
RESEARCH ARTICLE

TITAN: Combining a bidirectional forwarding

graph and GCN to detect saturation attack

targeted at SDN

Longyan Ran1,2, Yunhe CuiID
1,2*, Jianpeng Zhao3, Hongzhen Yang3

1 Guizhou Xiangming Technology Co., Ltd, Guiyang, Guizhou, China, 2 State Key Laboratory of Big Data,

College of Computer Science and Technology, Guizhou University, Guiyang, Guizhou, China, 3 State Grid

Zhejiang Electric Power Co., Ltd, Information and Telecommunication Branch, Hangzhou, Zhejiang, China

* yhcui@gzu.edu.cn

Abstract

The decoupling of control and forwarding layers brings Software-Defined Networking (SDN)

the network programmability and global control capability, but it also poses SDN security

risks. The adversaries can use the forwarding and control decoupling character of SDN to

forge legitimate traffic, launching saturation attacks targeted at SDN switches. These

attacks can cause the overflow of switch flow tables, thus making the switch cannot forward

benign network traffic. How to effectively detect saturation attack is a research hotspot.

There are only a few graph-based saturation attack detection methods. Meanwhile, the cur-

rent graph generation methods may take useless or misleading information to the attack

detection, thus decreasing the attack detection accuracy. To solve the above problems, this

paper proposes TITAN, a bidirecTional forwardIng graph-based saturaTion Attack detec-

tioN method. TITAN defines flow forwarding rules and topology information, and designs

flow statistical features. Based on these definitions, TITAN generates nodes of the bi-

forwarding graph based on the flow statistics features and edges of the bi-forwarding graph

based on the network traffic routing paths. In this way, each traffic flow in the network is

transformed into a bi-directional forwarding graph. Then TITAN feeds the above bidirec-

tional forwarding graph into a Graph Convolutional Network (GCN) to detect whether the

flow is a saturation attack flow. The experimental results show that TITAN can effectively

detect saturation attacks in SDNs with a detection accuracy of more than 97%.

1 Introduction

Software-Defined Networking (SDN) is an emerging network architecture that brings great

changes and enhancements to traditional networks. SDN is consisted of the application layer,

northbound interface, control layer, southbound interface, and forwarding layer. The applica-

tion layer consists of various network services and applications. The control layer is responsi-

ble for controlling network traffic while the forwarding layer only needs to forward network

traffic under the instructions made by the control layer. At the same time, applications in the

application layer can utilize various network services provided by the control layer through the

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Ran L, Cui Y, Zhao J, Yang H (2024)

TITAN: Combining a bidirectional forwarding graph

and GCN to detect saturation attack targeted at

SDN. PLoS ONE 19(4): e0299846. https://doi.org/

10.1371/journal.pone.0299846

Editor: Ashraf Osman Ibrahim, Universiti Malaysia

Sabah, MALAYSIA

Received: July 26, 2023

Accepted: February 18, 2024

Published: April 26, 2024

Copyright: © 2024 Ran et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The original data and

graph data have been shared on github. DATA

URL: https://github.com/Ran-ly/titan.

Funding: This work was supported by the Science

and Technology Project of State Grid Zhejiang

Electric Power Co., Ltd. Under the Grant No.

5211XT220003. The funders had contribution in

conceptualization, methodology, validation, formal

analysis, and writing-review and editing.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-0880-675X
https://doi.org/10.1371/journal.pone.0299846
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0299846&domain=pdf&date_stamp=2024-04-26
https://doi.org/10.1371/journal.pone.0299846
https://doi.org/10.1371/journal.pone.0299846
http://creativecommons.org/licenses/by/4.0/
https://github.com/Ran-ly/titan

northbound interface. Multiple controllers can work together through the east-west interface.

SDN has network programmability and good scalability in both vertical and horizontal direc-

tions. Therefore, SDN is widely used in cloud data center networks [1], Internet of Things

(IoT) [2], and blockchain [3].

The separation of forwarding and control function enables SDN to be widely used in some

areas, but it also poses security risks to SDN. Specially, adversaries can exploit the unique

forwarding and control separation mechanism to launch saturation attacks. Due to the high

cost and power consumption of Ternary content-addressable memory (TCAM), SDN switches

can only install a limited number of flow entries [4]. The adversaries can utilize the limited

TCAM of SDN switches to launch saturation attacks targeted at overwhelming the SDN

switches [5]. More specifically, they can send elaborated attack packets to the target switch,

causing the switch to install many flow entries. Eventually, the above flow entries exhaust the

TCAM memory and cause the SDN switch fail to install new forwarding rules, thus disrupting

the transmission of benign traffic. For instance, Zhang et al. [6] proposed an enhanced satura-

tion attack Table-miss Striking Attack, in which the adversary first uses various low-rate probe

packets to probe the detailed information of flow entries, especially for the match field and sur-

vival time. Based on these information, it forges some attack packets to inveigle the switch

send packet-inmessages to the controller. Then the controller will send a lot of flow-modmes-

sages to install flow entries in the switch. At last, the switch will be occupied by the malicious

flow entries.

How to detect saturation attacks is a serious challenge in SDN. Some researchers use

machine learning-based approaches to detect network attack [7]. Due to its high detection

accuracy, a few studies have applied Graph Neural Networks (GNN) to DDoS attack detection

in SDNs. For instance, by mapping the SDN network as a graph, the method proposed in [8]

first identifies the switches under DDoS attack, and then precisely locates the entrance switch

of attack flow. The literature [9] also maps SDN smart grid as graphs, but it firstly detects

whether the network is anomalous and then identifies the phasor measurement unit that suffer

DDoS attacks. Meanwhile, some researchers have applied Graph Attention Networks (GAT)

to anomaly detection in sensor networks to identify anomalous sensor nodes [10]. The detec-

tion objects in the literature [9, 10] are network nodes and it do not discriminate the traffic.

The literature [11] transforms the session instances into K-Nearest Neighbors (KNN) graphs

and uses the GCN model to detect each KNN graph. The KNN graph in [11] is generated by

calculating the Euclidean distance between features of different instances. Then the k nearest

nodes is selected to add edges for the central node. When using KNN graph to detect SDN sat-

uration attack, it needs to convert each network flow into a KNN graph. GCN-TC [12] uses

traffic trace graph to represent traffic flows. In traffic trace graph, nodes are traffic flows, and

edges denote that nodes have common IP hosts. When using GCN-TC to detect SDN satura-

tion attack, edges will be added among nodes that have common IP hosts, regardless of the

type of nodes. Hence, it may make the GNN model aggregate attack node information using

incorrect neighbor nodes, causing the decrease of detection performance.

In conclusion, although GNN can achieve high detection accuracy, there are very few

graph-based saturation attack detection methods in SDN. Meanwhile, the existing graph-

based saturation attack detection methods are facing with the following issues.

• Issue 1: the edges generated by existing graph generation methods maybe incorrectly

connected. When using KNN graph, the features are normalized as nodes, and it adds edges

based on the Euclidean distances among different nodes. Such an edge does not carry useful

information and only indicates that a few types of features are similar in value. In addition,

the traffic trace graph adds edges depending on whether the nodes have a common IP host.

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 2 / 25

https://doi.org/10.1371/journal.pone.0299846

Hence, traffic trace graph may generate edges connected the normal flow nodes and attack

flow nodes. These edges may take incorrect information to GNN model.

• Issue 2: incorrectly connected edges may have negative effect on aggregating nodes infor-

mation of GNN. It is known that the statistical characteristics of normal flow nodes and

attack flow nodes are quite different. When GNN model aggregates the nodes information

using traffic trace graph, the incorrectly connected edges among normal and attack nodes will

make GNN aggregate the attack nodes information based on the normal nodes information.

Hence, GNN will weaken the difference between these two kinds of nodes instead of enhanc-

ing it. In conclusion, the incorrectly connected edges will decrease the detection accuracy.

To solve the above problem, this work focuses on how to detect saturation attack flows

against OpenFlow switches. Hence, we propose TITAN, a bidirecTional forwardIng Graph

and GCN-based saTuration Attack detectioN method. TITAN designs a bidirectional

forwarding graph generation algorithm, by defining the notion of topology information and

flow forwarding rules and designing flow statistical features. The bidirectional forwarding

graph generation algorithm transforms each flow in the SDN network into a bidirectional

forwarding graph. Meanwhile, a GCN model including three graph convolutional layers, one

fully connected layer, and one classification module is designed to identify whether the bidi-

rectional forwarding graph belongs to saturation attack.

