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Abstract

Introduction

Parkinson’s disease (PD) is the second most common worldwide age-related neurodegen-

erative disorder without effective treatments. Cuproptosis is a newly proposed conception of

cell death extensively studied in oncological diseases. Currently, whether cuproptosis con-

tributes to PD remains largely unclear.

Methods

The dataset GSE22491 was studied as the training dataset, and GSE100054 was the vali-

dation dataset. According to the expression levels of cuproptosis-related genes (CRGs) and

differentially expressed genes (DEGs) between PD patients and normal samples, we

obtained the differentially expressed CRGs. The protein-protein interaction (PPI) network

was achieved through the Search Tool for the Retrieval of Interacting Genes. Meanwhile,

the disease-associated module genes were screened from the weighted gene co-expres-

sion network analysis (WGCNA). Afterward, the intersection genes of WGCNA and PPI

were obtained and enriched using the Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG). Subsequently, the key genes were identified from the data-

sets. The receiver operating characteristic curves were plotted and a PPI network was con-

structed, and the PD-related miRNAs and key genes-related miRNAs were intersected and

enriched. Finally, the 2 hub genes were verified via qRT-PCR in the cell model of the PD

and the control group.

Results

525 DEGs in the dataset GSE22491 were identified, including 128 upregulated genes and

397 downregulated genes. Based on the PPI network, 41 genes were obtained. Additionally,

the dataset was integrated into 34 modules by WGCNA. 36 intersection genes found from

WGCNA and PPI were significantly abundant in 7 pathways. The expression levels of the

genes were validated, and 2 key genes were obtained, namely peptidase inhibitor 3 (PI3)

and neuroserpin family I member 1 (SERPINI1). PD-related miRNAs and key genes-related
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miRNAs were intersected into 29 miRNAs including hsa-miR-30c-2-3p. At last, the qRT-

PCR results of 2 hub genes showed that the expressions of mRNA were up-regulated in

PD.

Conclusion

Taken together, this study demonstrates the coordination of cuproptosis in PD. The key

genes and miRNAs offer novel perspectives in the pathogenesis and molecular targeting

treatment for PD.

1. Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disease with a global

prevalence of more than 6 million individuals [1], second only to Alzheimer’s disease (AD).

To date, there are no agents shown to have unequivocal evidence of disease-modifying effects

in PD, which is hazardous to human health [2]. Common clinical manifestations include

motor symptoms such as tremor, myotonia, bradykinesia, and postural balance disorders, as

well as non-motor symptoms such as sensory and autonomic symptoms [3]. Pathologically,

PD is characterized by a loss of dopaminergic neurons in the substantia nigra and the presence

of Lewy bodies composed of abnormal accumulation of α-synuclein in the midbrain [4]. How-

ever, the pathogenesis of PD is not conclusive and the metal ion dyshomeostasis [5], oxidative

stress [6], mitochondrial dysfunction [7], and chronic inflammation [8] may be involved. In

addition, genetic factors play an important role in the onset and progression of PD. Generally,

rare DNA variants are typically associated with monogenic or familial PD; and more common,

smaller effect variants are usually identified in apparently sporadic PD [9]. Therefore, identify-

ing related genes and exploring the possible pathways that may be involved in PD pathogenesis

could provide new ideas for the prediction and intervention of the disease.

Copper is important for various neuronal functions such as interacting with synaptic pro-

teins and neurotransmitter receptors in synapses [10]. In vitro studies have shown that the

presence of copper in millimolar concentrations causes the formation of partially folded amy-

loidogenic conformations with a propensity for aggregation [11]. Mechanically, copper dys-

function is associated with different toxic effects, mainly represented by oxidative stress [12].

