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Abstract

Background

Lower limb amputation contributes to structural and functional brain alterations, adversely

affecting gait, balance, and overall quality of life. Therefore, selecting an appropriate pros-

thetic ankle is critical in enhancing the well-being of these individuals. Despite the availability

of various prostheses, their impact on brain neuroplasticity remains poorly understood.

Objectives

The primary objective is to examine differences in the degree of brain neuroplasticity using

magnetic resonance imaging (MRI) between individuals wearing a new passive ankle pros-

thesis with an articulated ankle joint and a standard passive prosthesis, and to examine

changes in brain neuroplasticity within these two prosthetic groups. The second objective is

to investigate the influence of prosthetic type on walking performance and quality of life. The

final objective is to determine whether the type of prosthesis induces differences in the walk-

ing movement pattern.

Methods

Participants with a unilateral transtibial amputation will follow a 24-week protocol. Prior to

rehabilitation, baseline MRI scans will be performed, followed by allocation to the interven-

tion arms and commencement of rehabilitation. After 12 weeks, baseline functional perfor-

mance tests and a quality of life questionnaire will be administered. At the end of the 24-

week period, participants will undergo the same MRI scans, functional performance tests
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and questionnaire to evaluate any changes. A control group of able-bodied individuals will

be included for comparative analysis.

Conclusion

This study aims to unravel the differences in brain neuroplasticity and prosthesis type in

patients with a unilateral transtibial amputation and provide insights into the therapeutic ben-

efits of prosthetic devices. The findings could validate the therapeutic benefits of more

advanced lower limb prostheses, potentially leading to a societal impact ultimately improv-

ing the quality of life for individuals with lower limb amputation.

Trial registration

NCT05818410 (Clinicaltrials.gov).

Introduction

A lower limb amputation is a life-altering event that significantly affects an individual’s overall

well-being or quality of life due to the loss of mobility, physical strains and psychosocial

impacts [1, 2]. The absence of a limb restricts the individual’s ability to perform daily tasks,

leading to physical discomfort, secondary injuries and a higher risk of falling [3–7]. A recent

review indicates that 54% of the people with a lower limb amputation wearing a standard pas-

sive prosthesis reported falling in the last year, with 26% reporting falling multiple times [7].

On top, it is estimated that 60% of these falls require medical attention [8, 9]. Falls can result in

additional injuries, further impairing mobility and independence and increasing fall-related

healthcare costs [7, 9, 10]. Addressing these challenges is crucial to improving overall well-

being and enhancing the individual’s quality of life.

The brain is often overlooked when discussing the effects of amputation. Even though, after

an amputation, significant structural and functional neuroplastic changes occur, contributing

to decreased static and dynamic balance, increased gait variability and an increased risk of

falling [7, 11, 12]. Gait patterns and the onset of falls are orchestrated by the intricate interplay

between biomechanical factors and the human brain [13]. This interaction entails that the

brain plays a vital role in the organisation and performance of human gait [13]. Magnetic reso-

nance imaging (MRI) revealed that lower limb amputation contributes to the thinning of the

premotor cortex and visual-motor area, the reduction in white matter integrity within the pre-

motor region contralateral to the amputation site, along with changes in the connectivity

between bilateral premotor cortices [12]. These changes disrupt the processes involved in

movement planning and the coordination of eye movements relative to the limbs, resulting in

reduced perception-action coupling [12]. In addition, amputation influences changes in limb

representation in the primary motor and somatosensory cortex. It induces decreased connec-

tivity in the primary motor cortex, primary somatosensory cortex, supplementary motor area,

basal ganglia, thalamus, and cerebellum [12]. These changes in connectivity translate towards

reduced motor control and balance, further complicating the performance of daily activities of

people with lower limb amputation [12].

Given the challenges posed by these neurological changes, enhancing the quality of life for

people with amputation necessitates the use of suitable prosthetic ankle devices. Today, passive

devices are among the prosthetic feet most widely used [14]. The majority of passive mechani-

cal prostheses rely on a fixed spring, are not articulated and offer basic functionality [14]. To
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better mimic able-bodied gait, articulated ankle joints are integrated into such passive devices,

enhancing biomechanical factors and increasing the quality of life (e.g. increased mobility,

comfort and gait patterns) [14–16]. Yet, there is insufficient evidence for their beneficial influ-

ence on brain neuroplasticity [17].