Main contributions of this work are listed as follows.

• This work proposes TITAN, a bidirectional forwarding graph and GCN-based saturation

attack detection method. TITAN designs a bidirectional forwarding graph generation algo-

rithm to convert each flow into a bidirectional forwarding graph, and then it uses GCN to

implement the detection of saturation attack flows in SDNs.

• As far as we know, TITAN is the first work that converts all information about a network

flow into a single graph to detect saturation attack flow. When generating the bidirectional

forwarding graph, TITAN constructs node information based on the topology and flow sta-

tistics features. Meanwhile, the edge information is generated based on the topology infor-

mation and flow forwarding rules.

• TITAN designs a GCN model consisted of three graph convolutional layers, one fully con-

nected layer, and one classification module to detect the bidirectional forwarding graph.

• The evaluation results show that TITAN can effectively detect saturation attack flows in SDNs.

The remainder of this paper is organized as follows. Section 2 investigates the state-of-the-

art works on saturation attack detection and graph-based attack detection. The background is

introduced in Section 3. Section 4 presents the detailed architecture of TITAN. The evaluation

is shown in Section 5. Section 6 summarizes the conclusions of this work.

2 Related works

Section 2 gives the description of related works. It first summarises the graph-based attack

detection methods in subsection 2.1, and then describes the current SDN saturation attack

detection methods in subsection 2.2. Meanwhile, at the end of subsection 2.2, we analyze the

differences among the proposed method and other graph-based network attack methods.

2.1 Graph-based attack detection method

Cao et al. used in-band network telemetry to obtain the device state of the SDN data layer and

map the data layer into a graph [8]. To identify whether a switch is passed by DDoS flows, this

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 3 / 25

https://doi.org/10.1371/journal.pone.0299846

method employs a ST-GCN (Spatio-Temporal Convolutional Graph Convolutional Network)

to detect DDoS attack. Finally, a defense strategy is proposed based on the attack detection

result. The author in [9] proposed a DDoS detection method in SDN smart grid environment

called GLASS. GLASS maps the SDN smart grid into an undirected graph by calculating the

transmission delay between adjacent phasor measurement units (PMU), the average transmis-

sion delay of a central PMU and its all neighboring PMUs as the edge weights and the weight

of the central PMU node, respectively. GLASS is divided into two phases, first determining

whether the SDN smart grid is under DDoS attack using a GCN and then using a spectral clus-

tering algorithm to determine the PMU under attack. Some researchers have used the graph

attention mechanism for anomaly detection in sensor networks [10]. This method uses nodes

to represent sensors, calculates the cosine similarity between nodes using their feature vectors

and adds edges using the TOPK algorithm to generate the graph. Subsequently, the anomalous

sensor nodes in the graph are identified with GAT. Liu et al. [11] proposed a graph generation

approach to create knn graphs for each flow instance. This approach uses nodes to represent

features, calculates the Euclidean distance between features, and adds undirected edges

between nodes based on the k-nearest neighbor algorithm. Finally the attack detection is done

using GCN for graph classification. GCN-TC, proposed in [12], uses traffic trace graph to clas-

sify network flows. In traffic trace graph, nodes represent traffic flow, edges denote that nodes

have common IP hosts. After generating the traffic trace graph, GCN-TC uses GCN model to

classify a traffic trace graph belongs to different kinds.

These works [8, 9] are multi-stage detection methods with coarse grained followed by fine

grained. The multi-stage detection method has a problem of long detection time. In particular,

the GLASS can only identify the attacked switch. Additionally, implementing mitigation strat-

egies based on the attacked switches may have an impact on normal traffic. The work in [10]

suffers the same issue as the GLASS. The approach in [11] takes a more fine-grained approach

and creates graphs for each session. The traffic trace graph in [12] has the problem that it may

connect normal and attack nodes, resulting in low detection accuracy. However, graph data

occupies more memory than text, which may slow down model training and detection. In con-

clusion, GNN-based methods can be effectively used in attack detection. However, many cur-

rent approaches have limitations, like some studies have been confined to the graph node

classification problem for the application of GNN.

Main differences between TITAN and the existing graph-based network attack detection

methods are shown in Table 1. The main limitation of the existing graph-based network attack

detection methods is that the graphs generated by these works may lead to incorrect connec-

tions between different nodes, which makes GNN model aggregate node information based on

Table 1. Main differences between TITAN and graph-based network attack detection methods.

Reference Application scenarios Technique Comments

[8] DDoS detection. Topology graph; ST-GCN. Topology graph maybe unable to precisely represent the traffic flow state.

[9] SDN-based smart grid DDoS

detection.

PMUs graph; GCN. Device graph may not provide accurate network traffic flow status.

[10] Network anomaly detection. TOPK algorithm; GAT. Sensor graph generated by TOPK algorithm maybe unable to accurately represent the

network traffic flow status.

[11] Intrusion detection. KNN Graph; GCN. It may take useless or misleading information to attack detection.

[12] Traffic flow classification. Traffic Trace Graph; GCN. Different types of nodes may influence each other, leading to the decrease of detection

accuracy.

TITAN SDN saturation attack

detection.

Bidirectional Forwarding

Graph; GCN.

The proposed bidirectional forwarding graph contains comprehensive information of

network traffic flows.

https://doi.org/10.1371/journal.pone.0299846.t001

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 4 / 25

https://doi.org/10.1371/journal.pone.0299846.t001
https://doi.org/10.1371/journal.pone.0299846

incorrect neighbor nodes. Therefore, the detection accuracy of these methods maybe

decreased. To overcome the above issue, this work proposes TITAN. TITAN designs a graph

information preprocessing method, a bidirectional forwarding graph construction method

and a Bifor-Graph-based saturation attack detection method to detect saturation attacks in

SDN.

2.2 Other saturation attack detection method

Li et al. [13] proposed a saturation attack detection method named SA-Detector. It uses the

self-similarity of OpenFlow traffic in SDN southbound interfaces to detect saturation attacks.

Khamaiseh et al. [14] found that the existing saturation attack detection methods usually

acquire network information periodically and only detect saturation attacks caused by

TCP-SYN. Hence, these methods cannot detect unknown types of saturation attacks, and they

cannot detect saturation attack in time. Therefore, they investigates the variation of OpenFlow

traffic triggered by multiple saturation attacks and identify saturation attacks using SVM, NB,

and KNN algorithm. Huang et al. [15] analyzed the saturation attack characteristics. When an

attack occurs, they found the Packet-In messages rise dramatically and the occupancy of the

link bandwidth between each switch and the controller becomes unstable. Thus, the number

of Packet-In messages and the entropy value of the control channel occupancy are utilized to

detect the attack. The vSwitchGuard [16] is proposed to defend OpenFlow switches against sat-

uration attacks. The authors found that when a saturation attack against switch exist in SDN, a

large number of packets cannot be matched with flow entries, causing a large number of

Table-miss packets and Packet-In messages. Hence, the saturation attack can be located by cal-

culating the entropy value of the source IP address of Table-miss packets and the proportion

of Table-miss packets among all received packets.

In summary, current saturation attack detection techniques heavily rely on the variation of

the interaction information between the control and forwarding layer. However, the above

methods are lacking the analysis of the variation of flow entries triggered by saturation attacks.

Therefore, the above methods can only determine whether the network is under attack or

locate the attack target. They cannot identify the saturation attack flow, thus cannot provide

enough information for the saturation attack mitigation.

3 Background

In this section, we provide the background of this work. Firstly, we introduce the principle of

saturation attack against SDN switch in subsection 3.1. Subsequently, subsection 3.2 briefly

presents the graph convolutional network.

3.1 Saturation attacks targeted at the SDN switch

SDN consists of an application layer, a control layer, and a forwarding layer. SDN switches for-

ward packets based on flow entries. If the switch does not have a flow entry that matches the

packet, the SDN switch encapsulates the packet in a Packet-In message and sends it to the con-

troller, and the controller calculates the route based on the packet’s address information. The

controller then encapsulates the routing information in a Packet-Out message back to the

SDN switch, which installs the flow entry based on the Packet-Out message [17]. This particu-

lar control forwarding mechanism raises security threats to the SDN. Saturation attacks exploit

this forwarding mechanism to launch attacks on the SDN forwarding layer and disrupt normal

network communication. The attacker can attack a legitimate switch through a malicious host,

SDN switch TCAM has limited memory and can install limited flow entries. The attacker

prompts the switch to install illegal flow entries by sending a large number of invalid packets.