Therefore, careful homeostatic control of copper levels plays an important role in PD pathol-

ogy, leading to the development of novel therapeutic approaches based on restoring copper

homeostasis [11]. Currently, experimental evidence has proven the inhibition of α-synuclein

oligomer-mediated reactive oxygen species by copper chelators [13]. Cuproptosis is a novel

form of cell death newly proposed [14]. It occurs via the direct binding of copper to lipoylated

components of the tricarboxylic acid (TCA) cycle in the mitochondria, leading to proteotoxic

stress and ultimately cell death. As is well acknowledged, the key role of mitochondrial dys-

function has been demonstrated in PD, and several potential therapeutic avenues targeting to

promote the clearance of old or damaged mitochondria have been consistently developed [15].

A recent study showed that isogenic human induced pluripotent stem cells with PARK2

knockout displayed abnormal TCA cycle activity, perturbed mitochondrial ultrastructure, and

increased oxidative stress [16]. Therefore, it would be reasonable to infer that cuproptosis is

closely associated with PD. However, the potential regulatory mechanisms remain unknown

and need further exploration. What’s more, the identification of key genes and miRNAs in PD

might assist to explain the correlation from a genetic perspective.
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Predicting key differentially expressed genes (DEGs) for disease by comprehensive bio-

chemical computational methods is a prevalent approach that efficiently and rapidly offers

molecular insights into the disease utilizing a variety of resources of sequencing results in a

high-throughput manner. Currently, there have been some studies predicting the cuproptosis-

related biomarkers of the neurodegenerative diseases based on bioinformatics tools [17–20].

Lai et al. [17] combined the weighted gene co-expression network analysis (WGCNA) algo-

rithm with several machine models such as random forest model to explore the cuproptosis-

related molecular clusters and construct a prediction model for AD. As for PD, few studies

[18–20] aimed to discover the DEGs about cuproptosis by means of different computational

biological methods. A recent bioinformatics analysis [20] found that the cuprotosis-related key

genes intervened in the progression of PD through the integration of DEGs, WGCNA-related

significant module genes (with the soft threshold of 10) and immune cell infiltration, resulting

in three key genes different from our study, which might be attributed to the different selection

of parameters. However, all the genes obtained from the comprehensive bioinformatics analy-

ses would be of great importance for the exploration of molecular perspectives on disease.

In this research, we acquired 10 PD and 8 normal samples in the GSE22491 database as the

training dataset, and 10 PD and 9 normal samples in the GSE100054 as the validation dataset.

Based on the expression levels of cuproptosis-related genes (CRGs) and DEGs between PD

and normal samples, a correlation analysis was performed to observe the differentially

expressed CRGs. A protein-protein interaction (PPI) network was performed using the Search

Tool for the Retrieval of Interacting Genes (STRING). Meanwhile, we screened for disease-

associated module genes by the WGCNA and took the intersection of significantly related

modular genes in the results of WGCNA and the genes from PPI, which were enriched by the

Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) in succession.

Then the expression levels of the intersection genes were validated in the training and valida-

tion datasets to identify two key genes, peptidase inhibitor 3 (PI3) and neuroserpin family I

member 1 (SERPINI1). Next, we plotted the receiver operating characteristic (ROC) curves in

all datasets and constructed a PPI network. Finally, 29 key miRNAs were screened by taking

the intersection of PD-related miRNAs and key genes-related miRNAs and enriched by the

KEGG analysis. A detailed flow chart of the bioinformatics analysis was exhibited (Fig 1).

Finally, the mRNA expressions of PI3 and SERPINI1 were verified from the qRT-PCR results.

Through the above research, it is concluded that cuproptosis has effects on PD pathogenesis.

Moreover, these genes and factors may be potential targets for therapeutic drugs.

