP), it is slow in terms of
detection speed and occupies a large amount of space. Based on this, they further proposed
Fast R-CNN [10]. Under the same backbone network, the speed has increased by 9 times, and
the mean average precision (mAP) on the PASCAL VOC 2012 dataset has improved to 65.7%.
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Ren, Shaoqing, et al. [11] introduced the Region Proposal Network (RPN) as a replacement for
Selective Search in generating candidate regions. This approach achieved an mAP of 70.4% on
the PASCAL VOC 2012 dataset and a frame rate of 5 fps on GPUs.

Although two-stage methods achieve high accuracy, their detection speed is not high.
Therefore, YOLO, proposed by Redmon, Joseph, et al. [12], greatly improved the speed to 45
fps. Although it may have more localization errors, it is less likely to predict incorrect object
information in the background. The introduction of YOLO can be considered the beginning
of a new era of deep learning algorithms known for their speed, and it further promotes the
widespread application of deep learning algorithms. However, the progress of YOLO did not
stop there. YOLOv2 [13] aimed to be better, faster, and more powerful. It not only achieves a
trade-off between speed and accuracy but also introduces scale variability in input image sizes
and expands the number of detectable object categories to over 9,000. YOLOvV3 [14] made a
series of small improvements, including changing the backbone network, classifier, and adding
the SPP block. At the same time, the authors explicitly mentioned that previous versions of
YOLO struggled with detecting small objects. However, YOLOv3 demonstrated a reversal of
this trend. YOLOv3 performs better at detecting small objects compared to medium and large
objects. Subsequent versions of the YOLO series have continued to improve, making YOLO
more integrated, user-friendly, and deployable. Starting with YOLOX, proposed by Ge, Zheng,
et al. [15], the YOLO series has entered the era of anchor-free detection, which has further
enhanced its speed. YOLOV8 can be considered a fusion of the innovative ideas proposed in
previous versions of YOLO. It is a target detection algorithm specifically designed for applica-
tion deployment. Nowadays, many innovative networks are improving or adding modules to
single-stage models. Roy, Arunabha M., and Jayabrata Bhaduri. [16] et al. proposed a real-
time, high-performance damage detection model, DenseSPH-YOLOV5, based on deep learn-
ing techniques, which incorporates a CBAM module for extracting deep spatial features. It
attached a spatial blending layer and a Swin-Transformer header to detect objects of different
sizes and also reduces the computational complexity. Roy, Arunabha M., et al. [17] proposed
the WilDect-YOLO network for real-time target detection in wildlife, which introduces a
residual module in the CSPDarknet53 backbone to make the model powerful and discrimina-
tive deep spatial feature extraction and a DenseNet module to enable the model to retain key
feature information. At the same time, SPP and PANet were introduced. And its mAP reached
96.89% in the wildlife dataset, with an F1 value of 97.87%.

Object detection data augmentation

Despite continuous updates and improvements in deep learning-based object detection algo-
rithms, the task of object detection is still hindered by practical issues. These include inconsis-
tent dataset quality, insufficient quantity, incomplete category coverage, and complex
backgrounds in natural environments. These issues hinder the faster and more effective appli-
cation of object detection in various domains of production and daily life.

Image augmentation is a common technique used for data augmentation in computer
vision tasks. In datasets captured in natural environments, complex backgrounds pose chal-
lenges due to factors such as lighting variations and object occlusions. Wu, Delin, et al. [18]
pointed out that oil tea orchards have complex environments. The captured dataset can be
affected by side lighting, background light, occlusions (both slight and severe), and object
overlap. These factors can result in false positives or false negatives in object detection. To
address this issue, they employed methods such as horizontal and vertical flipping, brightness
augmentation, reduction, multi-angle rotation, and the addition of Gaussian noise and Mosaic
data augmentation. Ultimately, they achieved an accuracy of 94.21% and a recall rate of
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95.74% on the YOLOV7 network. DeVries, Terrance, and Graham W. Taylor [19], on the
other hand, proposed a simple regularization technique called Cutout. This technique involves
randomly masking out rectangular regions during training. This method is helpful in improv-
ing the robustness and overall performance of convolutional neural networks.

Another common technique for augmenting image data is image mixing. Zhang, Hongyi,
et al. [20] proposed a method called “mixup,” which involves randomly mixing two images
using a mixing factor. Hendrycks, Dan, et al. [21] introduced a method called AugMix, which
aims to enhance the robustness of data against positional variations during deployment.

There are many other data enhancement methods borrowed from data synthesis today, the
most used of which is the GAN family of networks. Zhao, Qianxi, Liu Yang, and Nengchao
Lyu. [22] used WGAN for data enhancement and combined it with a deep convolutional RNN
network for real-time target detection, which resulted in significant improvements in both
precision and recall. Ravikumar, R, et al. [23] fed preprocessed datasets with clear grey matter
representations into cGAN to generate more training examples and used stacked CNN layers
for feature extraction.

Small object detection of crops

Small object detection, as a branch of object detection, has gradually gained attention. Initially,
small object detection was primarily applied in domains such as face recognition, traffic sign
detection, and pedestrian detection. Zhang, Yan, et al. [24] proposed a lightweight and detail-
sensitive PAN for multi-scale industrial defect detection using YOLOVS as a framework. It
achieves mAPs of 80.4, 95.8%, and 76.3% under three publicly available datasets, namely,
NEU-DET, PCB-DET, and GC10-DET, respectively. Cao, Xuan, et al. [25] improved the
model based on Swin Transformer and YOLOV5, introduced CIOU to enhance the K-means
clustering algorithm, and the modified CSPDarknet53 combined with Swin Transformer was
used to extract more differentiated features, and CA was introduced into YOLOV5 for improv-
ing the performance of small object detection on remote sensing images. In the DOTA dataset,
it achieves a mAP of 74.7%, which is an improvement of 8.9% compared to YOLOV5. Guo,
Feng, et al. [26] proposed a model called Crack Transformer, which unifies Swin-Transformer
as an encoder and decoder accompanied by an MLP layer, for automatic detection of long and
complex road cracks. This study demonstrates the feasibility of using a Transformer-based
network for road crack inspection in complex situations. Li, Feng, et al. [27] proposed a uni-
fied target detection and semantic segmentation framework, Mask-DINO, which extends
DINO by adding a mask prediction branch that supports all image segmentation tasks
(instance, panorama, and semantic). experiments show that this model has significant advan-
tages over all current semantic segmentation models.

However, there is limited research on small object detection, specifically in the context of
crops. This paper compiles previous studies on small object detection in crops, with a specific
emphasis on tea leaves. Due to the small and densely distributed top buds of Chinese fir seed-
lings, existing recognition algorithms suffer from a high number of misjudgments. Yes,
Zhangxi et al. [28] proposed a small object detection algorithm based on YOLOV5. To improve
the model’s ability to detect small objects, they added a micro-prediction head to the original
detection head. They also incorporated a multi-attention mechanism module that combines
CBAM (Convolutional Block Attention Module) and ECA (Efficient Channel Attention) into
the model’s architecture. Additionally, data augmentation and test-time augmentation meth-
ods were used. The obtained results were excellent and effectively addressed the challenges
associated with detecting small objects.
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To accurately identify and classify tender buds such as “one bud, one leaf” and “one bud,
two leaves,” Yu, Long, et al. [29] proposed an improved SS-YOLOX algorithm based on
YOLOX. They introduced the SE attention mechanism and Soft NMS to enhance recognition
capability and improve the recall rate. With a rich dataset, the mean average precision (mAP)
achieved in this study was 86.3%. However, the authors made limited modifications to the net-
work, and further improvements in recognizing small objects can be achieved by changing the
IoU loss function and utilizing multimodal data. Shuai, Luyu, et al. [30] created a multimodal
dataset that includes RGB images, depth maps, and infrared images. They trained the modified
YOLOV5 network using this dataset and proposed two data-level multimodal image fusion
methods as well as a feature-level multimodal image fusion method. The accuracy reached
85%, and the mean average precision at 50 (mAP@50) reached 82.7%. However, the depth
maps and infrared images in this study contained some noise, blank areas, and limitations in
equipment due to the lack of sufficient natural tea leaf images. As a result, the experimental
results were suboptimal. Xue, Zhenyang, et al. [4] proposed the YOLO-Tea network, which
introduced the ACmix and CBAM modules into the YOLOv5 network to enable more effec-
tive attention to small objects. However, this network did not perform well on all evaluation
metrics, indicating the need for further research and improvements.