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 5 / 25

https://doi.org/10.1371/journal.pone.0299846

When the illegal flow entries occupied the flow table storage of the switch, the forwarding

rules matching normal packets cannot be installed, which resulted in the disruption of normal

flow in the network. It should be noted that, in this work, we do not consider the saturation

attack targeted at the SDN controller [18]. It mainly focuses on detection of saturation attack

targeted at the SDN switches.

In conclusion, the purpose of the saturation attack targeted at the SDN switch is to over-

whelm the flow entry storage capacity of the target switch. Fig 1 illustrates the workflow of a

saturation attack against the SDN switch, which contains twelve steps listed as follows.

• Step 1 and 2: Controlling zombies. The adversary controls a set of zombies using Control

and Command(C&C) messages. Then, the adversary commands these zombies to send satu-

ration attack packets to the targeted switch.

• Step 3: Parsing packets. The targeted switch parses these saturation attack packets, and then

it tries to find flow entries that match these packets.

• Step 4: Sending Packet-In messages. The saturation attack packet can not match all flow

entries of the target switch. The target switch encapsulates these un-matched packets in the

Packet-In messages and sends them to the SDN controller.

• Step 5, 6, 7, and 8: Processing Packet-In messages. The SDN controller parses Packet-In mes-

sages generated by un-matched packets and delivers these packets to the related application

server. Then, the application server makes the processing decision based on the un-matched

packets and returns them to the SDN controller.

• Step 9, 10: Implementing processing decisions. According to the above decisions, the SDN

controller encapsulates Packet-Out messages and sends them to the switch to install flow

entries.

Fig 1. Saturation attack targeted at the SDN switch [17].

https://doi.org/10.1371/journal.pone.0299846.g001

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 6 / 25

https://doi.org/10.1371/journal.pone.0299846.g001
https://doi.org/10.1371/journal.pone.0299846

• Step 11: Installing flow entries. The switch installs flow entries according to the received

Packet-Out messages.

• Step 12: Keeping flow entries alive. The adversary makes the zombies continuously send

packets that match the newly installed flow entries to keep these flow entries alive on the

switch for a long time.

Using the above steps, the adversary can achieve the purpose of overwhelming the flow

entry storage capacity of the target switch.

3.2 Graph Convolutional Network

Graph neural network (GNN) extends traditional neural networks and enables it to process

data represented by graphs [19]. GNN are commonly used for classification and regression

tasks. In classification tasks, GNN usually abstract the instances as graphs and extract the fea-

tures of their nodes or edges as the input of GNN. The final output is the classification result of

the node, edge, or graph.

Graph Convolutional Network (GCN) is a generalization of Convolutional Neural Network

(CNN) in the graph domain. GCN is a convolutional neural network that can work directly on

a graph and exploit its spatial structure information. The GCN aggregates the feature informa-

tion of each node itself and all its neighbor nodes. Also, the degree of each node in the graph is

considered in the aggregation operation to reduce the impact caused by the degree imbalance

of different nodes. The final weighted average of the features including the node itself and all

its adjacent nodes is obtained, and the relatively optimal graph embedding representation is

procured.

In addition, convolution-based graph networks have the advantages of few training param-

eters and fast training speed [20]. Therefore, GCN is usually applied in medical [21], image

classification [22–24], cyber security [25–27], and other fields to perform graph classification

tasks.

4 TITAN: A bidirectional forwarding graph and GCN-based

saturation attack detection method

This section gives the detailed description of TITAN. We firstly present the overview of

TITAN in subsection 4.1. Then, in subsections 4.2, 4.3, and 4.4, we present the graph informa-

tion preprocessing method, bidirectional forwarding graph construction method and the

Bifor-Graph-based saturation attack detection method, respectively.

4.1 Overview of TITAN

As shown in Fig 2, this work proposes TITAN, a saturation attack detection method based on

bidirectional forwarding graphs and GCN. TITAN consists of three steps: 1) graph informa-

tion preprocessing, 2) bidirectional forwarding graph construction, and 3) saturation attack

detection. The description of these steps is shown below.

• Step 1: Graph information preprocessing. TITAN first gives the definitions of flow forward-

ing rules and topology information. Then it designs flow statistical features. The flow

forwarding rules, topology information and flow statistical features are delivered to the next

step to generate graph.

• Step 2: Bidirectional forwarding graph construction. TITAN proposes BiFor-Graph, a bidi-

rectional forwarding graph construction algorithm. BiFor-Graph first constructs the basic

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 7 / 25

https://doi.org/10.1371/journal.pone.0299846

graph structure of the bidirectional forwarding graph for each network flow. Subsequently,

it generates the node information based on the statistical characteristics of the network flow

at different switches.

• Step 3: Saturation attack detection. TITAN constructs a GCN model to detect the saturation

attack. The bidirectional forwarding graph generated in step 2 is fed into that saturation

attack detection model to perform graph detection and determine whether the network flow

is a saturation attack flow.

4.2 Graph information preprocessing

TITAN utilizes graphs to represent network flows based on the information of network flows

and network topology. The SDN controller has a global view over the entire network [28].

Therefore, as shown in Fig 2, TITAN takes advantage of the SDN controller to obtain the net-

work topology, flow forward rules, and statistical characteristics of network flow to generate

bidirectional forwarding graphs for traffic flows. The variables used in the procedure of gener-

ating the BiFor-Graph are shown in Table 2.

To generate a bidirectional graph, TITAN gives two definitions, including 1) topology

information L and 2) flow forward rules O.

Table 2. Definition of variables.

Variable Value

L Topology Information Set

ℓ Physical Link

φs Source IPv4 Address

φd Destination IPv4 Address

φδ Switch Dpid

ψ Physical Port

O Forward Rules Set

χ Forward Rules of a Flow

γ Forward Rules of a Flow in a Switch

https://doi.org/10.1371/journal.pone.0299846.t002

Fig 2. Overview of TITAN.

https://doi.org/10.1371/journal.pone.0299846.g002

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 8 / 25

https://doi.org/10.1371/journal.pone.0299846.t002
https://doi.org/10.1371/journal.pone.0299846.g002
https://doi.org/10.1371/journal.pone.0299846

Definition 1. Topology information L. This work designs a tuple L ¼ f‘1; . . . ; ‘kg to repre-

sent the topology information.

‘i ¼ ðφp;cpÞ $ ðφq;cqÞ ð1Þ

Here, ℓi is the link between a host and a switch or the link between two switches. φp and φq
are IP addresses of hosts or IDs of switches.

Definition 2. Flow forward rules O. This work utilizes a tuple O = {χ1, . . ., χm} to represent

the flow forward rules.

wi ¼ fφs;φd; g1; . . . ; gng; i ¼ 1; 2; . . . ;m ð2Þ

gj ¼ ðφ
j
d;coutÞ ð3Þ

φs is the source IP address. φd is the destination host IP address. φjd is the switch and ψout is

the outgoing port. γj is the forwarding rule. γj means that in switch φjd, the packets with source

IP φs and destination IP φd should be forwarded via port ψout. Each traffic flow has one or

more forwarding rules, therefore χi = {φs, φd, γ1, . . ., γn} means that the flow from φs to φd is

forwarded by n switches.

Based on our previous research [18, 29, 30], TITAN extracts five flow-based statistical fea-

tures to detect saturation attack flow. Usually, the saturation attack against an SDN switch tries

to deplete the flow entry storage of the switch. Hence, it can prevent the switch from installing

new flow entries and translating new packets. Unlike traditional momentary and burst DDoS

attacks, the attacker needs to send attack flows to the target switch periodically to add new

flow entries and lengthen the survival time of these flow entries. This means that the saturation

attack flow against the switch has two main properties, the periodicity and the longer survival

time of the flow entries. More specially, the saturation attack tries to make the abnormal flow

entries always exist in the switch, while the normal flow table entries are usually deleted due to

the timeout. So the survival time of the saturation attack flow is longer than that of the normal

flow entries. With the above analysis, TITAN extracts 5-dimensional statistic features f = {α,

Vα, β, Vβ, τ} as the main statistical features to generate the bidirectional forwarding graph.

• α. The total packet number of a traffic flow. In SDN, a new arrival packet will make the con-

troller install a new flow entry on the switch. And the goal of saturation attack is to occupy

the flow table space. Besides, the attacker often send less malicious packets in order to make

the saturation attack more stealthy [31]. Hence, there is a difference in the total packet num-

ber between the normal flow and attack flow.