2. Materials and methods

2.1 Data acquisition

The datasets used in this analysis were obtained from the NCBI GEO database [21] (https://

www.ncbi.nlm.nih.gov/). We searched for PD-related datasets using "Parkinson’s disease",

obtained the pre-processed, normalized and log2-transformed probe expression matrix, fol-

lowed by downloading the platform annotation file. The probes that did not match the Gene

symbol were removed. For different probes mapping to the same gene, the mean value of dif-

ferent probes was taken as the final expression value of the gene. GSE22491 was selected as the

training dataset with 18 samples, including 10 PD and 8 normal samples, and the sequencing

platform was GPL6480 (Agilent-014850 Whole Human Genome Microarray 4x44K G4112F

(Probe Name version)). In addition, GSE100054 was selected as the validation dataset. 19 sam-

ples, including 10 PD and 9 normal samples, were sequenced on GPL23126 ([Clariom_D_Hu-

man] Affymetrix Human Clariom D Assay [transcript (gene) version]). Data were freely
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Fig 1. The flow chart of the bioinformatics analysis.

https://doi.org/10.1371/journal.pone.0299898.g001
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available online, and our study did not involve any experiments in the lab performed by any of

the authors.

2.2 Differential analysis of CRGs

19 CRGs were obtained from the relevant literature [22]. The expression levels of the genes

were extracted for differential analysis from the training dataset between the PD and normal

samples. The rank sum test was used for differential analysis. It is the method of hypothesis

testing commonly used between two groups of samples to test whether the difference of a cer-

tain indicator is significant. Then a correlation analysis was performed among the genes. Cor-

relation analysis was performed using the pearson algorithm of cor function in R (version

3.6.2). Pearson correlation analysis is a method to analyze the linear correlation between the

two variables. The PPI network was analyzed using the STRING [23] (Version: 10.0, http://

www.string-db.org/) database, with the input gene set of CRGs and species of homo. A score

of 0.4 (medium confidence) was selected as the cutoff criterion, requiring that the interacting

protein nodes were included in the above genes.

2.3 DEGs and differentially expressed CRGs screening

The R software limma package [24] (Version 3.10.3, http://www.bioconductor.org/packages/2.

9/bioc/html/limma.html) was used to perform DEGs analysis in the training dataset. Limma, a

type of generalized linear model that fits a linear equation to the expression of each gene, is a

common method for screening for the DEGs. False Discovery Rate (FDR)<0.05 and |logFC|>

1 were set as the threshold to screen the DEGs.

Correlation analysis of CRGs and DEGs was performed using the pearson algorithm of cor

package in R. DEGs whose correlation coefficients with at least one CRG were greater than 0.8

were selected as differentially expressed CRGs, which were used for further screening analysis.

2.4 PPI network construction for differentially expressed CRGs

The reciprocal relationships among differentially expressed CRGs encoding proteins were ana-

lyzed from the STRING database. The database contains 1380838440 interactions of 9643763

proteins from 2031 species, which could be used for protein interaction analysis. The graph

was constructed using the Cytoscape software [25] (version 3.4.0, http://chianti.ucsd.edu/

cytoscape-3.4.0/).

In addition, we applied the CytoNCA [26] plug-in (Version 2.1.6, http://apps.cytoscape.

org/apps/cytonca) to analyze the nodal topological properties of the network, where Degree,

EPC, MCC, and MNC were used as the main attributes. CytoNCA is a cytoscape plugin for

centralized analysis and evaluation of biological networks, so that the key nodes could be fil-

tered from the interworking networks. The larger value of each attribute proved the greater

role of the gene in the network. The TOP 50 genes were selected under each attribute in turn

and the key differentially expressed CRGs were obtained by taking the intersection.

2.5 WGCNA screening for disease-related modules

WGCNA is a systematic biological method to characterize the modules of gene association

between samples. It could be used to identify the highly synergistic gene modules which could

be served as the candidate biomarkers or therapeutic targets based on the introgression and

association between the gene set modules and the disease traits. The input genes were analyzed

using the R package WGCNA [27] (Version 1.61, https://cran.r-project.org/web/packages/

WGCNA/) based on the dataset GSE22491 to define modules of highly correlated genes
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associated with PD. In the WGCNA algorithm, the element in the defined gene co-expression

modules was the weighted value of the correlation coefficient, and it was chosen so that the

networks were scale-free. The weighted value here was the soft Power. The parameters (min

Module Size = 30; merge Cut Height = 0.25) were set to aggregate highly correlated genes into

modules based on the clustering and dynamic pruning methods. Finally, the modules that are

correlated with the disease with the P-value less than 0.05 were selected as disease-related mod-

ules by analyzing the correlation between the module and the clinical traits (whether the sam-

ple is a diseased or normal sample). The genes in the modules with the most positive and

negative correlation were selected as the genes associated with PD.