Materials

The construction of the tea bud dataset involved three main steps: dataset collection, data pre-
processing, and dataset generation. Initially, drones were employed to capture aerial photo-
graphs of the tea plantation, thereby gathering raw data for tea bud images. These operations
resulted in an expansion of the initial image count from 322 to 6242. To ensure accurate classi-
fication and labeling of the tea bud images, the Labellmg tool was utilized. This step provided
a reliable foundation for subsequent data analysis and model training. Finally, the processed
data was transformed into a dataset in PASCAL-VOC2007 format, facilitating further research
and applications. The construction process of such a dataset offers high-quality data resources,
thereby providing robust support for research on tea bud images. The main processes are illus-
trated in Fig 1.

Data collection

We employed unmanned aerial vehicles (UAVs) to capture video footage of Wanmu Tea Gar-
den located in Hejiang Town, Yucheng District, Ya’an City, Sichuan Province, and have

Data cleaning Mm
- d' 'L‘-‘
=~y
N
\,J(-

Data set expansion

<

Drone video

Image annotation

Fig 1. Tea bud dataset production process.

https://doi.org/10.1371/journal.pone.0299902.9001
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Fig 2. Labellmg work labeling interface.
https://doi.org/10.1371/journal.pone.0299902.g002

obtained a filming permit. We specifically selected raw videos that showcased abundant tea
buds for data collection. To guarantee the dataset’s quality and applicability, our initial step
was to establish the appropriate flight altitude for data collection. For this study, two distinct
collection heights were chosen during a site visit: 15cm to 25cm and 90cm to 100cm from the
tea tree. The height range of 90cm to 100cm was selected to enable a wider scanning of the tea
plantation, allowing for a comprehensive assessment of the overall sprouting situation. On the
other hand, the height range of 15cm to 25cm was chosen to ensure the clarity of the collected
data and the visibility of the buds, thereby guaranteeing efficient data capture. If the height
exceeds 100cm, the identification of tea buds will pose a challenge. Conversely, if the height
falls below 15cm, the scanning of the tea plantation will become inefficient and impractical for
production purposes. In the present investigation, a series of 10 videos depicting tea buds were
recorded utilizing an Unmanned Aerial Vehicle (UAV). The total duration of these videos
amounted to 15 minutes and 4 seconds, excluding the time taken for the UAV to take off and
land. Consequently, the effective duration of the captured footage was determined to be 10
minutes and 33 seconds. Subsequently, the video files that were captured underwent sampling
and slicing operations to generate the original dataset of images. A sampling frequency of one
picture per 60 frames was utilized, leading to the generation of a dataset comprising 322 pic-
tures. Data annotation is shown in Fig 2.

Data cleaning

To improve the quality and usability of the tea bud image data, this study utilizes a data-clean-
ing methodology for data preprocessing. During the process of capturing images of tea shoots
in tea plantations, it is common for the captured images to contain multiple duplications and
blurring due to lens rotation and UAV movement. Consequently, the dataset of tea bud images
utilized in this study requires data-cleaning procedures to ensure the integrity and dependabil-
ity of the data.

(1) Eliminating blurry images: The image dataset of tea buds contains several blurry pic-
tures, as depicted in Fig 3. These blurriness issues are attributed to the shaking of the UAV
during the image capture process or the impact of wind. These indistinct images can have a
detrimental impact on the training of machine learning models. They have the potential to
convey misleading information and lack sufficient valid data for effective model training. Fur-
thermore, they may misdirect the model’s learning process by focusing on incorrect features.
Hence, it is crucial to execute the process of eliminating blurry images from the dataset of tea
bud images.
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Fig 3. Blurred image example.

https://doi.org/10.1371/journal.pone.0299902.9003

In the domain of computer vision, the evaluation of image sharpness frequently depends on
the analysis of the image’s gradient. The gradient is a measure of the magnitude of pixel varia-
tions, which offers valuable insights into the edges and textures present in an image. To assess
the clarity of the images, the present study utilizes the Tenengrad gradient function for the
computation of the image gradient. The assessment of image clarity is determined by the mag-
nitude of the gradient value, with a higher gradient value indicating a higher level of image
clarity. The process involves several steps. Firstly, the image is converted into a grayscale map.
Then, the Tenengrad function is applied to calculate the gradient of the image. The resulting
Tenengrad value is obtained. Next, the average value of all Tenengrad values is determined to
be 56.77. Finally, to maintain the complexity of the data, a threshold slightly lower than the
average value, specifically 44, is set. Any images with a Tenengrad value below this threshold
are deleted [31]. The specific calculation is demonstrated in the following Eqs 6 and 7, where
Gx and Gy represent the convolution values obtained from Sobel’s edge detection operator for
the horizontal and vertical modes of the pixel (x, y), respectively. The Sobel operator convolu-
tion template is defined by Eq 7, where I represent the original image data value.

D(f) = Y D Iy/Glx.y) + G,y 1)

1 0 —1\° 1 2 1\
G=|-20 2 |LG=|0 0 o0|I (2)
-1 0 1 -1 -2 -1

(2) Elimination of redundant images: Due to the significant resemblance between consecu-
tive images and the abundance of similar images in the dataset, the potential utilization of
these images multiple times during model training can lead to overfitting of the model. Addi-
tionally, the existence of comparable images can impede the model’s capacity for generaliza-
tion, thereby posing difficulties in its ability to adapt to novel data. Consequently, the removal
of similar images can greatly improve the accuracy and stability of the model, particularly for
datasets containing tea bud images.

In this study, the Structural Similarity Measure (SSIM) was chosen to calculate the similar-
ity of the images and remove the similar ones. The Structural Similarity Index (SSIM) consid-
ers three key aspects of an image: brightness, contrast, and structure. It calculates a metric
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Table 1. Data processing.

Number of original datasets Number of fuzzyimages deleted Number of similar images deleted Number of manual deletions the final dataset

2898
https://doi.org/10.1371/journal.pone.0299902.t001

822 234 611 1231

value for structural similarity ranging from 0 to 1, where higher values indicate greater similar-
ity between the two images [32]. The specific steps are as follows: First, convert the two images
into grayscale images. Then, divide the grayscale images into blocks and calculate the bright-
ness, contrast, and structural similarity of each block. Multiply the similarity of the blocks and
take the mean value as the structural similarity measure of the two images. The final similarity
is the average structural similarity measure. Finally, set the threshold to 0.8 and use the struc-
tural similarity obtained by the two images if it is greater than 0.8. In that case, one of them is
deleted. The specific calculation formula for SSIM is shown in Eq 3, where x and y represent
the two images being compared. 4, and y, represent the mean brightness of images x and y,
respectively. o, and oy represent the standard deviations of images x and y, respectively, while
oxy represents the covariance between images x and y. This formula quantifies the level of
structural similarity between the two images.