Understanding the influence of passive and articulated passive prostheses on brain neuro-

plasticity will provide vital information on the underlying mechanisms in the context of fitting

an individual with amputation with the most beneficial prosthetic device to improve function-

ality, reduce fall risk and ultimately improve quality of life. A recent systematic review com-

pared the therapeutic benefits of different ankle prostheses (i.e., passive, quasi-passive and

active) during daily activities [17]. This review demonstrated that although many short-term

benefits of advanced prosthetic devices have been shown through user evaluations, there is a

lack in the literature concerning mid-to-long-term holistic assessments employing a psycho-

physiological approach [17]. Furthermore, among the included manuscripts, only De Pauw

et al. investigated the difference in brain dynamics between two types of prosthetic ankles by

means of EEG [18]. Nevertheless, research on the impact of the prosthesis type on neuroplas-

ticity is notably absent from scientific literature. Therefore, our study aims to research brain

neuroplasticity induced by different types of prosthetic ankle devices.

Objectives

The primary objective is to examine the differences in the degree of brain neuroplasticity using

magnetic resonance imaging (MRI) between individuals wearing a new passive ankle prosthe-

sis with an articulated ankle joint and a standard passive prosthesis, and to examine changes in

brain neuroplasticity within these two prosthetic groups. We hypothesise that the neuroplastic

changes influenced by the amputation will be less pronounced in people using an articulated

prosthesis than those using a standard passive device. The secondary objective is to investigate

walking performance and quality of life related to the type of prosthesis. We hypothesise that

walking performance and quality of life will increase when using the prosthesis with an articu-

lated ankle joint. The final objective is to determine whether the type of prosthesis induces dif-

ferences in the walking movement pattern in individuals with a unilateral lower limb

amputation. We hypothesise that movement patterns will more closely align with able-bodied

gait patterns in individuals wearing the prosthesis with an articulated ankle joint compared to

those wearing the standard passive device.

Materials and methods

The study protocol has been reported in compliance with the SPIRIT 2013 guidelines [19].

The World Health Organization trial registration data is presented in S1 Table. The completed

SPIRIT 2013 checklist and the original protocol are also provided as supporting information.

Study design & sample size

The study has been designed as a controlled clinical trial with three parallel study arms. Given

the nature of the research involving distinct prostheses, neither participant nor investigator

blinding is possible. Fig 1 shows a diagram with the different phases of the study. Participants

with a unilateral transtibial amputation will be allocated to one of the two prosthetic study

arms (i.e. standard care prosthesis vs new articulated prosthesis) with alternate (1:1) allocation.

The primary endpoints of the clinical trial are the differences in brain neuroplasticity and the

distance covered during the 6-minutes’ walk test between the prosthetic arms. With this study

being the first to investigate brain neuroplasticity in relation to the type of prosthesis, data to

conduct sample size estimation is lacking. Therefore, the sample size for this study was
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Fig 1. Study flowchart.

https://doi.org/10.1371/journal.pone.0299869.g001
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calculated based on the data available for the distance covered during the 6-minutes’ walk test

[20]. We performed a sample size calculation for an analysis of variance using G*Power (ver-

sion 3.1.9.4) envisaging 10% drop-out. Values used for this calculation were medium expected

effect size f = 0.318, power = 0.80, alfa = 0.05, the number of groups = 3 and the number of

measurements set at 2 with a correlation between measurements of 0.75. A total of 40 partici-

pants with a lower limb amputation is required and will be allocated alternatingly (i.e.,

pseudo-randomisation) to one of the two prosthetic groups. A control-group of 20 able-bodied

individuals will be included to a third study arm to enable comparison.

Inclusion and exclusion criteria

Adults aged 25–65 with a unilateral transtibial amputation will be recruited through four reha-

bilitation centres, and orthopaedic departments of hospitals in Belgium. Recruitment will take

place from September 2023 onwards until the required sample size is attained. Adults with a

Medicare Functional Classification level< K3, metal implants, bilateral amputation, addi-

tional upper-limb amputation or diabetes and participants with neurological disorders or

excessive stump pains and wounds will be excluded. All participants will be asked to provide

their written consent after being written and verbally informed regarding the study protocol.

The study will be executed in compliance with the Declaration of Helsinki [21] and is

approved by the medical ethics commission of VUB and UZ Brussel (BUN 1432023000077).

The study is registered via Clinical.trials.gov (NCT05818410).

Protocol

We will compare a new passive articulated prosthetic ankle-foot (Lunaris1) to a conventional

non-articulated prosthetic foot (SACH1) on brain neuroplasticity, functional physical perfor-

mance, quality of life and movement patterns by means of a clinical trial.

The clinical trial will comprise four test days for participants with a lower limb amputation

and two days for the control group of able-bodied individuals. The able-bodied individuals

will undergo an MRI-scan at the University hospital Brussels followed by functional perfor-

mance tests conducted.