2.6 Intersection genes screening

Disease-related module genes were obtained by WGCNA, and the key differentially expressed

CRGs were obtained by the PPI analysis. They were intersected for further study.

2.7 Gene enrichment analysis

The enrichment analysis is a statistical method widely used in the bioinformatics analyses,

which is mainly applied to identify the biologically significant patterns and functions from a

large amount of genetic information. GO analysis is commonly used to test the enrichment of

Gene Ontology entries in a collection of genes and predict the common features of the genes

in terms of biological process (BP), molecular function (MF) and cellular component (CC),

while KEGG is used to analyze the role of genes in metabolic and signaling pathways.

The GO [28] function enrichment analysis and KEGG [29] pathway enrichment analysis

were performed using R package clusterProfiler [30]. The GO analysis terms included CC,

MF, and BP. P<0.05 was considered significant due to the few enriched pathways.

2.8 Identification of key genes

The box plots of the screened genes were used to show the expression levels in the training and

validation datasets. The rank sum test was used to identify the key genes (P<0.05), requiring

they were consistent up or down-regulation trend in the datasets.

2.9 Diagnostic accuracy assessment of key genes and PPI network

construction

The pROC package Version 1.12.1 [31] (https://cran.r-project.org/web/packages/pROC/index.

html) in R language was used to plot ROC curves in all datasets to assess the diagnostic accu-

racy. The Area Under Curve (AUC) was utilized to assess the area under the ROC curve

enclosed with the coordinate axis. The PPI analysis of the key genes was performed using the

GeneMANIA database (https://genemania.org/) [32]. The database could predict the proteins

in terms of co-localization, shared protein structural domains, and the correlation with the sig-

naling pathways, etc.

2.10 Key miRNAs screening

HMDD is a hand-collected database to explore the miRNAs associated with the disease. The

HMDD V3.0 database [33] (http://www.cuilab.cn/hmdd) was used to retrieve PD -related

miRNAs, and miRWalk (http://mirwalk.umm.uni-heidelberg.de/) [34] was used to predict

miRNAs for key genes. They were intersected to obtain the key miRNAs, and a gene-miRNA

network was constructed.
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2.11 KEGG pathway enrichment analysis of key miRNAs

The KEGG pathway analysis was performed on the key miRNAs through DIANA-miRPath

v3.0 [35] (http://www.microrna.gr/miRPathv3/). DIANA-mirPath is a web server for miRNA

pathway analysis, through which the miRNA enrichment could be analyzed. Pathways show-

ing FDR<0.05 were considered significantly enriched.

2.12 RT-qPCR confirmation

Reverse transcription qPCR was used to quantify the amount of mRNA measured by the fluo-

rescence quantitative PCR instrument from Beckman, USA. The cell model of PD was con-

structed with 1 mM MPP+ (sigma) treatment of SH-SY5Y cells. Total RNA from SH-SY5Y

cells was extracted with Trizol reagent (leagene, China). The cDNA was generated immediately

from 1 μg extracted RNA by HiScript II Q RT SuperMix for qPCR (Vazyme, China). Then

quantitative PCR was performed by ChamQ Universal SYBR qPCR Master Mix (Vazyme,

China). The relative gene expression was analyzed by means of the 2–ΔΔCt method. The primers

were designed to target PI3 and SERPINI1. The sequences are as follows: PI3: Forward:

TGTCAAAGGCCGTGTTCCAT, Reverse: GAGCCAGGCTTAGTGGAGAC; SERPINI1: Forward:

AGCAATTCACAAGTCCTTCCTAGAG, Reverse: CTTGAGGATACAGCACAGCCATC.