(2luxluy + Cl)(26xy + CZ)

SSIM(x,y) =
) = Er T+ 2+ a)

(3)

After applying the aforementioned data cleaning steps, the obtained image information is
presented in Table 1-2. The original dataset consisted of a total of 2,898 images. After remov-
ing 822 blurred images and 234 similar images, a final dataset of 1,842 images was obtained.

Manual deletion is still required to improve the quality and trustworthiness of the data,
which is necessary for supporting subsequent modeling and training of deep learning algo-
rithms. After manually removing 611 image data entries, a final set of 1,231 image data entries
was obtained, as presented in Table 1 below.

Data preprocessing

In this study, tea bud images were captured using a UAV with a resolution of 2.7K (2074%1520
pixels). During the training of deep learning models, it is common to resize the images. When
scaling the tea bud images, the pixel values tend to be biased towards smaller scales. This bias
can have an impact on the texture features of the shoots. In addition, the small size of the buds
in the enlarged image is also prone to labeling errors, which in turn affects the accuracy of tar-
get detection results. Thus, to mitigate the impact of scaled images on the training results and
preserve clear information about the characteristics of the tea buds, the captured images were
cropped in this study. A total of 2898 images were obtained by cropping the images into 9
parts, respectively, according to an aspect ratio of 3:3. The images were cropped to a uniform
resolution of 901*506 pixels. See Fig 4 for details.

Due to the limitations in capturing images of tea buds, such as the limited quantity and
issues like color imbalance and uneven distribution of samples, it is crucial to address these
challenges and improve the accuracy and recall rate of recognizing tea bud targets in natural
environments using object detection algorithms. To address these issues, it is necessary to
expand the tea bud image dataset. Specifically, dataset augmentation is used to increase the
diversity and scale of the dataset, thereby enhancing the model’s generalization capability,
robustness, and mitigating overfitting. To achieve dataset augmentation, various
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Fig 4. Cropped image.
https://doi.org/10.1371/journal.pone.0299902.9004

transformations such as random stretching, brightness adjustment, and mirroring were
applied to the original images. These operations aim to increase the size and diversity of the
dataset.

Among these augmentation techniques, image stretching is an effective method for expand-
ing the dataset by altering the aspect ratio of the images. This helps to increase the diversity of
the dataset. It can be performed in two ways: vertical stretching and horizontal stretching.
Considering the significant aspect ratio of the original images, we chose to use vertical stretch-
ing to enhance the original dataset. Vertical stretching involves adjusting the height of the
images, either stretching or compressing them, which results in taller or shorter images and
modifies the aspect ratio accordingly. This approach helps maintain the integrity of the image
information while introducing variations in the dataset.For example, when observing the
image after vertical stretching (as shown in Fig 5(b)), it is evident that the aspect ratio has
changed significantly compared to the original image (Fig 5(a)). This image-stretching opera-
tion helps increase the diversity of the dataset and enhances the recognition capability of tea
bud targets.

In order to expand the dataset and increase its diversity, the brightness values of the images
were adjusted. By flipping the images along the “center axis,” new training samples can be gen-
erated, thereby increasing the number of samples in the dataset. Image mirroring can be per-
formed in three ways: horizontal, vertical, and diagonal mirroring.

The original 1231 images were expanded using stretching, mirroring, and brightness
adjustment methods, resulting in 6242 images. As shown in Table 2 below, the original images

(a)

Fig 5. a) original image (b) Vertically stretched image.

https://doi.org/10.1371/journal.pone.0299902.g005
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Table 2. Data set expansion.

Means of expansion amount percentage
original images 1231 19.80%
Stretcheds images 697 11.16%
Brightness-adjusted images 1346 21.56%
Mirror images 2963 47.46%

https://doi.org/10.1371/journal.pone.0299902.t002

totaled 1236, accounting for 19.80%. The stretched images totaled 697, accounting for 11.16%.
The total number of images after brightness adjustment is 1,346, accounting for 21.56%. The
total number of mirrored images is 2963, accounting for 47.46 percent.

Methods

In this section, we will present in detail the approach to solving the problems of background
complexity and small object detection. In order to address the difficulty of detecting and classi-
fying tea buds in the field of tea target detection, we propose an improved method called
STE-YOLO, which combines YOLOv8 with Swin Transformer to enhance the feature fusion
capability of the model and introduces Focus, Depthwise Convolution [33], Spatial Pooling
Pyramid [34], and the C2 module, which enable the model to achieve good results in the task
of bud detection for small objects with complex backgrounds. Fig 6 is the overall structure of
our proposed network model.
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Fig 6. STF-YOLO structure diagram.
https://doi.org/10.1371/journal.pone.0299902.g006
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Overview of the YOLOVS

YOLOVS is a state-of-the-art object detection algorithm that combines the modified backbone
network of YOLOVS5 with the C2f module to introduce an anchor-free model that uses decou-
pled heads for independent processing of objectivity, classification, and regression tasks. The
model employs a sigmoid function for objectivity scores and a softmax function for category
probabilities. YOLOV8 uses CIoU and DFL loss functions for bounding box loss computation
and binary cross-entropy for classification loss computation, resulting in improved perfor-
mance, especially for detecting smaller objects. In addition, YOLOv8 provides a semantic seg-
mentation model called YOLOV8-Seg, which achieves state-of-the-art results in a variety of
benchmarks while maintaining high speed and efficiency.

Detecting tiny objects is a very challenging problem because the size of a tiny object con-
tains only a few pixels, and its features are often extracted from shallow features. Yolov8 [35]
has made improvements in detecting small-sized targets, but it is still not able to adequately
capture the contextual information around the target. Features of small objects are usually
extracted from shallow features, which may lack sufficient semantic information to provide a
rich contextual background. The lack of contextual information may cause YOLOVS to
encounter difficulties in detecting and localizing small objects.

For small object detection, several researchers have proposed corresponding improvement
methods. Introducing multi-scale feature extraction is a common strategy for improving small
object detection performance. Traditional networks [36] use a single-scale feature map for
detection, but this may not capture detailed information about different object sizes. To solve
this problem, researchers have proposed a multi-scale feature extraction approach. This
approach allows for the simultaneous processing of information from objects of different sizes
by introducing multiple feature maps of different scales into the network. Features are usually
extracted at different layers of the network, and these features are fused to improve the detec-
tion of small objects. Introducing an attention mechanism is another way to improve the
detection of small objects. Representation is improved by using the attention mechanism:
focusing on important features and suppressing unnecessary ones. The attention mechanism
can weigh different regions of the feature map according to the importance of the object, mak-
ing the network pay more attention to the representation of small objects. [37] This improves
the attention of small objects and enhances their feature representation. Researchers have pro-
posed various variants of attention mechanisms such as channel attention, spatial attention,
and multiscale attention. These methods can adjust the attention weights on different dimen-
sions of the feature map, thus enhancing the detection performance of small objects. Top-
down information, context and feedback also play important roles in object detection, and
combining contextual information about the object is also an important method to improve
small object detection [38].

To further improve YOLOvVS and enhance its performance in small object detection, we
address its lack of contextual and semantic information by introducing a Swin transformer to
increase feature fusion. Swin Transformer establishes global dependencies in different regions
of the feature map through the self-attention mechanism, thus effectively capturing contextual
information. Swin Transformer [39] also introduces a windowed attention mechanism that
reduces computational complexity by dividing the feature map into different windows while
maintaining the global field of view range. In addition, we added the Focus with Deep Convo-
lution DWconv module, which allows the network to better capture the vast contextual infor-
mation and thus better understand the structure and features of the background, which helps
to accurately segment and localize small object tea buds. The introduction of the spatial pool-
ing pyramid SPPCSPC as well as the C2 module helps the model to perceive and analyze small
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object buds at different scales effectively and improves the model’s ability to detect multi-scale
objects. After experimental testing, the network possesses a better performance effect in the
small object bud detection task with a complex background.