Participants with a lower limb amputation will start the clinical trial upon the start of their

rehabilitation. The rehabilitation will be provided by the patients their physiotherapist of

choice and is not part of this trial. At week 0, when initiating the rehabilitation, participants

will undergo a baseline MRI-scan at the University hospital Brussels. Then, they will be allo-

cated alternatingly to the intervention arms (new articulated ankle-foot prosthesis or standard

foot prosthesis) and will conduct their rehabilitation to learn walking with a prosthesis. At the

end of the rehabilitation, at 12 weeks, participants will perform baseline functional perfor-

mance tests, and fill out the prosthetic evaluation questionnaire measuring quality of life [22].

Between weeks 12 and 24 of the clinical trial, participants will perform their daily activities

with their allocated prosthesis. During this 12-week period, trying out new prosthetic devices

will be allowed within the group of individuals wearing the standard prosthetic foot as this is

considered the usual care. At the end of this period (at week 24), post-intervention assessments

will take place and participants will undergo the same MRI and functional performance tests

and fill out the same quality of life questionnaire to evaluate the changes that occurred. Addi-

tionally, participants will be asked to fill out the Quebec User Evaluation of Satisfaction with

Assistive Technology to evaluate their prosthetic satisfaction [23, 24]. The 12-week interven-

tion period is chosen based on studies examining the effect of 12 weeks balance training in

healthy and older adults on neuroplasticity and on the accommodation time to walking with a

new prosthesis [25–27]. Throughout the study, the time during which the individuals walked
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with their prosthetic device over the 24h period will be estimated based on anamnestic ques-

tions on the average hours of prosthetic use a day, duration and frequency of rehabilitation

period. Fig 2 presents an overview of the schedule of enrolment, interventions, and

assessments.

Auxiliary subject information and outcome parameters

An overview of the different outcome parameters is provided in Table 1.

Auxiliary subject information. Auxiliary subject information will be collected during the

first day of data collection for the participants with an amputation. The subject information

that will be collected comprises age, sex, height, length, weight, handedness, average amount of

daily physical activity, date of amputation, side of amputation, stump length, comorbidities,

Fig 2. The schedule of enrolment, interventions, and assessments. *only for able-bodied individuals.

https://doi.org/10.1371/journal.pone.0299869.g002
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Table 1. Outcome parameters.

Primary outcomes

Brain neuroplasticity MRI: brain connectivity & microstructure [numeric]

Functional performance

6-min walking test [43] Distance covered in 6 minutes [numeric]

Secondary outcomes

Functional performance

Slope walking test [40] Time to complete test [numeric]

Stair climbing and descending

test [41]

Time to complete test [numeric]

Dual-task L-test [42] Time to complete test & accuracy of subtractions [numeric]

L-test [42] Time to complete test [numeric]

6-min walking test [43] Time to complete test [numeric]

Biomechanical gait parameters Lower limb joint angles and velocities & intra-limb

continuous relative phases

[numeric]

Slope walking test [40] Lower limb joint angles and velocities & intra-limb

continuous relative phases

[numeric]

Stair climbing and descending

test [41]

Lower limb joint angles and velocities & intra-limb

continuous relative phases

[numeric]

6-min walking test [43] Lower limb joint angles and velocities & intra-limb

continuous relative phases

[numeric]

Scores

Prosthetic Evaluation Questionnaire [numeric, VAS,

scale]

Quebec User Evaluation of Satisfaction with Assistive Technology [numeric, scale]

NASA-Task-Load Index [numeric, VAS]

L-test [42] [numeric, VAS]

Dual-task L-test [42] [numeric, VAS]

Level of comfort [numeric, VAS]

Slope walking test [40] [numeric, VAS]

Stair climbing and descending test [41] [numeric, VAS]

Dual-task L-test [42] [numeric, VAS]

L-test [42] [numeric, VAS]

6-min walking test [43] [numeric, VAS]

Level of fatigue [numeric, VAS]

Slope walking test [40] [numeric, VAS]

Stair climbing and descending test [41] [numeric, VAS]

Dual-task L-test [42] [numeric, VAS]

L-test [42] [numeric, VAS]

6-min walking test [43] [numeric, VAS]

Rate of perceived exertion [numeric]

Slope walking test [40] [numeric]

Stair climbing and descending test [41] [numeric]

Dual-task L-test [42] [numeric]

L-test [42] [numeric]

6-min walking test [43] [numeric]

MRI = Magnetic Resonance Imaging, VAS = Visual Analogue Scale

https://doi.org/10.1371/journal.pone.0299869.t001
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use of medication, presence of phantom pains, history of trauma and the history of falls. Dur-

ing the follow-up measurements, we will again perform the anamnesis and extend this with

questions on the rehabilitation process, if other prosthetic devices were tested, and the dura-

tion of prosthesis use throughout the day. Auxiliary subject information that will be gathered

during the first day of data collection within the control group of able-bodied participants will

comprise age, sex, height, length, weight, handedness and average daily physical activity.