• Vα. The packet rate of a network flow during a sampling interval. T is the current moment

and Δt is the sampling period. The saturation attack makes the malicious flow entries alive

by sending attack flows periodically. However, the communication of normal terminals is

irregular. Therefore, there is a difference in the packet rate between the normal flow and

attack flow.

Va ¼
aT � aT� Dt

Dt
ð4Þ

• β. The total byte number of a traffic flow. Similarly, when launching a saturation attack, each

attack flow carries a small length of data for concealing the attack traffic [31]. However, the

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 9 / 25

https://doi.org/10.1371/journal.pone.0299846

byte number of normal flow is irregular. Hence, the total byte number of a flow can be uti-

lized to identify the normal flow and attack flow.

• Vβ. The byte rate of a network flow during a sampling interval. According to the analysis of

the packet rate of a network flow, the byte rate of attack flow and normal flow show a similar

difference with the total byte number of a traffic flow. Therefore, the byte rate of a network

flow during a sampling interval can also be employed to detect attack flows.

Vb ¼
b
T
� b

T� Dt

Dt
ð5Þ

• τ. The survival time of a flow. The goal of a saturation attack against SDN switches is to

occupy the flow table storage capacity. The adversary needs to send malicious packets before

the malicious flow entry idle timeout arrives to lengthen the survival time of the malicious

flow entry. Hence, the survival time of attack flow entries is longer than normal flow entries.

In other words, the survival time of a flow is a representation of the saturation attack flows.

Algorithm 1 BiFor-Graph.
Input: L;O;F
Output: Graph = {G1, . . ., Gm}
for χi 2 Ω do
generate empty graph Gi = Γ(V, E, F)
V v0(F(φs))
θ rðφs;ψs;LÞ
V v1(F(θ, φs ! φd))
E < v0, v1 >
for γj 2 χ do
if gj:φ

j
d ¼¼ y then

θ rðgj:φ
j
d ; gj:ψ;LÞ

V vj+1(F(θ, φs ! φd))
E < vj, vj+1 >

end if
until the vn of φd is inserted to V
inserting the reverse path of the flow into Gi

end for
Graph Gi

end for
return Graph

Then, TITAN utilizes f to represent a flow, and F = {f1, . . ., fk} is the set of all flow.

After preprocessing the topology information L, flow forward rules O, and flow statistical

features f, TITAN will deliver the above data to the second step to construct the BiFor-Graphs.

4.3 Bidirectional forwarding graph construction

TITAN designs BiFor-Graph, a bidirectional forwarding graph generation algorithm, with the

definitions of topology information L, flow forwarding rules O and flow statistical characteris-

tics F = {f1, . . ., fk} in Section 4.2. BiFor-Graph translates each flow of the network to bidirec-

tional forwarding graphs. As shown in Algorithm 1, at first, for each χi in O, it generates an

empty graph Gi = (V, E, F) for each flow by applying the function Γ. Here, V is the node set

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 10 / 25

https://doi.org/10.1371/journal.pone.0299846

and E is the edge set.

Gi ¼ GðV;E; FÞ;V ¼ ;;E ¼ ; ð6Þ

After obtaining the empty graph Gi, BiFor-Graph gets the nodes and edges information of

the graph. It first insert v0 corresponding to the source host φs and its node information F(φs)
into V. BiFor-Graph searches the next hop using Eq 7. This function can extract the next-hop

based on the topology information L and flow forwarding rules O. After obtaining the next

hop of φs, BiFor-Graph starts to generate other nodes and links in sequence based on L and O.

Specially, the next hop v1 of v0 is generated using Eq 8. Then v1 is inserted into V and the

related link < v0, v1 > is inserted into E. For each node, The search process will continue until

the destination host φd is found.

y ¼ rðφs;cs;LÞ; ðφs;csÞ $ ðφ
1
d
;c1Þ 2 L ð7Þ

y ¼

φd; ðφ
j
d;c

out
j Þ $ ðφd;cdÞ 2 L

φjþ1

d ; ðφjd;c
out
j Þ $ ðφ

jþ1

d ;cjþ1Þ 2 L

8
<

:
ð8Þ

Up to now, the nodes and edges from φs to φd have been completely loaded into the Gi. In

the next step, the path from φd to φs is added to the Gi. Ultimately, the BiFor-Graph writes

node information to the graph based on the flow statistical features F to obtain a bidirectional

forwarding graph of the current traffic flow.

For a saturation attack flow, suppose that its statistical features on each switch have been

calculated as F. We give an example for describing the constructing process of Bifor-graph in

Fig 3. Assuming that φ1(10.0.0.1) is sending packets to φ4(10.0.0.4). The relevant flow entries

are installed on S1, S2, S3, and S4. TITAN will first preprocess the topology information, flow

forward rules and statistical features. Subsequently, TITAN constructs bidirectional forward-

ing graph using the BiFor-Graph algorithm based on the pre-processed data. Specially, BiFor-

Graph generates an empty graph G = (V, E, F). Then it inserts the source node v0 of source

host φ1 and its node information F(φ1) into V. Subsequently, it searches the next-hop of φ1,<

v1 >. Then the information about the switch S1 is calculated and assigned as the value of< v1

>. The link< v0, v1 > between the two nodes is generated and added into E. BiFor-Graph con-

tinues to search for nodes that the flow passes through until the destination host φ4 is searched.

Fig 3. Construction of bidirectional forwarding graph.

https://doi.org/10.1371/journal.pone.0299846.g003

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 11 / 25

https://doi.org/10.1371/journal.pone.0299846.g003
https://doi.org/10.1371/journal.pone.0299846

Then it start to find and add the reverse path of the flow to G. Finally, we obtain a bidirectional

forwarding graph of the flow between φ1 and φ4.

Then, TITAN will feed the BiFor-Graphs to the detection model for identifying saturation

attack flows.

4.4 Saturation attack detection based on BiFor-Graph

For a traffic flow, after generating a bidirectional forwarding graph G = (V, E, F), TITAN uti-

lizes GCN to determine whether the bidirectional forwarding graph is saturation attack.

TITAN aggregates the neighbor node information to the central node based on the graph

structure to improve the representability of the graph. As shown in Fig 4, the saturation attack

detection model consists of three graph convolutional layers, one fully connected layer, and

one classification module. At first TITAN extracts the adjacency matrix A, degree matrix D
and feature matrix X from G. Then the detection model performs a convolution operation on

a node in G. It first extracts the feature of the central node’s neighbors as convolution parame-

ters. Then it merges the node’s own feature into the convolution operation. Finally, the satura-

tion attack detection model represents a node using the combined features of itself and its

neighbors. The graph convolution layer is described as Eq 9.

Hlþ1 ¼ s ~A � 1
2 ~A ~D � 1

2HlWl
� �

ð9Þ

In Eq 9, σ is the active function. ~A ¼ Aþ l� IN(λ = 1) denotes the adjacency matrix A
plus the identify matrix after adding the self-loop for each node. ~D indicates the degree matrix

after adding the self-loop.Wl means the weight matrix of the l-th convolution layer, whileHl is
the feature matrix calculated after the operation of the l-th graph convolution layer. In particu-

lar,H0 = X.

With three graph convolution layers, the model learns a more comprehensive representa-

tion for each node in G. It is followed by aggregating the features of each node as the graph fea-

ture using the Readout function shown in Eq 10.Hn = {~h1;
~h2; :::;

~hN} is the node feature

matrix of G that will be processed by the n-th graph conv layers. More specifically, N is the

node number and~hi is the feature of i-th node. In Eq 10, FeatG is obtained by calculating the

Fig 4. Detection model of saturation attacks based on GCN.

https://doi.org/10.1371/journal.pone.0299846.g004

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 12 / 25

https://doi.org/10.1371/journal.pone.0299846.g004
https://doi.org/10.1371/journal.pone.0299846

mean value of all node features in input graph G.