Table 3. Model parameters.

Modules

Table 3 is the detailed parameters of our improved STF-YOLO model to show the improved
situation more clearly. The table consists of six columns, each representing a different aspect
of the model. The columns are as follows:

o The first column is the number of layers.

o from: This column specifies the source of the input for each layer. -1 means that the input
comes from the previous layer.

« n: This column specifies the number of times that a certain layer type is repeated.

from n params module arguments
0 -1 1 8800 ultralytics.nn.modules.conv.Focus (3, 80, 3]
1 -1 1 115520 ultralytics.nn.modules.conv.Conv [80, 160, 3, 2]
2 -1 3 286710 ultralytics.nn.modules.block.C3STR [160, 160, 3]
3 -1 1 461440 ultralytics.nn.modules.conv.Conv [160, 320, 3, 2]
4 -1 6 2068510 ultralytics.nn.modules.block.C3STR [320, 320, 6]
5 -1 1 1844480 ultralytics.nn.modules.conv.Conv [320, 640, 3, 2]
6 -1 6 8233020 ultralytics.nn.modules.block. C3STR [640, 640, 6]
7 -1 1 5531520 ultralytics.nn.modules.conv.Conv [640, 960, 3, 2]
8 -1 3 10170285 ultralytics.nn.modules.block. C3STR [960, 960, 3]
9 -1 1 11061760 ultralytics.nn.modules.conv.Conv [960, 1280, 3, 2]
10 -1 3 27865600 ultralytics.nn.modules.block.C2f [1280, 1280, 3, True]
11 -1 1 44254720 ultralytics.nn.modules.block.SPPCSPC [1280, 1280, 5]
12 -1 1 0 torch.nn.modules.upsampling. Upsample [None, 2, ‘nearest’]
13 [-1, 8] 1 0 ultralytics.nn.modules.conv.Concat [1]
14 -1 3 15523200 ultralytics.nn.modules.block.C2 [2240, 960, 3, False]
15 -1 1 0 torch.nn.modules.upsampling. Upsample [None, 2, ‘nearest’]
16 [-1,6] 1 0 ultralytics.nn.modules.conv.Concat [1]
17 -1 3 6969600 ultralytics.nn.modules.block.C2 [1600, 640, 3, False]
18 -1 1 0 torch.nn.modules.upsampling. Upsample [None, 2, ‘nearest’]
19 [-1, 4] 1 0 ultralytics.nn.modules.conv.Concat [1]
20 -1 3 1795200 ultralytics.nn.modules.block.C2 [960, 320, 3, False]
21 -1 1 3520 ultralytics.nn.modules.conv.DWConv [320, 320, 3, 2]
22 [-1,17] 1 0 ultralytics.nn.modules.conv.Concat [1]
23 -1 3 6560000 ultralytics.nn.modules.block.C2 [960, 640, 3, False]
24 -1 1 7040 ultralytics.nn.modules.conv.DWConv [640, 640, 3, 2]
25 [-1, 14] 1 0 ultralytics.nn.modules.conv.Concat [1]
26 -1 3 14908800 ultralytics.nn.modules.block.C2 [1600, 960, 3, False]
27 -1 1 10560 ultralytics.nn.modules.conv.DWConv [960, 960, 3, 2]
28 [-1, 11] 1 0 ultralytics.nn.modules.conv.Concat [1]
29 -1 3 26636800 ultralytics.nn.modules.block.C2 [2240, 1280, 3, False]
30 [20, 23, 26, 29] 1 15465236 ultralytics.nn.modules.head.Detect [1, [320, 640, 960, 1280]]

https://doi.org/10.1371/journal.pone.0299902.t003
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o params: This column provides the number of parameters in each layer.

» module: This column specifies the type of the layer. For example, ultralytics.nn.modules.
conv.Conv is a convolutional layer, ultralytics.nn.modules.block.C2f is a specific module
that may contain multiple layers, ultralytics.nn.modules.block.SPPF is a spatial pyramid
pooling layer.

arguments: This column provides the arguments that are passed to the layer constructor.

C3STR: Swin transformer module. In multiple convolution operations. Most of the
object features that small objects in the image should have will be lost continuously, so we bor-
rowed the idea of Swin Trasformer in the operation of feature fusion. We introduced the
C3STR module into the YOLOVS algorithm, and its core idea is to establish global dependen-
cies on different spatial locations of the feature map through the self-attention mechanism and
enhance the semantic information and feature representation of small objects with the help of
the window self-attention module. It is able to perform adaptive feature interaction for each
location in the feature graph to capture the contextual information around the object. The
module contains pairs of Window Multi-Headed Self-Attention Modules, Sliding Window
Multi-Headed Self-Attention Modules, and Multi-Layer Perceptron Mechanisms, and each of
them is internally connected using residual connections. The C3STR structure diagram is
shown in Fig 7. The computational procedure of the multi-head self-attention mechanism is as

follows:

Attention(Q, K, V) = SoftMax(QK"/v/d + B)V (4)
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Fig 7. C3STR structure diagram.
https://doi.org/10.1371/journal.pone.0299902.9007
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In the above equation, Attention denotes the attention; SoftMax denotes the normalized
exponential function; Q, K, and V are the query, key, and value matrices, respectively; d is the
number of channels of the input feature map; and B is the relative positional bias. Introducing
B can have an obvious enhancement effect. Compared with the traditional multi-head self-
attention module in Transformer, the C3STR module controls the computational region in
each window by dividing local windows to achieve cross-window information interaction,
which reduces the computational complexity and network computation.

Focus, DWconv, SPPCSPC and C2 module. The SPPCSPC module is a deep learning
module that combines spatial pyramid pooling and channel spatial pyramid convolution, the
core idea of which is to efficiently capture feature information at different scales by applying
spatial pyramid pooling and channel spatial pyramid convolution operations to the input fea-
ture map. The module will partition the input feature map into multiple regions of different
scales, perform pooling operations on each region, and finally stitch the pooling results of dif-
ferent scales together. This captures contextual information at different scales and enables the
model to better model objects of different sizes. The SPPCSPC structure diagram is shown in
Fig 8.

The Dwconv (Depthwise Convolution) module is utilized for convolution operations in
image processing and computer vision tasks. It enables separate convolution of each channel
in the input feature map, meaning that each channel has its convolution kernel. This operation
reduces the number of parameters and the amount of computation, thereby significantly
reducing the complexity and storage requirements of the model while maintaining relatively
high performance. This approach enables the model to effectively learn the spatial and channel
information in the input feature map, enhancing the model’s expressive and perceptual capa-
bilities. The DWconv schematic is shown in Fig 9. The Focus module is an attention mecha-
nism module designed for the task of object detection. It aims to improve the model’s focus on
important feature regions by applying a lightweight convolution operation to the input feature
map. This operation partitions the feature map into multiple smaller sub-regions. These sub-
regions are then weighted and fused by learning the resulting weights to produce the final
attention feature map. This operation allows the model to efficiently focus on important fea-
ture regions. The Focus schematic is shown in Fig 10. The C2 module extracts high-level
semantic features and enhances their expressiveness, thereby improving the performance of
computer vision tasks. It is superior to the C2 module in terms of memory footprint and infer-
ence speed.

