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Abstract

Recent advances in quantitative tools for examining urban morphology enable the develop-

ment of morphometrics that can characterize the size, shape, and placement of buildings;

the relationships between them; and their association with broader patterns of development.

Although these methods have the potential to provide substantial insight into the ways in

which neighborhood morphology shapes the socioeconomic and demographic characteris-

tics of neighborhoods and communities, this question is largely unexplored. Using building

footprints in five of the ten largest U.S. metropolitan areas (Atlanta, Boston, Chicago, Hous-

ton, and Los Angeles) and the open-source R package, foot, we examine how neighborhood

morphology differs across U.S. metropolitan areas and across the urban-exurban land-

scape. Principal components analysis, unsupervised classification (K-means), and Ordinary

Least Squares regression analysis are used to develop a morphological typology of neigh-

borhoods and to examine its association with the spatial, socioeconomic, and demographic

characteristics of census tracts. Our findings illustrate substantial variation in the morphol-

ogy of neighborhoods, both across the five metropolitan areas as well as between central

cities, suburbs, and the urban fringe within each metropolitan area. We identify five different

types of neighborhoods indicative of different stages of development and distributed

unevenly across the urban landscape: these include low-density neighborhoods on the

urban fringe; mixed use and high-density residential areas in central cities; and uniform resi-

dential neighborhoods in suburban cities. Results from regression analysis illustrate that the

prevalence of each of these forms is closely associated with variation in socioeconomic and

demographic characteristics such as population density, the prevalence of multifamily hous-

ing, and income, race/ethnicity, homeownership, and commuting by car. We conclude by

discussing the implications of our findings and suggesting avenues for future research on

neighborhood morphology, including ways that it might provide insight into issues such as

zoning and land use, housing policy, and residential segregation.
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Introduction

A decades-long shift in how geographers and planners analyze urban form has emphasized

how bottom-up and uncoordinated local decision-making gives rise to large-scale, coordi-

nated, morphological patterns that define the size and shape of cities in predictable ways [1].

Urban morphology–the systematic study of the form and configuration of human settlements

with an eye toward uncovering the principles and rules of development and design [2]–has

been used for centuries to understand, evaluate, and intervene in urban processes [3]. How-

ever, the growth of high-resolution satellite imagery, big data, and new computational tools

opens up new avenues to document, evaluate, and monitor urban form. The result has been an

increased effort to quantify urban form by identifying the morphological metrics of develop-

ment [4–7]. Morphological understandings of urban spatial organization and evolution can

identify underlying mechanisms and characteristics of urban development, to better plan for

and manage increasingly complex urban areas [8]. Drawing on methods from data science,

urban morphologists have developed new tools and approaches [9] for characterizing street

networks [3,10] as well as the form of buildings [9,11]. New data, tools, and techniques mean

researchers are not limited to small case studies which have been common in urban morphol-

ogy studies. Recent research using building footprints has used morphological analysis to char-

acterize patterns of development at the neighborhood level [7]. For example, Jochem and

Tatem use publicly available spatial datasets of building footprints to define their constituent

elements (size, shape, and placement of structures) in England, Scotland and Wales and to

examine the extent to which typologies of neighborhoods derived from unsupervised classifi-

cation using building footprint morphometrics align with census-defined classifications for

rural and urban areas of various types [7].

We adapt and extend this analysis to the U.S. context to analyze the dimensions and distribu-

tion of development inscribed in the morphology of neighborhoods in five of the ten largest U.S

metropolitan areas and to develop a typology of U.S. neighborhoods based on their morpholog-

ical characteristics. In doing so, we combine the tools of urban morphology with the theoretical

contributions from a vast literature in urban studies, sociology, and planning that has explored

how neighborhoods are a key mechanism that structures ecological, political and social out-

comes in metro regions. Distinct types of neighborhoods (e.g., suburban enclaves, urban cores,

rural districts) vary markedly in the characteristics of their population and the opportunities

they provide [12–14]. Little is known, however, about whether the morphological characteristics

measured by building footprints align with these pre-existing conceptual understandings of

neighborhoods and the characteristics of residents in them. We address this gap in this study by

answering three primary research questions: Can neighborhood-level estimates of building

morphology be used to create a useful typology of U.S. neighborhoods that maps onto concep-

tual understandings of urban form? How does neighborhood morphology vary across the coun-

try and across central cities, suburban areas, and the urban fringe? Do neighborhoods with

distinct building morphologies differ in regard to key socio-demographic characteristics?