FeatG ¼
1

N

XN

i¼0

h
!

i ð10Þ

After obtaining the graph feature FeatG by Readout, the FeatG is input into the fully con-

nected layer for calculating the probability of whether the bidirectional forwarding graph is

saturation attack. And (y0,y1) is the output of the fully connected layer. Then we minimize the

loss function cross-entropy between yj and the original label y to optimize this model:

Loss ¼ �
X1

j¼0

y � log
2
yj ð11Þ

During the saturation detection, the final output probability yj is mapped to the (0, 1) using

Softmax, and the value can be considered as the probability that the instance is a saturation

attack. The Softmax is shown in Eq 12.

f ðyjÞ ¼
eyj

ey0 þ ey1
ð12Þ

Finally, TITAN uses argmax function to identify whether the bidirectional forwarding

graph belongs to attack instance. The argmax will output the category with the maximum in f
(y0) and f(y1). At last, predictG, the detection result of bidirectional forwarding graph G is cal-

culated by Eq 13.

predictG ¼ argmaxðf ðyjÞÞ

¼ fyjj8yk : f ðykÞ � f ðyjÞg
ð13Þ

5 Experiments and evaluation

This section describes the evaluations of TITAN with three subsections, namely, Experiment

Setup (subsection 5.1), Changes of Features (subsection 5.2) and Saturation Attack Detection

Performance Comparison (subsection 5.3).

5.1 Experiment setup

We select the Ryu 1.4 as the SDN controller. For hosts and switches, this evaluation employes

Mininet 2.3.0 for simulation according to the analysis about Mininet [32]. Simultaneously, it

utilizes the OpenFlow 1.3 protocol as the southbound interface communication protocol. To

verify the effectiveness of TITAN, we construct the Fat-tree topology that contains twenty

switches and thirty-two hosts, as shown in Fig 5. More specially, the Fat-tree topology consists

of four core switches(S1001-S1004), eight aggregation switches(S2001-S2008) and eight edge

switches(S3001-S3008). Besides, each edge switch is connected to four hosts.

For verifying the effectiveness of TITAN, this evaluation simulates a saturation attack tar-

geting at SDN switches. In the experiment, eight hosts are randomly selected to send TCP,

UDP, and ICMP data packets to each other to simulate background traffic as our previous

works [18, 29, 30]. In this evaluation, we try to attack the switch S3008. Hence, we randomly

selects four hosts as the saturation attackers and make these hosts send saturation attack traffic

to hosts 10.0.0.29, 10.0.0.30, 10.0.0.31, and 10.0.0.32. The attack traffic causes S3008 to install

the malicious flow entries. The attacker will also periodically inject the attack traffic into the

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 13 / 25

https://doi.org/10.1371/journal.pone.0299846

network to prolong the survival time of the malicious flow entries. Eventually, the flow table

storage of S3008 overflows and the normal communication of the network is affected. To ver-

ify the effectiveness of TITAN, this evaluation sets 9 attack traffic proportions, from 10% to

90%. The attack traffic proportions is the percentage of attack traffic accounts for total network

traffic.

The GCNID [11], GCN-TC [12], Logistic Regression (LR), Naive Bayes (NB), and Support

Vector Machines (SVM) algorithms are selected as the comparison algorithms in this evalua-

tion. GCNID generates one KNN graph for each flow. Then the KNN graph is sent to the

GCN model for detecting saturation attack. GCN-TC produces a traffic trace graph. Its nodes

represent the traffic flows and its edges denotes the nodes have common IP address. Saturation

attack detection is performed by analyzing the nodes in that graph. The LR, NB, and SVM

algorithms utilize the flow statistical features for performing saturation attack detection.

5.2 Changes of features

Subsequently, we will analyze the trend of the statistical features selected by TITAN with

respect to attack and normal traffic.

5.2.1 Average packets rate and bytes rate. Figs 6 and 7 show the changes of average bytes

rate and packets rate. Fig 6 illustrates the changes of average byte rate when the saturation

attack traffic proportion are 10%, 40%, and 80%. Fig 7 presents the variation of average packet

rate as the attack traffic are about 20%, 50%, and 90%.

From Fig 6, we can see that when the saturation attack traffic proportion are 10%, and 80%,

the average bytes rate differs significantly from that of normal traffic. However, when the

attack traffic proportion is 40%, the byte rate of attack flow is similar with the normal flow.

From Fig 6a, the maximum byte rate of the attack flow is close to 2 thousands bytes per second

when the total flow ratio is 10%. The interval between each attack is 1 to 4 cycles, which shows

a regular change. In Fig 6b, when the attack traffic proportion is increased to 40%, the byte

rate of attack flow is close to that of the normal traffic. The reason for this phenomenon is that

the saturation attack traffic improves to 40%, the normal traffic accounts for 60% of the total

network traffic. Hence the byte rate of attack and normal traffic is similar. When the attack

ratio is raised to 80%, the byte rate of the attack traffic can reach up to about 30 thousands

Fig 5. Experiment topology.

https://doi.org/10.1371/journal.pone.0299846.g005

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 14 / 25

https://doi.org/10.1371/journal.pone.0299846.g005
https://doi.org/10.1371/journal.pone.0299846

bytes per second, which is quite bigger than normal traffic, as seen in Fig 6c. Since the satura-

tion attack is launched through multiple threads in the simulated experiment, the period of the

attack may not be consistent for each thread, and results in the period of the attack being less

regular in Fig 6c.

Fig 7 illustrates the variation of average packets rate when the attack traffic proportion are

20%, 50%, and 90%. When the attack traffic proportion is 20%, the average packet rate of nor-

mal traffic is higher than attack traffic from Fig 7a. If the attack traffic proportion increases to

about 50%, the packet rate of the attack traffic is close to the normal traffic for most cycles. As

the attack traffic proportion raises to 90%, the attack flow has higher average packet rate than

normal traffic. Meanwhile, the saturation attack also shows more clear periodicity.

In conclusion, from Figs 6 and 7, we can conclude that the average byte rate and packet rate

of normal traffic changes randomly and irregularly. On the other hand, the saturation attack

traffic is always injected into the network periodically. When the attack traffic proportion is

low or high, it is easy to detect the saturation attack flow. However, when the proportion of

attack traffic is 40% or 50%, the difference of average byte rate and packet rate of the attack

Fig 6. Average byte rate. (a) attack traffic proportion = 10%. (b) attack traffic proportion = 40%. (c) attack traffic proportion = 80%.

https://doi.org/10.1371/journal.pone.0299846.g006

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 15 / 25

https://doi.org/10.1371/journal.pone.0299846.g006
https://doi.org/10.1371/journal.pone.0299846

traffic and normal traffic is not significant. In this case, identifying attack flows from the nor-

mal flow becomes more difficult.

5.2.2 Lifetime of flow entry. Fig 8 shows the comparison of the average survival time of

normal flow entries and attack flow entries. From Fig 8, it is shown that the averagy lifetime of

the attack flow entries is slightly lower than normal in the earlier cycles because the start time

of the attack traffic is later than normal traffic. After a few cycles, the attack traffic is injected

into the network and the OpenFlow switch installs the relevant flow entries. With the contin-

ued attack traffic, the growth rate of the attack flow entry’s lifetime starts to increase with a

higher rate than normal flow entries.

The reason of this phenomenon is that the normal traffic in this evaluation is randomly

launched, and the OpenFlow switch installs flow entry for newly traffic using idle timeout. In

this case, the normal flow entries may be deleted due to the overtime of idle timeout. However,

for the saturation attack, it will try its best to make the attack flow entries survival long time in

the switch. Hence, it will periodically send attack traffic into the network to lengthen the life-

time of the attack flow entries. Therefore, the average lifetime of attack flow entries keeps

growing, with a higher speed than normal flow entries.

Fig 7. Average packets rate. (a) attack traffic proportion = 20%. (b) attack traffic proportion = 50%. (c) attack traffic proportion = 90%.

https://doi.org/10.1371/journal.pone.0299846.g007

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 16 / 25

https://doi.org/10.1371/journal.pone.0299846.g007
https://doi.org/10.1371/journal.pone.0299846

For instance, in the 70th cycle, the survival time of normal flow entries reaches 1000s and

then a pause occurs. At this point, the average survival time of normal flow entries stops grow-

ing as some normal flow entries reach the idle timeout and these flow entries are deleted. Then

the switch installs new flow entries for the relevant traffic flows. However, the survival time of

the attack flow entries always increases linearly. At the 80th cycle, the average survival time of

the attack flow entries grows to 1800s, while the survival time of the normal flow entries

reaches only 1200s.

In conclusion, the survival time of attack flow entries is higher than normal flow entries

from Fig 8. Hence, utilizing the survival time of a flow entry to detect saturation attack flow

may improve the detection performance.