Brain neuroplasticity. Neuroplasticity can be defined as a reorganisation of brain struc-

ture, function and connectivity within the central nervous system in response to intrinsic and

extrinsic stimuli [28]. Based on our hypotheses, we are mainly interested in, but not limited to,

the motor-related regions of the brain given the exploratory nature of this study [12]. The out-

come parameters include connectivity and white and grey matter microstructure measures

(e.g., characteristic path length, clustering coefficient, efficiency, neurite density index, fiber

density, and fiber cross-section, fiber density cross-section).

Pre- and post-intervention MRI scans will be acquired supine on a 3-Tesla MRI unit using

a 48-channel head coil. A 30-minute protocol will be followed, comprising scout images, 3D

T1-weighted spin-echo images, diffusion-weighted imaging, resting state-fMRI, and

3D-QALAS. An anatomical 3D T1-weighted image and a multi-shell diffusion-weighted data-

set will be acquired, as well as a resting-state fMRI acquisition and a 3D-QALAS acquisition.

The diffusion dataset includes several b0 images, and for both the diffusion and resting state

data, additional data using reversed-phase directions will be acquired. The 3D-QALAS acquisi-

tion allows for a simultaneous T1, T2 and proton density mapping, additional data using

reversed-phase directions will be acquired, making it sensitive to microstructural changes in

the brain [29, 30].

After data acquisition, the MRI data will be pre-processed, and the outcome parameters will

be computed. FSL will be used to pre-process the diffusion-weighted imaging and resting

state-fMRI data [31–33]. Pre-processing consists of denoising, distortion, eddy current and

bias field correction, and motion correction with outlier replacement. Afterward, a MRtrix3

performs a fixed-based analysis in the white matter regions, while a NODDI analysis is done in

the grey matter areas [34, 35]. To analyse the 3D-QALAS data, SyMRI will be used (Synthe-

ticMR AB, Linköping, Sweden), after which grey matter, white matter and myelin maps are

estimated from the relaxometry maps [36, 37]. Once the relaxometry and tissue maps are

obtained, a voxel-based analysis will be performed using a modified version of the hMRI

toolbox of SPM12 [38, 39], using MATLAB.

Functional performance & questionnaires. A 6-min walking test, dual-task L-test, L-test,

slope walking test, and stairs climbing and descending test will indicate functional balance and

dual-task performance [40–43]. Rating of perceived exertion [44], level of fatigue and comfort

[45] and NASA-Task Load index (NASA-TLX) assessing perceived workload [46] will be

assessed after each task.

Quality of life & prosthetic satisfaction. The prosthetic evaluation questionnaire will be

used to assess the quality of life [22]. The Quebec User Evaluation of Satisfaction with Assistive

Technology will be used to evaluate the prosthetic satisfaction and prosthetic associated ser-

vices [23, 24].

Biomechanical gait parameters. Inertial measurements units (Awinda, Xsens Technolo-

gies B.V., Enschede, The Netherlands) will be capturing 3D-accelerations and angular veloci-

ties during the 6-min walking test, the slope walking test and the stairs climbing and

descending test to evaluate the participants’ gait pattern [47]. Inertial measurement units will

be placed on the feet, lower legs, upper legs and pelvis according to the manufacture guide-

lines. The data of the inertial measurement units will be used to evaluate coordination patterns

between hip, knee and ankle joints or segments based on continuous relative phase plots.
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Biomechanical data will be analysed and purified in Matlab (The MathWorks Inc., Massachu-

setts, United States) following the methods described in Lathouwers et al (2023) [48].

Statistical analyses

Statistical analyses will be performed using R [49], MRtrix [50], and the hMRI toolbox [51].

Statistical methods for brain neuroplasticity and functional performance testing outcomes will

include mixed linear or generalised linear modelling depending on the model assumptions

being fulfilled. If those analyses cannot be conducted, assumptions will be checked to perform

multivariate or univariate analyses. If the assumptions for those types of analyses are also not

fulfilled, non-parametric equivalents will be applied. The data will be adjusted for confounding

variables like age, sex, handedness, amount of daily prosthetic use and the average amount of

daily physical activity. The biomechanical gait parameters will be compared within and

between groups using statistical parametric or non-parametric mapping. The statistical signifi-

cance level will be set at 5% for all analyses.