We employ the recently developed R foot package, a set of open-source tools for calculating

morphology metrics for building footprints, which Jochem and Tatem (2021) use to identify

the constituent elements of building footprints and settlement patterns across all buildings in

Great Britain. Using the foot package, we calculate morphometrics summarizing the character-

istics of building footprints in census blocks across five major U.S. metropolitan areas with dif-

ferent development and land use histories to examine how the morphology of neighborhoods

differs across urban-exurban space and between U.S. metros. We measure neighborhood mor-

phology through physical form, specifically the features of building footprints, including the

size, shape, and placement of buildings and their relations to each other. We use unsupervised
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classification to identify five primary classes of neighborhoods based on building morphology:

these include central-city residential neighborhoods, business and commercial districts, first

suburbs, late suburbs, and rural areas. We examine the prevalence and variation of neighbor-

hood types across urban space (from central cities to the urban fringe). Finally, we explore

whether and how the physical morphology of neighborhoods corresponds with neighbor-

hood-level spatial and social conditions, including population density, the prevalence of multi-

family housing, income, race/ethnicity, homeownership, and commuting by car.

Background

A wide body of literature in the geographic sciences has focused has sought to use morphologi-

cal analysis to examine urban phenomena [15–18], including the variegated character of urban

development [19] and neighborhood-scale distinctions between settlement types [20]. Yet a

large portion of quantitative urban morphological research remains focused on definitions of

urban vs non-urban by characterizing rates of urbanization [6], differentiating urbanized and

non-urbanized areas [5,21] or distinguishing different degrees of compactness and sprawl

[4,22]. Others pay attention to more nuanced variation across urban areas. For example, Xin-

gye et al. (2021) [23] apply multifractal analysis to remote sensed imagery and show how three

types of urban clusters (urban core areas, medium-sized urban settlements, and small villages

and towns) dominate the urban spatial organization of Beijing.

Our analysis draws on a large literature from the fields of urban studies, sociology, and

urban planning that has demonstrated that neighborhoods matter for a range of social, politi-

cal, and ecological processes and outcomes (see van Ham and Manely 2012 and Sharkey and

Faber 2014 for reviews). Our analysis examines how neighborhood morphology maps on to

varying spatial and sociodemographic characteristics of place. Fine-grained morphological

analysis that distinguishes between neighborhood types can elucidate patterns of development

across a broader typology of urban development, including in peri-urban neighborhoods

where socially vulnerable populations often reside [20]. The availability of large spatial datasets

of building footprint polygons enables more nuanced analysis of variation in the built environ-

ment within and across urban areas. Morphology metrics can characterize the size, shape, and

placement of buildings and the relationships between them, which can in turn be correlated

with or indicative of different neighborhood or settlement types [7].

Morphological analysis using building footprints can identify neighborhood types within

single urban areas and classify development patterns across different metropolitan regions.

Analysis of urban morphology can provide insight into historical patterns of development, but

it requires contextual interpretation [24]. In the U.S. context for instance, the dominant resi-

dential building pattern is suburban, as historians of U.S. development have noted [25]. Yet,

suburbs are not a monolith. Suburbanization followed multiple waves from the earliest Victo-

rian “first suburbs,” to later railroad suburbs, to car-centered suburban sprawl, to “techno-

burbs” enabled by contemporary revolutions in communications [26]. Taking suburbs as an

example, there are various corresponding economic, demographic, planning, and Census-

based definitions of neighborhood types. In a departure from these socioeconomic or regula-

tory definitions of neighborhood types, a morphological typology of neighborhoods would

codify elements of the built environment that distinguish and define the form of U.S. neigh-

borhoods, allowing for more systematic comparison across time and space [27].

Data and methods

Given the computational intensity of creating building footprint-based measures of neighbor-

hood morphology, in this analysis of neighborhood morphology in the U.S. we focus on a
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handful of metropolitan areas. To examine potential variation in morphology across different

contexts (urban/rural, older/newer, weakly/strictly regulated), we examine five of the ten larg-

est Combined Metropolitan Statistical Areas (CMSAs) in the country. These five metros repre-

sent a range of development and planning histories that are representative of U.S. jurisdictions

more broadly. Development patterns are intricately linked to local governments’ decisions on

how to regulate land, which determines density, the supply and characteristics of buildings,

the socio-demographics of populations, the nature of sprawl and the relation of places to the

natural environments within and around them [28]. In short, the character of local land use

regulations determines the physical character of places in the U.S. These five metros cover all

of the four orders that Pendall, Puentes, and Martin (2006) identify as characteristic of U.S.

land use regulatory regimes nationally, which they define as: Traditional (Atlanta, Chicago),

Exclusionary (Boston), Wild Wild Texas (Houston), and Reform (Los Angeles).