5.3 Saturation attack detection performance comparison

In this evaluation, the saturation attack detection performance of TITAN and the compared

algorithms are evaluated. Eight metrics, including the Accuracy (Acc), Recall (Rec), Precision

(Pre), F1-score (F1), Fasle Alarm (FA), Miss Rate (MR), ROC (Receiver Operating Character-

istic) curves, and P-R (Precision-Recall) curves are utilized to evaluate TITAN, GCNID,

GCN-TC, LR, NB, and SVM, as shown in Table 3, Figs 9–12.

The eight evaluation metrics are defined as follows.

Acc ¼
TP þ TN

TP þ FP þ FN þ TN
ð14Þ

Fig 8. Average lifetime of flow entry.

https://doi.org/10.1371/journal.pone.0299846.g008

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 17 / 25

https://doi.org/10.1371/journal.pone.0299846.g008
https://doi.org/10.1371/journal.pone.0299846

Table 3. Detection performance comparison.

Attack traffic(%) Evaluation metric TITAN GCNID GCN-TC LR NB SVM

10 Acc 99.91 90.66 75.90 87.00 80.91 89.91

Rec 100.0 85.83 12.03 88.76 81.48 88.76

Pre 99.83 94.78 50.00 85.92 80.81 91.01

F1 99.91 90.08 19.39 87.31 81.15 89.87

FA 0.20 4.62 3.82 14.79 19.67 8.91

MR 0.00 14.17 87.97 11.24 18.52 11.24

20 Acc 98.86 87.08 75.00 89.08 79.66 96.75

Rec 97.71 80.37 35.26 85.71 82.01 98.31

Pre 100.0 92.41 50.00 91.72 78.08 95.27

F1 98.84 85.97 41.35 88.61 80.00 96.77

FA 0.00 6.41 11.75 1.50 2.70 0.20

MR 2.30 19.63 64.74 6.30 20.70 16.20

30 Acc 99.67 95.50 78.26 90.66 81.16 98.41

Rec 99.34 97.72 34.53 85.92 79.13 99.66

Pre 100.0 93.15 50.00 95.05 82.69 97.25

F1 99.67 95.38 49.35 90.26 80.87 98.44

FA 0.00 6.52 9.59 1.30 23.10 0.00

MR 0.70 2.28 65.47 7.90 20.00 9.20

40 Acc 98.94 92.25 75.00 86.16 78.41 95.41

Rec 98.21 90.31 48.72 79.37 78.55 92.63

Pre 99.66 93.65 50.00 92.38 78.94 98.26

F1 98.93 91.94 49.35 85.38 78.74 95.36

FA 0.40 5.89 16.24 2.60 27.30 0.00

MR 1.80 9.69 51.28 11.60 20.80 14.20

50 Acc 98.11 96.33 75.61 81.91 81.08 97.16

Rec 96.21 92.54 72.43 78.25 78.08 94.39

Pre 100.0 100.0 50.00 84.82 83.45 100.0

F1 98.07 96.12 59.16 81.41 80.68 97.11

FA 0.00 0.00 23.37 0.70 24.60 0.00

MR 3.80 7.46 27.56 7.40 19.30 5.50

60 Acc 98.51 87.91 71.28 85.08 77.75 97.58

Rec 97.63 89.01 94.39 85.45 84.44 96.32

Pre 100.0 86.79 50.00 84.74 74.37 98.79

F1 98.56 87.88 65.37 85.09 79.09 97.54

FA 0.52 13.14 38.04 7.60 34.50 0.10

MR 2.40 10.99 5.60 17.40 19.20 13.60

70 Acc 98.68 93.91 79.49 85.83 81.50 97.25

Rec 97.37 91.91 66.35 83.22 79.53 95.46

Pre 100.0 95.62 50.00 87.63 82.57 98.95

F1 98.67 93.73 57.02 85.37 81.02 97.18

FA 0.00 4.13 18.18 7.70 22.80 0.00

MR 2.63 8.09 33.65 4.03 19.10 10.40

(Continued)

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 18 / 25

https://doi.org/10.1371/journal.pone.0299846

Rec ¼
TP

TP þ FN
ð15Þ

Pre ¼
TP

TP þ FP
ð16Þ

F1 ¼ 2 ∗
Pre ∗Rec
Preþ Rec

ð17Þ

FA ¼
FP

FPþ TN
ð18Þ

MR ¼
FN

TP þ FN
ð19Þ

The horizontal axis of ROC curves is the FPR and the vertical is the TPR. AUC = (1

+TPR-FPR)/2 is the area under the ROC curve, which ranges from 0 to 1. As AUC gets closer

to 1, the more accurate the detection will be [33]. Additionally, Rec is the horizontal axis and

Pre is the vertical axis in the P-R curve.

From Table 3, it can be seen that when the attack traffic proportion is about 50%, TITAN

achieves the worst detection performance. However, most Acc, Rec, Pre, F1, FA, and MR val-

ues of TITAN are better than other methods.

For instance, when the attack traffic proportion is 20%, the accuracy of TITAN is 98.86%.

However, the accuracy of GCNID, GCN-TC, LR, NB, and SVM are 87.08%, 75.00%, 89.08%,

79.66%, and 96.75%. In this case, TITAN can improve 13.5%, 31.8%, 11.0%, 24.1%, and 2.2%

accuracy than GCNID, GCN-TC, LR, NB, and SVM. The FA and MR values of TITAN are

0.00% and 2.30%, respectively. The worst FA and MR are 11.75% and 64.74% for GCN-TC as

the attack traffic proportion is 20%.

When the attack traffic proportion is low, TITAN also reaches better ROC and P-R curves

than GCNID, GCN-TC, LR, NB, and SVM. For example, Fig 10 shows the ROC curves and

Table 3. (Continued)

Attack traffic(%) Evaluation metric TITAN GCNID GCN-TC LR NB SVM

80 Acc 98.50 93.16 79.09 85.25 85.16 95.25

Rec 98.20 94.07 66.35 81.41 83.78 91.89

Pre 98.84 92.55 50.00 87.79 85.81 98.37

F1 98.52 93.31 54.38 84.48 84.78 95.02

FA 1.19 7.77 15.76 0.00 24.00 0.00

MR 1.79 5.92 40.39 16.30 19.80 16.00

90 Acc 99.42 95.91 73.56 91.08 78.25 96.91

Rec 98.88 95.23 100.0 88.85 78.21 93.91

Pre 99.77 96.66 50.00 92.76 77.81 99.82

F1 99.32 95.54 66.67 90.76 78.01 96.77

FA 0.20 3.38 35.94 0.00 29.70 0.00

MR 1.20 4.77 0.00 5.80 21.00 6.00

https://doi.org/10.1371/journal.pone.0299846.t003

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 19 / 25

https://doi.org/10.1371/journal.pone.0299846.t003
https://doi.org/10.1371/journal.pone.0299846

Fig 9. Detection performance comparison under nine traffic proportions. (a) Accuracy. (b) Recall. (c) Precision. (d) F1-Score. (e) False Alarm. (f) Miss Rate.

https://doi.org/10.1371/journal.pone.0299846.g009

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 20 / 25

https://doi.org/10.1371/journal.pone.0299846.g009
https://doi.org/10.1371/journal.pone.0299846

P-R curves of TITAN, GCNID, GCN-TC, LR, NB, and SVM when the attack traffic proportion

is 10%. From Fig 10, we can see that TITAN achieves the best ROC curve. More specially, as

shown in Fig 10a, when FPR is 0, TPR of TITAN is about 100%, while TPR of GCNID,

GCN-TC, LR, NB, and SVM are below to 80%.

Fig 10. ROC curve and P-R curve (attack traffic proportion = 10%). (a) ROC curve. (b) P-R curve.

https://doi.org/10.1371/journal.pone.0299846.g010

Fig 11. ROC curve and P-R curve (attack traffic proportion = 50%). (a) ROC curve. (b) P-R curve.

https://doi.org/10.1371/journal.pone.0299846.g011

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 21 / 25

https://doi.org/10.1371/journal.pone.0299846.g010
https://doi.org/10.1371/journal.pone.0299846.g011
https://doi.org/10.1371/journal.pone.0299846

For the medium attack traffic proportion, it is observed from the section 5.2 that with the

attack traffic ratio rising to 40%, 50%, and 60%, both the packet rate and byte rate of attack

and normal flow are closer to each other. Hence, we can observe from Table 3 that the detec-

tion accuracy of TITAN starts to decrease when the attack traffic proportion is 40%, and drops

to a minimal 98.11% at attack ratio is 50%, and the MR increases to 3.8%. Meanwhile, for the

three medium attack proportions, the Pre value of TITAN is 99.66%, 100.0%, and 100.0%,

while the Rec value is 98.21%, 96.21%, and 97.63%, respectively. It demonstrates that distin-

guishing attack flows from normal flows is difficult in medium-ratio attacks.