Wiou loss function. Addressing the issue of insufficient convergence observed in the
YOLOVS8 algorithm when trained on the tea bud dataset, this research paper introduces a
novel approach by suggesting the incorporation of a loss function derived from Wise IOU to
optimize the localization loss function of the YOLOVS algorithm. This approach aims to
enhance the convergence and generalization capabilities of the YOLOv8 model [39] by modi-
fying the focus of the localization loss. It prioritizes the Intersection over Union (IOU) of pre-
dicted and real frames, leading to improved performance.
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Fig 8. SPPCSPC structure diagram.
https://doi.org/10.1371/journal.pone.0299902.g008
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Fig 9. DWconv schematic.

https://doi.org/10.1371/journal.pone.0299902.9009

By conducting an analysis of the loss function employed in the YOLO series of algorithms,
this study reveals that the localization loss function commonly employs a mean-square error
function. This function solely utilizes the coordinates and width-height information of the pre-
dicted frame and the actual frame for regression. Consequently, this approach is identified as
one of the primary contributors to the instability observed during model training. In relation
to the inherent characteristics of object detection, this study necessitates the identification of
the predicted frame that exhibits the highest degree of overlap with the actual target frame.
This criterion aligns most effectively with the objectives of object detection [40]. Therefore,
this paper proposes a shift in the localization loss function from measuring the distance
between the predicted frame and the real frame to evaluating the Intersection over Union
(I0U) between them. This modification aims to better fulfill the fundamental requirement of
object detection. Given the presence of low-quality examples in training data, it is important to
consider the impact of geometric factors, such as distance and aspect ratio, on the penalty asso-
ciated with these examples. These factors can exacerbate the negative effects of low-quality
examples, ultimately leading to a reduction in the generalization performance of the model.
Traditional methods for calculating IOU only take into account the proportion of intersections
and concatenations between detection frames without considering their positional relation-
ships within the image. A well-designed loss function should mitigate the impact of geometric
factors when there is an overlap between the anchored frames and the aspect ratio. The impact
of geometric factors on the penalty should be reduced in cases where the anchored frames
align closely with the object frames. Additionally, minimizing intervention during training
will lead to improved generalization of the model. To enhance the precision of measuring the
coverage of the detection frame, some researchers have proposed a method called “Wise IOU”
(WIOU) [39]. Based on this, the construction of distance attention relies on the utilization of a
distance metric. In the present study, the WIOUv1 model is selected, which incorporates a

Fig 10. Focus schematic.

https://doi.org/10.1371/journal.pone.0299902.g010
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two-layer attention mechanism. The calculation formula for this model is presented below:

Lyiov v = Rwiou Liou (5)

(x_xgty + (y_ygry) (6)

Ryiov = eXP( (Wg2 T Hgg)*

W.H,
Ligy =1-10U=1-~¢ (7)

u

The formula, Ryiou € [1, ), which significantly amplifies Lioy for normal quality anchor
frames, Loy € [0, 1], which significantly reduces R,y for high-quality anchor frames and
decreases its emphasis on the centroid distance when anchor frames overlap well with the
object frame. To mitigate the convergence hindrance caused by gradients in Ry, the compu-
tational map separates W, and H, (indicated by superscript *). In this paper, the authors pro-
pose a method that effectively addresses the factors that impede convergence. The introduced
method does not introduce any new metrics. Instead, it utilizes the Intersection over Union
(I0U) to quantify the level of overlap between the prediction frame and the real frame in the
object detection task. The overlap region, depicted in Fig 11, is measured by the IOU metric
and has an area denoted as

Su = Wh + Wgrhgt - WiHi (8)

Indicators for model evaluation

In the domain of deep learning, the efficacy of network models is commonly assessed through
the utilization of mean Average Precision (mAP) and Recall (R) metrics [39]. Many additional
concepts are implicated in the computation of these two metrics, including Intersection over
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Fig 11. The overlapping area between the prediction box and the real box.
https://doi.org/10.1371/journal.pone.0299902.9011
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Union (IOU), Precision (P), and Average Precision (AP). Each of the descriptions is provided
below.

(1) IOU The intersection and concatenation ratio is a quantitative measure employed to
assess the level of overlap in the outcomes of an object detection algorithm. The calculation
involves comparing the intersection and concatenation of the detection result’s area with the
area of the actual label. The intersection-merge ratio can be defined as the quotient of the
intersection area and the concatenation area. The accuracy of the detection result increases as
the value of the IOU calculation formula, as shown in Eq 9:

ANB
IOU = —— 9
AUB ©)

In the aforementioned equation, the variable A denotes the prediction frame, while the vari-
able B represents the real frame. In the context of deep learning based object detection, it is
common practice to define a large threshold value and a small threshold value. When the
Intersection over Union (IOU) metric exceeds the large threshold value, the object recognition
is deemed correct. Conversely, if the IOU falls below the small threshold value, the recognition
is considered incorrect. In cases where the IOU value lies between the two thresholds, the rec-
ognition result is discarded.

(2) Precision and recall In the domain of object detection, the precision rate refers to the
proportion of accurately detected objects in relation to the overall number of objects detected.
The precision of the algorithm is inversely proportional to its false positive rate. The recall is
defined as the proportion of correctly detected objects to the total number of positive samples.
A higher recall signifies that the algorithm demonstrates improved capability in detecting all
true positive samples. Eq 10 represents the precision, while Eq 11 represents the recall.

TP
p=— " (10)
TP + FP
TP
R=— 11
TP + FN (1)

In the context of object detection, TP (True Positive) represents the count of correctly pre-
dicted shoot bounding boxes, FP (False Positive) represents the count of incorrectly predicted
shoot bounding boxes, and FN (False Negative) represents the count of missed shoot bounding
boxes. Thus, P represents the ratio of accurate predictions to all predictions, while R represents
the ratio of accurate predictions to all true objects. It is important to note that both P and R
have values ranging from 0 to 1.

(3) AP and mAP (Average Precision and mean Average Precision) The average precision
(AP) is calculated as the mean precision at various recall points, representing the area under
the precision-recall (P-R) curve. The mean Average Precision (mAP) is calculated as the aver-
age of the Average Precision (AP) values for all categories N. The range of mAP values is also
between 0 and 1, and this can be mathematically represented by Eqs 12 and 13. In this thesis,
the terms AP (Average Precision) and mAP (mean Average Precision) are equivalent due to
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the nature of the task at hand, which involves the identification of tea buds, a single category.

1

AP = [ [P(r)dr (12)

0

1
mAP:NZAP (13)

(4) FPS FPS (Frames Per Second) is the number of frames per second that can be processed
by a computer when processing an image and is an important measure of the efficiency and
speed of computer vision algorithms. In object detection evaluation, FPS can be used to mea-
sure the processing speed of an object detection algorithm, i.e., the number of objects that can
be detected per second. A higher FPS value means that the algorithm is able to process more
images and give a faster response in a short time.

Experimental environment and parameter adjustment

The operating system utilized in this study was Windows 10, and PyTorch served as the frame-
work for the development of deep learning models. Specific information regarding the experi-
mental setting is provided in Table 4. During the training phase, optimization was performed
using the stochastic gradient descent (SGD) algorithm. The SGD algorithm utilized an initial
learning rate of 0.01, a momentum factor of 0.937, and a weight decay factor of 0.0005. The
input image was normalized to a size of 640 x 640, the batch size was set to 8, and the training
was conducted over 300 epochs.

Results
Overall accuracy comparison of network models

To assess the effectiveness of STF-YOLO, we conducted extensive experiments using the tea
sprouts dataset. Our evaluation involved a comprehensive analysis and comparison of our
enhanced model with various well-established detection models, with a particular emphasis on
precision, recall, and mAP metrics. A line chart (Fig 12) was also generated to visualize and
compare the mAP@0.5 curves of these models.