We begin by collecting building footprints for each metropolitan area in question. We use a

national database of building footprints generated by Microsoft for more than 125 million

buildings in the U.S. The building footprints are two-dimensional representations of the out-

lines of structures detected in very high-resolution satellite imagery and extracted and mapped

using deep neural networks. The building footprint polygons do not contain any additional

attribute data which might identify the type of structure. These data were released for public

use in 2018 and are publicly available at https://github.com/microsoft/USBuildingFootprints.

We then identify all building footprints located within the boundary of the Census Bureau-

delineated Combined Statistical Area (CSA) for each of the five metro areas studied. Prior to

calculating neighborhood morphometrics, we remove buildings with a footprint of less than

25 meters, which we suspect contain uninhabited structures such as sheds or garages.

We conduct all measurement of neighborhood morphology in R using the foot package

[7,29] which provides a variety of easy-to-use and flexible options for the calculation of build-

ing footprint-derived morphometrics. The building footprints are reprojected into the modal

UTM projection for the metropolitan area in question to allow for accurate area and distance

calculations. We then use the foot package in R to calculate morphometrics for buildings in

each census block. Although census blocks are an imperfect proxy for neighborhoods, they are

the smallest geography delineated by the U.S. Census Bureau and thus allow for relatively a

high-resolution spatial scale that is easily linked to demographic and socioeconomic data on

individual communities. Within each census block, we measure a series of morphological

characteristics of buildings that we believe are likely to vary across neighborhood contexts in

the United States. These include the total area of each footprint (in square meters), the com-

pactness of each footprint, the ratio of building length to equivalent-width, the distance (in

meters) to the nearest neighbor, the length of the perimeter of each footprint (in meters), and

the footprint’s shape index. Where applicable, we estimate both the central tendency (median)

and variability (interquartile range) of the morphological characteristics at the census block

level. The building footprint-level variables and block-level summary statistics we use to calcu-

late each morphometric are shown in Table 1.

To reduce the influence of outliers within each neighborhood, we calculate the median and

interquartile range for each of the variables above within each census block. We also calculate

a measure of entropy of the orientation of each footprint, the size of the largest footprint in

square meters, the total number of buildings, and the number of buildings per square kilome-

ter. After calculating these morphometrics, we examine descriptive statistics for each morpho-

metric across the five metropolitan areas and across central cities, suburban cities, and areas

located along the urban fringe. To do so, we use shapefiles from the U.S. Census Bureau for

Census Places to identify all incorporated places within each Combined Metropolitan Statisti-

cal Area (CMSA). For each metropolitan area, we treat the one or more incorporated places

PLOS ONE Measuring neighborhood morphology: Evidence from building footprints in five U.S. metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0299713 April 10, 2024 4 / 20

https://github.com/microsoft/USBuildingFootprints
https://doi.org/10.1371/journal.pone.0299713


that are named in each metropolitan area as the area’s central city (e.g., in Boston, Worcester,

and Providence are all named in the Boston CMSA, so we treat them all as central cities). All

other incorporated places within the metro area are labeled as suburban cities. Lastly, all areas

located outside an incorporated place are labeled as the urban fringe.

We then use principal components analysis (PCA) and unsupervised classification (K-

means clustering) to develop a typology of neighborhoods. Prior to the use of PCA, we nor-

malize and standardize the distribution of each variable to reduce the potential influence of

outliers and the unit of measurement on the PCA and subsequent unsupervised classification.

To normalize each variable, we test the skew of the variables’ distribution before and after a

series of transformations of the following form, Xt and X1/t, where X is the variable of interest

and t is a number ranging from 1 to 5. We thus transform each variable by calculating the

square through fifth and the square root through the fifth root; in addition, we calculate the

natural log. We then select the transformation with the least skewed distribution and then

standardize each variable so that it has a mean of 0 and standard deviation of 1. After complet-

ing these transformations, we use PCA to conduct dimensionality reduction and to examine

whether a limited number of dimensions can be used to represent neighborhood morphology.

We then use unsupervised classification to examine the ability of these morphometrics to

identify and describe a typology of neighborhoods and to examine the distribution of these

neighborhoods across metropolitan contexts and across the urban, suburban, and rural land-

scape. We create the classification using only measures of building morphology (i.e., we do not

include demographic and socioeconomic variables or other urban features such as road net-

works as has been used in some prior work [10]). We do so because we are explicitly interested

in testing whether neighborhood morphology is associated with variation in socioeconomic

and demographic data. We use the K-means algorithm in the Scikit-Learn package in Python

Table 1. Morphometric definitions.