3. Results

3.1 Differential analysis of CRGs

Based on the expression levels of CRGs (S1 Table) in the training dataset, differential analysis

between PD and normal samples was performed and a box plot was drawn (Fig 2A). To

explore the association of CRGs, the Pearson’s correlation coefficient was calculated and a

heatmap was drawn to present the results (Fig 2B). The PPI network of CRGs was performed

based on the STRING database (Fig 2C).

3.2 Differentially expressed CRGs screening and PPI network construction

128 up-regulated and 397 down-regulated genes were obtained from the training dataset, alto-

gether 525 DEGs. Based on the screened differential genes, a volcano plot was performed

(Fig 3A).

Correlation analysis of CRGs and DEGs was performed and 173 differentially CRGs were

screened in total. Further, a PPI network was performed (Fig 3B). We obtained a reciprocal

network consisting of 79 genes, demonstrating that these genes had close interactions and

might play an important role in the disease. The nodal topological properties of the network

were analyzed, and the TOP 50 genes of the four attributes were selected to take the intersec-

tion (Fig 3C). 41 key differentially expressed CRGs were observed.

3.3 WGCNA and intersection genes screening

WGCNA was performed on the training dataset, and the soft threshold was 8 (Fig 4A and 4B).

Next, the highly correlated genes were aggregated into modules based on the clustering and

dynamic pruning method, and these modules were clustered with the coefficients of dissimi-

larity of 0.25. Highly correlated genes were aggregated into 34 modules. Further, the correla-

tion between the eigenvector gene of each module and the clinical traits was calculated and the

modules with a significant P-value was plotted (Fig 4C). The black module (540 genes; correla-

tion coefficient r = 0.88 and P.value<0.001) showed the strongest positive correlation with PD,

so this module was taken as the key module associated with PD. The turquoise module (5916
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genes; correlation coefficient r = -0.86 and P.value<0.001) showed the strongest negative cor-

relation with PD, so this module was also considered a PD-related key module.

There were 36 genes (S2 Table) obtained by intersecting the black and turquoise modular

genes from WGCNA and the genes from PPI (Fig 4D).

Fig 2. The differential analysis of CRGs. (A) The box plot of CRGs expression levels between PD and normal

samples. (B) The heatmap of CRGs. (C) The PPI network of CRGs. *: P<0.05; **: P<0.01; ***: P<0.001; ****:
P<0.0001; the remaining symbols: not statistically significant (P�0.05).

https://doi.org/10.1371/journal.pone.0299898.g002
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Fig 3. DEGs screening and PPI network construction. (A) The volcano plot of DEGs (red indicated up-regulated

genes, blue indicated down-regulated genes, and gray indicated genes with insignificant differences of expression
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3.4 Gene enrichment analysis

GO and KEGG were performed on the above-obtained genes. 501 terms were enriched by

the GO analysis, including oxygen transport, gas transport, cellular response to toxic sub-

stance, specific granule lumen, cytoplasmic vesicle lumen, haptoglobin binding, hemoglo-

bin binding, iron ion binding, etc. The key terms were selected for graphical display (Fig

5A). 7 significantly enriched pathways (S3 Table) were obtained from the KEGG analysis

(Fig 5B). The specific signaling pathways included African trypanosomiasis, malaria, nitro-

gen metabolism, arginine biosynthesis, base excision repair, biosynthesis of amino acids,

and sulfur metabolism.

levels). (B) The PPI network construction for differentially CRGs. The gray connecting lines indicated the interactions

between the corresponding proteins of genes. Red indicated genes with more connecting lines, and yellow indicated

genes with fewer connecting lines. (C) The upset diagram taking the intersection of the TOP 50 genes of each nodal

topological property in the PPI network.

https://doi.org/10.1371/journal.pone.0299898.g003

Fig 4. WGCNA and intersection genes screening. (A) The analysis of network topology for various soft-thresholding

powers. The x-axis reflected the soft-thresholding power, and the y-axis reflected the scale-free topology model fit index.