Our findings revealed that our improved STF-YOLO model achieved a higher mAP@0.5,
surpassing the state-of-the-art GOLD-YOLO model by an impressive margin of 3.02 percent-
age points, as indicated in Table 5. Notably, STF-YOLO exhibited significant improvements
across all target detection metrics, outperforming previous YOLO models. Specifically, the
STE-YOLO algorithm showcased a precision of 91.5%, a recall rate of 77.6%, an mAP of 89.4%
at 0.5 IoU, an mAP of 71% at 0.5:0.95 IoU, and an F1 score of 84%. These remarkable results
demonstrate the substantial enhancement in detection accuracy achieved by the STF-YOLO

Table 4. Experimental environment configuration.

Category Configuration
CPU Intel(R) Core(TM) i7-12700KF@3.60 GHz
GPU GeForce RTX 3060
System enviroment Windows10
Framework Pytorch 2.0.0
Programming voice Pytorch 3.8

https://doi.org/10.1371/journal.pone.0299902.t1004
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Fig 12. mAP@0.5 line charts for different models.
https://doi.org/10.1371/journal.pone.0299902.9012

algorithm. Consequently, STF-YOLO proves to be highly suitable for the accurate detection of
small tea bud objects, offering promising applications in the field.

Params refers to the number of parameters, which refers to the total number of parameters
that need to be trained in model training. Used to measure the size of the model (i.e. computa-
tional space complexity). However, it is worth noting that the param of yolov8s is 11.2M, while
STF-YOLO is 199M. While the accuracy is improved, the model becomes more complex and
the amount of calculation is greatly increased.

Ablation study

Improvement in WIOU. The original loss function calculation method of YOLOv8 was
optimized to wloU in this study, and comparative experiments were conducted. The experi-
mental results are presented in the Table 6. It can be observed that the model’s recall rate
improved by 0.5 percentage points, precision improved by nearly 1.97 percentage points, mAP
at 0.5 IoU increased by 2.3 percentage points, and the overall evaluation metric, F1 score,
improved by 0.01.

Effectiveness of mainstream attention mechanisms. Additionally, we also tested the
effectiveness of other mainstream attention mechanisms for small object detection, as shown
in Table 7. Due to the unsatisfactory performance of attention mechanisms when incorporated

into our model, we only analyze the impact of adding attention mechanisms to YOLOVS for
detecting small tea buds.

Table 5. Comparison of different model algorithms.

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) F1 Score
YOLOv7 71.28 71.18 77.42 49.11 0.71
GOLD-YOLO - - 82.28 59.50 -
YOLO x - - 84.10 59.20 -
YOLOvV5 88.20 75.89 84.32 67.65 0.82
YOLOv8 86.5 76 85.3 65.7 0.81
STF-YOLO 91.5 77.6 89.4 71 0.84

https://doi.org/10.1371/journal.pone.0299902.t005
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Table 6. Experimental results of YOLOv8+WIOU.

Model Precision(%) Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) F1 Score
YOLOv8 86.5 76 85.3 65.7 0.81
YOLOv8+WIOU 88.2 76.5 87.6 67 0.82

https://doi.org/10.1371/journal.pone.0299902.t006

Table 7. Effectiveness of attention mechanisms.

Model Precision(%)
YOLOVS8s 86.5
ESE [41] 87.5
Shuffle [42] 89.7
GE [43] 88.9
SEA [44] 88
Res_CBAM [37] 88

https://doi.org/10.1371/journal.pone.0299902.t007

During the evaluation, it was observed that YOLOvS8s had the slowest detection speed.
However, after incorporating attention mechanisms, the detection speed improved signifi-
cantly. The SEA (SEAttention) model exhibited the highest detection speed, reaching 526.32.
The ESE (EffectiveSE) model achieved high performance across all metrics. The Shuffle (Shuf-
fleAttention) model achieved the highest precision, reaching 0.897. In terms of F1 score, all
models performed similarly. Overall, the impact of attention mechanisms on small tea bud
object detection was not significant.

Effectiveness of components in STE-YOLO. To assess the effectiveness of each compo-
nent in STF-YOLO, we conducted ablation experiments on the Focus, C2, DW (Depthwise
Convolution), STF (Swin Transformer), and SPPCSPC modules. Performance evaluation was
carried out using metrics such as Precision (%), Recall (%), mAP@0.5 (%), F1 Score, and FPS.
The results are presented in Table 8.

Incorporating the STF module led to a slight decrease in FPS from 42.74 to 38.02, but
resulted in an improvement in mAP from 88.8% to 89.2%. In order to enhance detection
speed while maintaining accuracy, we replaced the SPPF module with SPPCSPC. As a result,
precision slightly decreased from 92% to 91.5%, but the mAP increased by 0.2 percentage
points. Notably, the detection speed significantly improved from 38.02 to 60.98 FPS, represent-
ing an approximate 60% increase compared to using the SPPF model. The detection effect of
the model is shown in Fig 13.

Discussion

In the context of tea bud detection, several challenges need to be addressed. Firstly, the small
size of tea buds poses difficulties for feature representation and extraction. Secondly, the dense
distribution and resulting occlusions make detection more difficult. Thirdly, complex lighting
conditions affect visibility. Lastly, the morphological similarity between buds and leaves makes
distinguishing them challenging.

Many studies on tea bud detection have incorporated attention mechanisms into their
models, such as SS-YOLOX proposed by Yu et al. [45]. However, in our experiments, we tested
various attention mechanisms in Table 7 and found that they did not significantly improve the
detection performance, and there was no clear difference among them. Compared to
YOLOVS, our STE-YOLO demonstrates better detection accuracy, recall, and mAP. However,
this comes at the cost of a slightly slower detection speed, which may limit deployment on

Recall(%) mAP@0.5(%) mAP@0.5:0.95(%) F1 Score FPS
76 85.3 62.2 0.81 277.8
77.4 88.1 68.2 0.82 476.19
74.8 87 67.1 0.82 500.0
76.3 87.5 67.5 0.82 500.0
76.9 87.7 67.1 0.82 526.32
76.9 87.7 67.5 0.82 500.0
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Table 8. Effectiveness of modules(Ablation experiment results).

Focus C2 DW STF SPPCSPC Precision(%) Recall(%) mAP@0.5(%) F1 Score FPS
- - - - - 88.2 76.5 87.6 0.82 277.8
4 - - - - 89.4 76.9 88.1 0.83 250.0
4 v - - - 89.5 76.5 87.7 0.83 256.4
4 v 4 - - 92.6 76.7 88.8 0.84 42.74
4 v v 4 - 92 76.6 89.2 0.84 38.02
v v v 4 v 91.5 77.6 89.4 0.84 60.98

https://doi.org/10.1371/journal.pone.0299902.t008

resource-constrained devices. To mitigate this, we optimized the model design by combining
Swin Transformer with efficient Depthwise Convolution to reduce computation while preserv-
ing spatial information. We also introduced the SPPCSPC module to enhance multi-scale fea-
ture fusion in a parameter-efficient manner, significantly improving detection speed.

Despite the high accuracy achieved, further improvements can be made. The model strug-
gles with highly occluded buds and still misclassifies some leaves as buds. Additional contex-
tual and shape information may help overcome this. Integrating multimodal data sources like
infrared or depth images may also enhance robustness. On the optimization front, techniques
like neural architecture search could help find designs even better suited for this task. Deploy-
ment-specific optimizations like quantization-aware training can reduce the computational
requirements.