We choose the ROC and P-R curves in Fig 11 when the attack traffic proportion is 50% to

analyze the detection performance of TITAN. As shown in Fig 11b and Table 3, the Rec value

of GCN-TC is 50% when the attack ratio is 50%. From Fig 11a, the AUC of both TITAN and

SVM is 0.99, which is the highest among all algorithms. And the ROC and P-R curves of these

two algorithms almost completely overlap. Therefore, from the two curves, we can conclude

that TITAN and SVM have better performance in the medium proportions attacks. However,

as shown in Table 3, TITAN also has better Acc, Rec, F1 FA and MR than SVM.

And with the attack traffic proportion increases to 70%, 80%, and 90%, the Acc of TITAN

increases and is higher than the compared methods. When the proportion of attack traffic

reaches 90%, the accuracy, recall, and precision of TITAN increases to 99.42%, 98.88%, and

99.77%, the false alarm and miss rate decreases to 0.20% and 1.20%. In the meantime,

GCN-TC has better recall and SVM has larger precision value and a lower false alarm rate.

However, the AUC of TITAN is bigger than all other methods. Meanwhile, the P-R curve of

TITAN is higher than other algorithms from Fig 12b. Hence, in this case, TITAN has a better

overall detection performance than other methods.

When the attack traffic proportion changes from 10% to 90%, TITAN’s false alarm rates are

less than 0.5% most of the time, and the miss rates are lower than other methods. It shows that

TITAN has fewer miss alarms and false alarms compared to other algorithms.

Fig 12. ROC curve and P-R curve (attack traffic proportion = 90%). (a) ROC curve. (b) P-R curve.

https://doi.org/10.1371/journal.pone.0299846.g012

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 22 / 25

https://doi.org/10.1371/journal.pone.0299846.g012
https://doi.org/10.1371/journal.pone.0299846

Here is the possible reason of that phenomenon. For GCNID, the generated KNN graph

only contains information about the flow on a particular switch and lacks all the information

about the flow in the network. It causes GCNID to fail to achieve better detection even the

attack traffic proportion is low or high. In the meantime, the detection accuracy of GCN-TC

are around 75%. Notably, the Rec of GCN-TC are very low and the Pre are all 50%. The possi-

ble reason for that is GCN-TC produces trace traffic graph by adding edges for nodes with

common IP address. It makes some nodes that represent the reverse flow of attack flow only

have the attack node as its neighbor node, while some nodes representing the attack flow also

have only normal flow neighbor nodes. The GCN model will perform weighted average calcu-

lation on the features of the neighbor and the central nodes to obtain an average value as the

central node’s feature. In this case, the GCN aggregates many attack nodes features in the trace

traffic graph to a central normal nodes and also aggregates normal nodes features to attack

node, resulting in a failure in detection.

For the LR algorithm, it is vulnerable to mistakenly detect normal traffic as attack. For the

NB algorithm, it also cannot clearly distinguish attack traffic between normal traffic. In con-

trast, the SVM algorithm has a good detection result. However, when the proportion of attack

traffic is increased to medium and high ratio, the recall of SVM is low, which means that SVM

is difficult to identify the attack flow from the normal flows.

In conclusion, when the attack traffic proportion is low, medium, and high, TITAN can

achieve higher accuracy, recall, precision, F1-score, false alarm and miss rate than other

algorithms.

6 Conclusion

In this work, we propose a mechanism named TITAN for detecting saturation attack flows

against SDN switches. Taking advantage of topology information, flow forward rules, and

flow-based statistical features, TITAN designs BiFor-Graph, a bi-directional forwarding graph

generation algorithm. The bi-directional forwarding graph contains the information of source,

destination, forwarding path, and flow statistical features of a network flow. Furthermore, a

GCN model is constructed for detecting saturation attack. We also made a detailed experiment

for evaluating the detection performance of TITAN. The experiment results show that TITAN

can effectively detect saturation attack against switches in SDN.

The experimental results show that TITAN outperforms other comparison algorithms

because its generated graphs contain the bidirectional forwarding information for network

flows, which has more comprehensive information than KNN graph. Additionally, compared

with GCN-TC, TITAN can mitigate the negative effects on aggregating information caused by

incorrectly connected edges.

This work proposes a BiFor-Graph-based mechanism to detect saturation attack towards

SDN switches. However, the SDN controller is also the target of saturation attack. Conse-

quently, it becomes challenging to simultaneously detect saturation attack flows targeting at

the SDN controller and switches. Therefore, future research will focus on designing GNN-

based methods to detect saturation attack flows targeted at SDN controller and switch. At the

same time, TITAN is designed as a centralized saturation attack detection method. TITAN

cannot detect saturation attack when it experiences runtime failures. Hence, in the future, we

will also take our attention to distributed saturation attack detection methods.

In TITAN, we take the SDN controller to collect traffic statistics for detection. However,

this method might lead to the controller-data bandwidth overhead. Consequently, there is a

need for an attack detection data collection method that would not burden the network over-

head. The network telemetry may be a suitable method to overcome that issue. Hence, the

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 23 / 25

https://doi.org/10.1371/journal.pone.0299846

future work will focus on designing the network telemetry-based saturation attack detection

method.

Author Contributions

Conceptualization: Longyan Ran, Yunhe Cui, Jianpeng Zhao.

Formal analysis: Longyan Ran, Yunhe Cui, Jianpeng Zhao, Hongzhen Yang.

Methodology: Longyan Ran, Yunhe Cui, Jianpeng Zhao.

Software: Longyan Ran.

Validation: Longyan Ran, Yunhe Cui, Jianpeng Zhao.

Writing – original draft: Longyan Ran.

Writing – review & editing: Longyan Ran, Yunhe Cui, Jianpeng Zhao, Hongzhen Yang.

References
1. Wan Y, Song H, Che H, Xu W, Wang Y, and Zhang C, et al. FastUp: Fast TCAM Update for SDN

Switches in Datacenter Networks. In: 2021 IEEE 41st International Conference on Distributed Comput-

ing Systems. 2021: 887-897.

2. Sellami B, Hakiri A, Yahia SB, and Berthou P. Energy-aware task scheduling and offloading using deep

reinforcement learning in SDN-enabled IoT network. Computer Networks. 2022; 210: 108957. https://

doi.org/10.1016/j.comnet.2022.108957

3. Varma I M, Kumar N. A Comprehensive Survey on SDN and Blockchain-based Secure Vehicular Net-

works. Vehicular Communications; 2023; 44: 100663. https://doi.org/10.1016/j.vehcom.2023.100663

4. Pascoal TA, Dantas YG, Fonseca IE, and Nigam V. Slow TCAM Exhaustion DDoS Attack. In: IFIP Inter-

national Conference on ICT Systems Security and Privacy Protection. 2017: 17-31.

5. Pascoal TA, Fonseca IE, Nigam V. Slow denial-of-service attacks on software defined networks. Com-

puter Networks. 2020; 173: 107223. https://doi.org/10.1016/j.comnet.2020.107223

6. Zhang M, Li G, Xu L, Bi J, Gu G, and Bai J. Control plane reflection attacks in SDNs: New attacks and

countermeasures. In: Proceedings of the International Symposium on Research in Attacks, Intrusions,

and Defenses. 2018: 161-183.

7. Sundas A, Badotra S, Bharany S, Almogren A, Tag-ElDin E M, and Rehman A U. HealthGuard: An

Intelligent Healthcare System Security Framework Based on Machine Learning. Sustainability. 2022;

14(19): 11934. https://doi.org/10.3390/su141911934

8. Cao Y, Jiang H, Deng Y, Wu J, Zhou P, and Luo W. Detecting and Mitigating DDoS Attacks in SDN

Using Spatial-Temporal Graph Convolutional Network. IEEE Transactions on Dependable and Secure

Computing. 2021; 19(6):3855–3872. https://doi.org/10.1109/TDSC.2021.3108782

9. Nagaraj K, Starke A, McNair J. GLASS: A Graph Learning Approach for Software Defined Network

Based Smart Grid DDoS Security. In: Proceedings of the ICC 2021-IEEE International Conference on

Communications. 2021.