Data storage and management

As personal and sensitive data of human participants will be collected, pseudonymisation of

the data will occur as soon as possible upon data acquisition. The file, which establishes the

link between the pseudonymised identities and the participant’s identification, will be pass-

word-protected.

Raw data from the anamnesis, functional performance tests and questionnaires will be col-

lected via an electronic case report form using Redcap (projectredcap.org). Data collected in

Redcap is automatically stored on the external server of the Ethical Committee of the UZ Brus-

sel. Upon completion of the data collection, the data collected via Redcap will be downloaded

from the software application and used for data processing and analyses. Both the raw and

cleaned data will be stored on the research’s group network attached storage (NAS). Raw bio-

mechanical and MRI data will be stored on the research’s group network attached storage

(NAS). After data processing, the cleaned data will be stored on the NAS. The NAS is system-

encrypted, back-upped, has up-to-date antivirus and is only accessible by authorised personnel

via two-factor authentication. Manual files will be stored in locked filing cabinets. All pseudo-

nymized data will be stored for up to 10 years, as recommended by the Vrije Universiteit

Brussel.

Data in the present study will be managed confidentially and conform to the General Data

Protection Regulation (GDPR) of 27 April 2016. Participating in this study means that the par-

ticipant agrees that the investigators gather data of the participant that will be used to conduct

the investigation and eventually will result in publications in scientific journals and presenta-

tions at conferences. By signing the informed consent, participants also provide their agree-

ment that encoded data may be shared with other researchers beyond the scope of the current

study. The participant will always have the right to ask the investigators which data he/she has

gathered on them and for what this data is used in light of the investigation. The participant

retains the right to look into this data and to ask for corrections on the occasion this data con-

tains errors. The participant also retains the right to stop his/her participation in the study at

any moment.

In order to control the quality of the present study, the medical file of the participants may

be consulted. If so, this will be done by qualified personnel bound to professional secrecy, e.g.

representatives of the ethical committee or an external auditing bureau. This consultation can

only occur under strict conditions, under the investigator’s responsibility and supervision. The
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encrypted data can also be passed through the Belgium government, other regulatory authori-

ties, or the ethical committee.

Ethics and dissemination

The study is approved by the medical ethics commission of VUB and UZ Brussel (BUN

1432023000077), and is registered via Clinical.trials.gov (NCT05818410). Written informed

consent will be obtained from all participants.

The authors of the present protocol proposal declare no financial or other conflicts of interest.

Trial results will be communicated to the general public through the publication of dissemi-

nated manuscripts published in scientific journals, and through conference presentations/

posters. Authorship of these papers and presentations will only be granted to researchers that

performed a substantial contribution to the scientific article [52]. Given the nature of this

paper (i.e. protocol paper), data has yet to be gathered. After data collection and analysis, the

statistical code and dataset will be freely available in a to-be-determined online repository for

lasting access possibility.

Discussion & conclusion

This study will examine differences in brain neuroplasticity through MRI between individuals

wearing a new passive ankle prosthesis with an articulated ankle joint and a standard passive

ankle prosthesis. The secondary aim is to investigate walking performance and quality of life-

related to the type of prosthesis, and the final aim is to determine if the type of prosthesis

changes the movement pattern during walking.

This novelty of the study stems from it being the first to unravel possible differences in neu-

roplasticity in relation to the type of prosthesis in patients with a lower-extremity amputation.

It could provide valuable insights into how the brain adapts to various prosthetic types, com-

plementing the existing literature on neuroplasticity after amputation [12]. Depending on the

findings of this study, these results may have a societal impact and improve the quality of life

for individuals with lower limb amputation.

Furthermore, this study will generate biopsychosocial findings on the therapeutic health

benefits of prostheses on individuals with an amputation (i.e. functional performance and

quality of life) through both subjective and objective parameters. The study will, therefore,

take a first step in filling the literature gap regarding medium- to longer-term prosthetic effects

on the individual wearing the prosthesis [15]. The findings from this study may serve as a step-

ping stone for future research, fostering a deeper understanding of the overall impact of pros-

thetic interventions. Additionally, they have the potential to inform future advancements in

prosthetic design and rehabilitation strategies, aiming to improve the quality of life of patients

with an amputation and decrease the associated mortality risk.

Supporting information

S1 Table. Trial registration data.

(DOCX)

S1 Protocol. Original protocol.
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