Recent related works have made progress in small object detection. Zhang, et al. [28]
detected crop buds by adding a micro-prediction head and attention modules. Shuai, et al.
[30] explored multimodal fusion for shoot detection. These inspire ideas like employing nor-
malized losses for increased robustness and leveraging. Carefully reviewing such works can
better contextualize our model’s contributions and limitations.

In terms of practical deployment, the choice of hardware is key. Compact embedded devices
would enable onboard detection on UAVs for automated monitoring. Edge servers can provide
low-latency inference by locating computation closer to the sensing devices. The algorithm
could also be integrated into larger agricultural intelligence systems, combining environmental
data for precision management. Further developing supporting decision-making and control
software can transform this technology into solutions that increase productivity.

In conclusion, this study makes notable progress in the challenging problem of tiny object
detection for tea buds and plants in unconstrained natural environments. Our model delivers

Fig 13. Detecting recognition effect.

https://doi.org/10.1371/journal.pone.0299902.9013
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state-of-the-art accuracy while being cognizant of efficiency constraints. Nonetheless, we iden-
tify multiple promising directions for improvement through architectural enhancements, sup-
plementary data sources, and practical deployment optimizations. The proposed approach and
analyses contribute valuable insights toward enabling automated vision systems for
agriculture.

Conclusion

This study addresses the problem of detecting tiny tea buds for agricultural monitoring, which
poses multiple challenges like small target sizes, dense object distribution, complex back-
grounds, and morphological similarities with other components. Our proposed STE-YOLO
model delivers state-of-the-art accuracy by effectively incorporating transformer-based atten-
tion for enhanced feature representation while using efficient convolutional designs to main-
tain reasonable detection speeds. Specifically, STF-YOLO achieves a precision of 91.5%, recall
of 77.6%, mAP@0.5 of 89.4%, and mAP@0.5:0.95 of 71% on our tea bud dataset. This signifies
substantial improvements over prior YOLO variants as well as other detection models.

However, limitations exist in terms of model size and complexity. The incorporation of
additional components results in STF-YOLO not being lightweight enough for highly
resource-constrained environments. Handling highly occluded cases and distinguishing buds
from similar leaves also needs improvement.

Future work should focus on further compressing the model design as well as incorporating
additional shape and context information and exploring supplementary data sources. On the
system’s front, optimizations targeted at embedded deployment can help realize practical
UAYV and edge computing solutions. Nonetheless, this research makes notable progress in tiny
object detection, with the presented approach, analyses, and directions laying the groundwork
to enable automated vision for agriculture.

Acknowledgments

The author would like to express thanks to anonymous reviewers for all careful review of the
paper and kind suggestions made to improve overall quality of the manuscript.

Author Contributions

Conceptualization: Meiling Shi.

Data curation: Meiling Shi.

Formal analysis: Meiling Shi.

Funding acquisition: Kailiang Huang.

Investigation: Meiling Shi.

Methodology: Meiling Shi.

Project administration: Meiling Shi, Kailiang Huang.
Resources: Meiling Shi, Tianhao Wu, Wenjing Zhang, Kailiang Huang.
Software: Meiling Shi.

Supervision: Meiling Shi.

Validation: Meiling Shi, Tianhao Wu, Wenjing Zhang.
Visualization: Meiling Shi, Tianhao Wu.

PLOS ONE | https://doi.org/10.1371/journal.pone.0299902 March 21, 2024 23/25


https://doi.org/10.1371/journal.pone.0299902

PLOS ONE

Small object detection algorithm for tea buds

Writing - original draft: Meiling Shi, Dongling Zheng, Tianhao Wu, Wenjing Zhang, Ruijie

Fu.

Writing - review & editing: Meiling Shi, Dongling Zheng.

References

1.

10.

11.

12

13.

14.
15.

16.

17.

18.

19.

20.

21.

Hajiboland R. Environmental and nutritional requirements for tea cultivation. Folia horticulturae. 2017;
29(2):199-220. https://doi.org/10.1515/fhort-2017-0019

Han'Y, Xiao H, Qin G, Song Z, Ding W, Mei S. Developing situations of tea plucking machine. Engineer-
ing. 2014; 2014.

XuW, Zhao L, LiJ, Shang S, Ding X, Wang T. Detection and classification of tea buds based on deep
learning. Computers and Electronics in Agriculture. 2022; 192:106547. https://doi.org/10.1016/j.
compag.2021.106547

Xue Z, Xu R, Bai D, Lin H. YOLO-tea: A tea disease detection model improved by YOLOV5. Forests.
2023; 14(2):415. https://doi.org/10.3390/f14020415

WuY, Chend, Wu S, LiH, He L, Zhao R, et al. An improved YOLOV7 network using RGB-D multi-
modal feature fusion for tea shoots detection. Computers and Electronics in Agriculture. 2024;
216:108541. https://doi.org/10.1016/j.compag.2023.108541

Wang T, Zhang K, Zhang W, Wang R, Wan S, Rao Y, et al. Tea picking point detection and location
based on Mask-RCNN. Information Processing in Agriculture. 2023; 10(2):267-275. https://doi.org/10.
1016/j.inpa.2021.12.004

Hu G, Wang H, Zhang Y, Wan M. Detection and severity analysis of tea leaf blight based on deep learn-
ing. Computers & Electrical Engineering. 2021; 90:107023. https://doi.org/10.1016/j.compeleceng.
2021.107023

Soeb MJA, Jubayer MF, Tarin TA, Al Mamun MR, Ruhad FM, Parven A, et al. Tea leaf disease detec-
tion and identification based on YOLOv7 (YOLO-T). Scientific reports. 2023; 13(1):6078. https://doi.org/
10.1038/s41598-023-33270-4 PMID: 37055480

Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and
semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recog-
nition; 2014. p. 580-587.

Girshick R. Fast R-CNN. In: 2015 IEEE International Conference on Computer Vision (ICCV); 2015.

p. 1440-1448.

Ren S, He K, Girshick R, Sun J. Faster r-cnn: Towards real-time object detection with region proposal
networks. Advances in neural information processing systems. 2015; 28.

Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In:
Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779-788.

Redmon J, Farhadi A. YOLO9000: better, faster, stronger. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2017. p. 7263-7271.

Redmon J, Farhadi A. Yolov3: An incremental improvement. arXiv preprint arXiv:180402767. 2018;.

Ge Z, LiuS, WangF, Li Z, Sun J. Yolox: Exceeding yolo series in 2021. arXiv preprint arXiv:210708430.
2021;.

Roy AM, Bhaduri J. DenseSPH-YOLOvV5: An automated damage detection model based on DenseNet
and Swin-Transformer prediction head-enabled YOLOV5 with attention mechanism. Advanced Engi-
neering Informatics. 2023; 56:102007. https://doi.org/10.1016/j.aei.2023.102007

Roy AM, Bhaduri J, Kumar T, Raj K. WilDect-YOLO: An efficient and robust computer vision-based
accurate object localization model for automated endangered wildlife detection. Ecological Informatics.
2023; 75:101919. https://doi.org/10.1016/j.ecoinf.2022.101919

Wu D, Jiang S, Zhao E, Liu Y, Zhu H, Wang W, et al. Detection of Camellia oleifera fruit in complex
scenes by using YOLOvV7 and data augmentation. Applied Sciences. 2022; 12(22):11318. hitps://doi.
org/10.3390/app122211318

DeVries T, Taylor GW. Improved regularization of convolutional neural networks with cutout. arXiv pre-
print arXiv:170804552. 2017;.