Here we selected the soft threshold corresponding to the ordinate reaching 0.9 for the first time, which was 8. (B) The x-

axis reflected the soft-thresholding power, and the y-axis reflected the mean connectivity (degree). (C) The correlation

analysis between gene modules and clinical traits. The upper numbers indicated the correlation coefficients, and the

lower bracketed numbers indicated P values. (D) The Venn diagram obtained by taking the intersection of PD-related

key module genes and PPI key genes.

https://doi.org/10.1371/journal.pone.0299898.g004
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3.5 Identification, diagnostic accuracy assessment, and PPI network

construction of key genes

6 significantly different genes, including SERPINI1, PI3, glutamate-ammonia ligase, late corni-

fied envelope 1C, lipocalin 2, and interleukin 18 (S4 Table), were found between PD and nor-

mal samples in the validation dataset, of which 2 down-regulated genes, PI3 and SERPINI1,

were consistent in the two datasets. The box plots were drawn for the expression levels of the

two genes in the training and validation datasets (Fig 6A–6D).

The ROC curves were plotted in all datasets of the key genes to assess the diagnostic accu-

racy through the pROC package in R language. It turned out that the AUC values for the key

genes were greater than 0.7 in both datasets (Fig 7A–7D). What’s more, the PPI analysis was

performed using the GeneMANIA database (Fig 8). The main significantly enrichment path-

ways included endopeptidase inhibitor activity, peptidase inhibitor activity, endopeptidase

regulator activity, peptidase regulator activity, enzyme inhibitor activity, antimicrobial

humoral response and humoral immune response, etc.

3.6 Key miRNAs screening and KEGG pathway enrichment analysis

Based on the HMDD database, 131 miRNAs related to PD were obtained and intersected with

the miRNAs associated with key genes. The miRNAs with a score of 1 were selected to obtain

29 key miRNAs like hsa-miR-30c-2-3p, hsa-miR-34a-5p, hsa-miR-4697-5p, etc. A network

was constructed based on the key genes and miRNAs (Fig 9A), which were enriched by KEGG

(Fig 9B). The main KEGG pathways encompassed cell cycle, proteoglycans in cancer, protein

processing in endoplasmic reticulum, adherens junctions and chronic myeloid leukemia.

3.7 RT-qPCR confirmation

The expression of 2 hub genes, PI3 and SERPINI1 were verified by the integration bioinfor-

matics analysis. Based on the qRT-PCR results, the expressions of PI3 (P = 0.045, Fig 10A) and

SERPINI1 (P = 0.008, Fig 10B) were up-regulated in PD compared to the control group, which

were inconsistent with the results of the bioinformatics analysis.

Fig 5. Gene enrichment analysis. (A) The GO term histogram of the intersection genes. The 4 GO terms with the smallest P values in each group was

displayed. (B) The KEGG pathway bubble graph of the intersection genes.

https://doi.org/10.1371/journal.pone.0299898.g005
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4. Discussion

PD is a kind of disease that seriously endangers human health globally. Although there is rapid

progress and evolution in technology to unravel the pathogenic factors of PD, the underlying

pathogenesis remains to be determined. Copper is a transition metal linked to pathological

and beneficial effects in neurodegenerative diseases [36], as both excess copper levels and cop-

per deficiency can be harmful [11]. There is evidence that excess copper leads to neuronal cell

death and α-synuclein aggregation [36, 37]. Accordingly, CuII[atsm] has been demonstrated to

rescue dopaminergic cell loss and improve motor dysfunction based on both sporadic (toxin-

based) and genetic mouse models of PD [38]. A meta-analysis based on the 18 eligible studies

identified that substantia nigra copper levels in PD patients were significantly lower than the

control cases [39]. Consequently, the controversial association should be further studied to

reveal the underlying mechanisms. Cuproptosis is a mode of cell death associated with lipoy-

lated TCA enzymes in mitochondrial metabolism, different from apoptosis, ferroptosis, and

necroptosis [14]. It has attracted tremendous interests in the field of tumor studies. However,

it needs further investigation to determine the biological processes and signal pathways related

to cuproptosis in PD.