10. Deng A, Hooi B. Graph neural network-based anomaly detection in multivariate time series. In: Pro-

ceedings of the AAAI Conference on Artificial Intelligence. 2021; 35(5): 4027-4035.

11. Liu F, Hu Z, Zhang A, Du R, Qin D, and Xu J. Multiple Classification Algorithm Based on Graph Convolu-

tional Neural Network for Intrusion Detection. 2021. https://doi.org/10.21203/rs.3.rs-515900/v1

12. Zheng J, Li D. GCN-TC: combining trace graph with statistical features for network traffic classification.

In: 2019 IEEE International Conference on Communications. 2019.

13. Li Z, Xing W, Khamaiseh S, and Xu D. Detecting saturation attacks based on self-similarity of OpenFlow

traffic. IEEE Transactions on Network and Service Management. 2020; 17(1): 607–621. https://doi.org/

10.1109/TNSM.2019.2959268

14. Khamaiseh S, Serra E, Li Z, and Xu D. Detecting Saturation Attacks in SDN via Machine Learning. In:

Proceedings of the 2019 4th International Conference on Computing, Communications and Security.

2019.

15. Huang X, Xue K, Xing Y, Hu D, Li R, and Sun Q. FSDM: Fast Recovery Saturation Attack Detection and

Mitigation Framework in SDN. In: Proceedings of the 2020 IEEE 17th International Conference on

Mobile Ad Hoc and Sensor Systems. 2020: 329-337.

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 24 / 25

https://doi.org/10.1016/j.comnet.2022.108957
https://doi.org/10.1016/j.comnet.2022.108957
https://doi.org/10.1016/j.vehcom.2023.100663
https://doi.org/10.1016/j.comnet.2020.107223
https://doi.org/10.3390/su141911934
https://doi.org/10.1109/TDSC.2021.3108782
https://doi.org/10.21203/rs.3.rs-515900/v1
https://doi.org/10.1109/TNSM.2019.2959268
https://doi.org/10.1109/TNSM.2019.2959268
https://doi.org/10.1371/journal.pone.0299846

16. Khamaiseh S, Serra E, Xu D. vswitchguard: Defending openflow switches against saturation attacks.

In: Proceedings of the 2020 IEEE 44th Annual Computers, Software, and Applications Conference.

2020: 851-860.

17. Cui Y, Qian Q, Guo C, Shen G, Tian L, Xing H, et al. Towards DDoS detection mechanisms in software-

defined networking. Journal of Network and Computer Applications. 2021; 190: 103156. https://doi.org/

10.1016/j.jnca.2021.103156

18. Ran L, Cui Y, Guo C, Qian Q, Shen G, and Xing H. Defending Saturation Attacks on SDN Controller: A

Confusable Instance Analysis-based Algorithm. Computer Networks. 2022; 213: 109098. https://doi.

org/10.1016/j.comnet.2022.109098

19. Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, and Monfardini G. The graph neural network model.

IEEE transactions on neural networks. 2009; 20(1): 61–80. https://doi.org/10.1109/TNN.2008.2005605

PMID: 19068426

20. Yu B, Yin H, and Zhu Z. Spatio-temporal graph convolutional networks: A deep learning framework for

traffic forecasting. arXiv preprint arXiv; 2017:1709.04875.

21. Jiang H, Cao P, Xu M, Yang J, and Zaiane O. Hi-GCN: a hierarchical graph convolution network for

graph embedding learning of brain network and brain disorders prediction. Computers in Biology and

Medicine. 2020; 127: 104096. https://doi.org/10.1016/j.compbiomed.2020.104096 PMID: 33166800

22. Mou L, Lu X, Li X, and Zhu XX. Nonlocal graph convolutional networks for hyperspectral image classifi-

cation. IEEE Transactions on Geoscience and Remote Sensing. 2020; 58(12): 8246–8257. https://doi.

org/10.1109/TGRS.2020.2973363

23. Xie X, Tian M, Luo G, Liu G, Wu Y and Qin K. Active learning in multi-label image classification with

graph convolutional network embedding. Future Generation Computer Systems. 2023; 148: 56–65.

https://doi.org/10.1016/j.future.2023.05.028

24. Cheng J, Zhang F, Xiang D, Yin Q, and Zhou Y. PolSAR image classification with multiscale superpixel-

based graph convolutional network. IEEE Transactions on Geoscience and Remote Sensing. 2021;

60: 1–14. https://doi.org/10.1109/TGRS.2021.3079438

25. Sun B, Yang W, Yan M, Wu D, Zhu Y, and Bai Z. An encrypted traffic classification method combining

graph convolutional network and autoencoder. In: 2020 IEEE 39th International Performance Comput-

ing and Communications Conference. 2020: 1-8.

26. Han Y, Feng H, Li K, and Zhao Q. False data injection attacks detection with modified temporal multi-

graph convolutional network in smart grids. Computers & Security; 2023; 124: 103016. https://doi.org/

10.1016/j.cose.2022.103016

27. Liu Z, Fang Y, Huang C, and Han J. GraphXSS: an efficient XSS payload detection approach based on

graph convolutional network. Computers and Security. 2022; 114: 10597. https://doi.org/10.1016/j.

cose.2021.102597

28. Badotra S, Tanwar S, Bharany S, et al. A DDoS Vulnerability Analysis System against Distributed SDN

Controllers in a Cloud Computing Environment. Electronics; 2022; 11(19): 3120. https://doi.org/10.

3390/electronics11193120

29. Cui Y, Yan L, Li S, Xing H, Pan W, and Zhu J, et al. SD-Anti-DDoS: Fast and efficient DDoS defense in

software-defined networks. Journal of Network and Computer Applications; 2016; 68: 65–79. https://

doi.org/10.1016/j.jnca.2016.04.005

30. Xiao M, Cui Y, Qian Q, and Shen G. KIND: A Novel Image Mutual Information based Decision Fusion

Method for Saturation Attack Detection in SD-IoT. IEEE Internet of Things Journal. 2022; 9(23):

23750–23771. https://doi.org/10.1109/JIOT.2022.3190269

31. Cao J, Xu M, Li Q, Sun K, Yang Y. The Attack: Overflowing SDN Flow Tables at a Low Rate[J]. IEEE/

ACM Transactions on Networking; 2022; 31(3): 1416–1431. https://doi.org/10.1109/TNET.2022.

3225211

32. Gupta N, Maashi M S, Tanwar S, et al. A comparative study of software defined networking controllers

using mininet. Electronics; 2022; 11(17): 2715. https://doi.org/10.3390/electronics11172715

33. Mandrekar J N. Receiver operating characteristic curve in diagnostic test assessment. Journal of Tho-

racic Oncology. 2010; 5(9): 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d PMID:

20736804

PLOS ONE TITAN

PLOS ONE | https://doi.org/10.1371/journal.pone.0299846 April 26, 2024 25 / 25

https://doi.org/10.1016/j.jnca.2021.103156
https://doi.org/10.1016/j.jnca.2021.103156
https://doi.org/10.1016/j.comnet.2022.109098
https://doi.org/10.1016/j.comnet.2022.109098
https://doi.org/10.1109/TNN.2008.2005605
http://www.ncbi.nlm.nih.gov/pubmed/19068426
https://doi.org/10.1016/j.compbiomed.2020.104096
http://www.ncbi.nlm.nih.gov/pubmed/33166800
https://doi.org/10.1109/TGRS.2020.2973363
https://doi.org/10.1109/TGRS.2020.2973363
https://doi.org/10.1016/j.future.2023.05.028
https://doi.org/10.1109/TGRS.2021.3079438
https://doi.org/10.1016/j.cose.2022.103016
https://doi.org/10.1016/j.cose.2022.103016
https://doi.org/10.1016/j.cose.2021.102597
https://doi.org/10.1016/j.cose.2021.102597
https://doi.org/10.3390/electronics11193120
https://doi.org/10.3390/electronics11193120
https://doi.org/10.1016/j.jnca.2016.04.005
https://doi.org/10.1016/j.jnca.2016.04.005
https://doi.org/10.1109/JIOT.2022.3190269
https://doi.org/10.1109/TNET.2022.3225211
https://doi.org/10.1109/TNET.2022.3225211
https://doi.org/10.3390/electronics11172715
https://doi.org/10.1097/JTO.0b013e3181ec173d
http://www.ncbi.nlm.nih.gov/pubmed/20736804
https://doi.org/10.1371/journal.pone.0299846