Zhang H, Cisse M, Dauphin YN, Lopez-Paz D. mixup: Beyond empirical risk minimization. arXiv preprint
arXiv:171009412. 2017;.

Hendrycks D, Mu N, Cubuk ED, Zoph B, Gilmer J, Lakshminarayanan B. Augmix: A simple data pro-
cessing method to improve robustness and uncertainty. arXiv preprint arXiv:191202781. 2019;.

PLOS ONE | https://doi.org/10.1371/journal.pone.0299902 March 21, 2024 24/25


https://doi.org/10.1515/fhort-2017-0019
https://doi.org/10.1016/j.compag.2021.106547
https://doi.org/10.1016/j.compag.2021.106547
https://doi.org/10.3390/f14020415
https://doi.org/10.1016/j.compag.2023.108541
https://doi.org/10.1016/j.inpa.2021.12.004
https://doi.org/10.1016/j.inpa.2021.12.004
https://doi.org/10.1016/j.compeleceng.2021.107023
https://doi.org/10.1016/j.compeleceng.2021.107023
https://doi.org/10.1038/s41598-023-33270-4
https://doi.org/10.1038/s41598-023-33270-4
http://www.ncbi.nlm.nih.gov/pubmed/37055480
https://doi.org/10.1016/j.aei.2023.102007
https://doi.org/10.1016/j.ecoinf.2022.101919
https://doi.org/10.3390/app122211318
https://doi.org/10.3390/app122211318
https://doi.org/10.1371/journal.pone.0299902

PLOS ONE

Small object detection algorithm for tea buds

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.
41.

42,

43.

44,

45.

Zhao Q, Yang L, Lyu N. A driver stress detection model via data augmentation based on deep convolu-
tional recurrent neural network. Expert Systems with Applications. 2024; 238:122056. https://doi.org/
10.1016/j.eswa.2023.122056

Ravikumar R, Sasipriyaa N, Thilagaraj T, Raj RH, Abishek A, Kannan GG. Design and Implementation
of Alzheimer’s Disease Detection using cGAN and CNN. In: 2023 International Conference on Com-
puter Communication and Informatics (ICCCI). IEEE; 2023. p. 1-7.

Zhang Y, Zhang H, Huang Q, Han Y, Zhao M. DsP-YOLO: An anchor-free network with DsPAN for
small object detection of multiscale defects. Expert Systems with Applications. 2024; 241:122669.
https://doi.org/10.1016/j.eswa.2023.122669

Cao X, Zhang Y, Lang S, Gong Y. Swin-Transformer-Based YOLOV5 for Small-Object Detection in
Remote Sensing Images. Sensors. 2023; 23(7):3634. https://doi.org/10.3390/s23073634 PMID:
37050694

Guo F, Qian Y, Liu J, Yu H. Pavement crack detection based on transformer network. Automation in
Construction. 2023; 145:104646. https://doi.org/10.1016/j.autcon.2022.104646

LiF, Zhang H, Xu H, Liu S, Zhang L, Ni LM, et al. Mask dino: Towards a unified transformer-based
framework for object detection and segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition; 2023. p. 3041-3050.

Ye Z, Guo Q, Wei J, Zhang J, Zhang H, Bian L, et al. Recognition of terminal buds of densely-planted
Chinese fir seedlings using improved YOLOV5 by integrating attention mechanism. Frontiers in Plant
Science. 2022; 13:991929. https://doi.org/10.3389/fpls.2022.991929 PMID: 36299793

Zheng Z, Hu Y, Qiao Y, Hu X, Huang Y. Real-time detection of winter jujubes based on improved
YOLOX-nano network. Remote Sensing. 2022; 14(19):4833. https://doi.org/10.3390/rs14194833

Shuail, Chen Z, Li Z, Li H, Zhang B, Wang Y, et al. Real-time dense small object detection algorithm
based on multi-modal tea shoots. Frontiers in Plant Science. 2023; 14. https://doi.org/10.3389/fpls.
2023.1224884 PMID: 37534292

Zeng H, Han C, Li K, et al. Improved gradient threshold image sharpness evaluation algorithm. Laser &
Optoelectronics Progress. 2021; 58(22):2211001.

HuilL, Ju-Neng Q, Ping L, et al. Image quality assessment method based on regional contrast and struc-
tural similarity. Journal of Applied Optics. 2015; 36(1):58-63. https://doi.org/10.5768/JA0201536.
0102002

Han Q, Fan Z, Dai Q, Sun L, Cheng MM, Liu J, et al. On the connection between local attention and
dynamic depth-wise convolution. 2021;.

He K, Zhang X, Ren S, Sun JJltopa, intelligence m. Spatial pyramid pooling in deep convolutional net-
works for visual recognition. 2015; 37(9):1904-1916.

Wang J, Xu C, Yang W, Yu LJapa. A normalized Gaussian Wasserstein distance for tiny object detec-
tion. 2021;.

Liu S, QiL, Qin H, ShiJ, Jia J. Path aggregation network for instance segmentation. In: Proceedings of
the IEEE conference on computer vision and pattern recognition;. p. 8759-8768.

Woo S, Park J, Lee JY, Kweon IS. Cbam: Convolutional block attention module. In: Proceedings of the
European conference on computer vision (ECCV); 2018. p. 3—19.

Shrivastava A, Gupta A. Contextual priming and feedback for faster r-cnn. In: Computer Vision—-ECCV
2016: 14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part | 14. Springer;. p. 330-348.

LiuZ, LinY, Cao Y, HuH, Wei Y, Zhang Z, et al. Swin transformer: Hierarchical vision transformer using
shifted windows. In: Proceedings of the IEEE/CVF international conference on computer vision;.
p. 10012—-10022.

YiY. Goat Based on Improved YOLOv3 Research on Object Detection of Dairy. 2022;.

Lee Y, Park J. Centermask: Real-time anchor-free instance segmentation. In: Proceedings of the IEEE/
CVF conference on computer vision and pattern recognition; 2020. p. 13906—13915.

Zhang QL, Yang YB. Sa-net: Shuffle attention for deep convolutional neural networks. In: ICASSP
2021-2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE; 2021. p. 2235-2239.

Hu J, Shen L, Albanie S, Sun G, Vedaldi A. Gather-excite: Exploiting feature context in convolutional
neural networks. Advances in neural information processing systems. 2018; 31.

HuJ, Shen L, Sun G. Squeeze-and-excitation networks. In: Proceedings of the IEEE conference on
computer vision and pattern recognition; 2018. p. 7132-7141.

Yu L, Huang C, Tang J, Huang H, Zhou Y, Huang Y, et al. Tea Bud Recognition Method Based on
Improved YOLOX Model. Guangdong Agric Sci. 2022; 49:49-56.

PLOS ONE | https://doi.org/10.1371/journal.pone.0299902 March 21, 2024 25/25


https://doi.org/10.1016/j.eswa.2023.122056
https://doi.org/10.1016/j.eswa.2023.122056
https://doi.org/10.1016/j.eswa.2023.122669
https://doi.org/10.3390/s23073634
http://www.ncbi.nlm.nih.gov/pubmed/37050694
https://doi.org/10.1016/j.autcon.2022.104646
https://doi.org/10.3389/fpls.2022.991929
http://www.ncbi.nlm.nih.gov/pubmed/36299793
https://doi.org/10.3390/rs14194833
https://doi.org/10.3389/fpls.2023.1224884
https://doi.org/10.3389/fpls.2023.1224884
http://www.ncbi.nlm.nih.gov/pubmed/37534292
https://doi.org/10.5768/JAO201536.0102002
https://doi.org/10.5768/JAO201536.0102002
https://doi.org/10.1371/journal.pone.0299902