In this study, we acquired PD and normal samples from the database as the training and

validation datasets and compared the expression levels of CRGs and DEGs between PD and

normal samples to obtain the differentially expressed CRGs. The disease module-related genes

and the key differentially expressed CRGs were respectively obtained by WGCNA and PPI,

Fig 6. Identification and diagnostic accuracy assessment of key genes. The box plots of PI3 expression levels

between PD and normal samples in the training dataset (A) and validation dataset (B), and SERPINI1 expression levels

between PD and normal samples in the training dataset (C) and validation dataset (D).

https://doi.org/10.1371/journal.pone.0299898.g006
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and they were intersected to observe the intersection genes. Then we enriched the genes by the

KEGG and GO analysis. Next, we identified 2 key genes from the datasets, PI3 and SERPINI1,

and constructed a PPI network. They were verified by the ROC curves (AUC>0.7). Then the

PD-related miRNAs and key genes-related miRNAs were intersected into key miRNAs, which

were enriched by the KEGG analysis. At last, the results were verified by RT-qPCR. Techni-

cally, we integrated the bioinformatics analysis and the biological experiment to figure out not

whether cuproptosis-related genes were involved in the pathogenesis of PD. To date, we uti-

lized these methods for the first time to explore the association between cuproptosis and the

disease, innovatively elucidating the underlying pathogenesis from a new perspective and lay-

ing the foundation for subsequent basic experiments. It’s worth mentioning that the interven-

tion against the corresponding cuproptosis-related molecules would provide promising targets

for PD therapy as well as diagnostic biomarkers deserving further investigation.

From the data analysis in this study, we obtained 2 key genes, PI3 and SERPINI1, respec-

tively. PI3, which functions in preventing excessive tissue injury during inflammatory events

[40], has a significant association with a diversity of tumors [41]. Besides, one recent study

based on pathway clustering analysis found that PI3 is upregulated in PD patients [42], which

was consistent with our experimental results. Therefore, how PI3 participates in PD patients

could be investigated in the future to explain this contradictory finding, possibly related to the

different stages of neuroinflammation. SERPINI1 encodes an axonally secreted neuroprotec-

tive protein called neuroserpin, which values in synaptic plasticity [43]. It is implicated in the

conformational disease familial encephalopathy with inclusion bodies, which manifested as

progressive dementia and epilepsy via endoplasmatic reticulum (ER)-overload response [44].

Fig 7. The ROC curves of PI3 in the training dataset (A) and validation dataset (B), and that of SERPINI1 in the

training dataset (C) and validation dataset (D).

https://doi.org/10.1371/journal.pone.0299898.g007
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In a study based on analyzing human SERPIN transcripts, SERPINI1 was significantly down-

regulated in Sporadic Creutzfeldt-Jakob disease patients [45]. Besides, the role of SERPINI1 in

AD pathology is controversial. Neuroserpin can act neuroprotective by binding to Aβ and

altering its oligomerization [46], however, it could also be detrimental in reducing the clear-

ance of Aβ [47]. The conflicting role in AD is similar to the gap between our bioinformatics

predictions and experimental results, which requires further studies. What’s more, aggregated

α-synuclein has been demonstrated to induce ER fragmentation and compromise ER protein

Fig 8. The PPI network of the key genes.

https://doi.org/10.1371/journal.pone.0299898.g008
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folding capacity [48]. Therefore, the role of SERPINI1 could be further investigated in other

neurodegenerative diseases like PD targeting α-synuclein and ER homeostasis. Chymotrypsin-

like elastase family member 1 was predicted as a key interacting gene by PPI analysis of the key

genes. It is a digestive protease expressed during lung development and regeneration [49].

However, its role in PD remains unclear and needs to be further clarified.

What’s more, the interaction prediction models targeting gene, mRNA, miRNA, lncRNA

[50, 51] proteins [52], metabolites [53, 54] and even the drug compounds [55, 56] have devel-

oped in the fields of computational biology, which could provide fresh and valuable insights

into the genetic markers related with the disease. In recent years, with the popularity of single-

cell sequencing, the deep-learning methods for single-cell clustering analysis have also

emerged consequentially with great prospects for development [52, 57]. Generally, the rapid

growth of the computational biological methods results in a deep and comprehensive insight

of the disease from the molecular level. Herein, by intersecting the related miRNAs of PD and

key genes, we screened 29 key miRNAs including hsa-miR-30c-2-3p, hsa-miR-34c-5p, and

hsa-miR-30b-5p, etc. Consistent with our results, another study found that the level of hsa-

miR-30c-2-3p in plasma extracellular vesicles was significantly higher in PD patients than that

in controls, and the target genes were enriched in dopaminergic synapse and PD pathway [58].

Eventually, we predicted fatty acid biosynthesis and fatty acid metabolism as the key pathways

by KEGG. Considering the significance of lipoylated proteins in cuproptosis, it is reasonable

to infer that cuproptosis takes part in the pathogenesis of PD.

Currently, there are few bioinformatic analyses targeting cuproptosis in PD as mentioned

previously [18–20].A recent study was dedicated to exploring the potential CRGs, the immune

infiltration patterns in PD, and consequently, the associated copper chelators therapy [18].

Another study showed that CRGs were significantly enriched in immunity-related pathways

like JAK-STAT and Notch pathway. Based on the LASSO analysis, core genes were identified

Fig 9. Screening and KEGG pathway enrichment analysis of key miRNAs. (A) The network of key genes and

miRNAs (the red triangles were key miRNAs and the green circles were key genes). (B) The significantly enriched

KEGG pathways of key miRNAs (red indicated more significantly enriched).

https://doi.org/10.1371/journal.pone.0299898.g009

Fig 10. The RT-qPCR results of 2 hub genes. (A) The RT-qPCR results of PI3 between PD and the control group. (B)

The RT-qPCR results of SERPINI1between PD and the control group. *: P<0.05; **: P<0.01.

https://doi.org/10.1371/journal.pone.0299898.g010
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and utilized in a prognostic prediction model [19]. Recently, Zhang et al. found that Cu

exposed to mice lead to neuronal degeneration and promoted the expression of cuproptosis-

related proteins ferredoxin 1 and dihydrolipoamide S-acetyltransferase, providing experimen-

tal evidence for the involvement of cuproptosis in neurodegenerative diseases [59]. In contrast

to the above articles, the systematic bioinformatic and experimental methods were simulta-

neously used in our study to screen and validate the hub genes. Above all, the identification of

key genes and miRNAs is of guiding value for exploring the underlying pathogenesis, the bio-

markers for early identification, and the potential candidates for drug targeting.

However, it remains some limitations in our study as listed. 1) the limited sample size we

obtained from public databases may not only affect the accuracy of predicting the key genes

but also restrict the subgroup analysis, so it could be further designed in a larger size of the

samples. What’s more, the samples could be stratified by gender and other demographic char-

acteristics, and PD could be categorized into different subtypes in future studies. 2) The algo-

rithms in our study could be affected by the adoption of the coefficients and calculation

methods, which could have impact on the results. Future research could integrate diverse

computational biology algorithms and methods, such as ordinary differential equations based

theoretical models on gene and protein signaling networks [60–62], to obtain the results

robustly from different perspectives. 3) The results of the experimental validation are contra-

dictory to our predictions. The complicated results might be related with the post-translation

modification, the different stages of the disease, etc. Therefore, the in-depth studies could be

conducted to figure out the underlying mechanisms.

5. Conclusion

In summary, our study demonstrates that cuproptosis contributes to the development of PD

through comprehensive bioinformatics approaches combined with experimental verification.

Future studies could be designed to figure out the pathogenic role of cuproptosis in PD based

on larger populations and other algorithms like ordinary differential equations based theoreti-

cal models. The key genes and mi-RNAs obtained from the study could be instructive in the

identification of the diagnostic biomarkers as well as the candidates for molecular modification

and metal homeostatic therapies in the early course of the disease.
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