Morphometric Building Footprint-level Variable Block-level Summary

Size

area_iqr Building footprint area in square meters Interquartile range

perimeter_iqr Building footprint perimeter length in meters Interquartile range

area_median Building footprint area in square meters Median

perimeter_median Building footprint perimeter length in meters Median

area_max Building footprint area in square meters Maximum

Shape

compact_iqr Polsby-Popper index Interquartile range

leqwratio_iqr Ratio of the longest edge of the building footprint’s minimum bounding rectangle to the building’s

equivalent width

Interquartile range

shape_iqr Ratio of building footprint area to the area of its minimum bounding circle Interquartile range

compact_median Polsby-Popper index Median

leqwratio_median Ratio of the longest edge of the building footprint’s minimum bounding rectangle to the building’s

equivalent width

Median

shape_median Ratio of building footprint area to the area of its minimum bounding circle Median

Placement

nndist_iqr Distance in meters to the nearest building footprint Interquartile range

nndist_median Distance in meters to the nearest building footprint Median

angle_entropy Orientation of the building’s rotated minimum bounding rectangle Shannon entropy index

foot_density Number of building footprints Footprints per square

kilometer

settled_count Number of building footprints Sum

https://doi.org/10.1371/journal.pone.0299713.t001
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[30] to conduct the unsupervised classification. We also test alternative algorithms, including

Gaussian mixture models (GMMs) and agglomerative hierarchical methods with various tun-

ing parameters, where applicable: for the GMMs, we evaluate models with spherical, diagonal,

and full covariance types, whereas, for the agglomerative approach, we evaluate single, com-

plete, average, and Ward linkages. To compare the results of the classifications across algo-

rithms, we calculate silhouette scores for 2 through 10 clusters for each clustering algorithm.

Given the computational intensity of silhouette scores, we use a sample of 10,000 census blocks

(1.5% of the more than 630,000 census blocks containing building footprints in the five metro

areas) to estimate the average silhouette score. As illustrated in Table 2, although the average

silhouette scores are highest for the agglomerative hierarchical models with single, complete,

and average linkages, this is due to over-segmentation, leading to (in some cases many) clus-

ters capturing only a fraction of the total observations. These clusters do not, therefore, capture

meaningful variation in morphology across the sample. Among the remaining models, the K-

means and GMM models with diagonal and spherical covariance structures perform the best,

with classifications of 2 and 3 classes producing the highest silhouette scores (.2 to .25). Given

its comparable performance and its ubiquity in the literature, we select the K-means results for

further analysis.

To select the optimal number of clusters, we examine an elbow plot and descriptive statis-

tics for each class from the various K-means models with between 2 and 10 clusters. As shown

in the elbow plot (Fig 1), there is no inflection point indicating a clearly optimal model. How-

ever, upon subsequent review of the descriptive statistics for the morphometrics, disaggregated

by each class (results not shown), it appears that the results from 2- and 3-way classifications

primarily distinguish between 1) census blocks with low-density development, 2) high-density

development with large buildings, and 3) high-density development with small to moderate

sized buildings (e.g., residential neighborhoods). They do not, however, provide much insight

into variation within these classes. Given that evaluating variation in the morphology of resi-

dential areas is one of the primary objectives of the study, we choose to discuss the results of

the classification with 5 clusters because it has the next highest silhouette score and results in

multiple classes of low-density, primarily residential development.

We do not claim the 5 classes discussed below represent mutually exclusive or universal

neighborhood types. Rather, we describe how these classes differ regarding key morphological

characteristics that correspond with broad archetypes in the social science of urban and subur-

ban neighborhoods in the United States. A key contribution of this analysis is our test of

Table 2. Model performance for various classifiers.

Number of Classes K-means GMM Diagonal GMM Spherical GMM Full Aggl. Single Aggl. Complete Aggl. Average Aggl. Ward

2 0.24 (0) 0.23 (0) 0.25 (0) 0.2 (0) 0.77 (1) 0.77 (1) 0.77 (1) 0.17 (0)

3 0.19 (0) 0.14 (0) 0.19 (0) 0.12 (0) 0.41 (2) 0.14 (1) 0.53 (2) 0.16 (0)

4 0.16 (0) 0.07 (0) 0.13 (0) 0.07 (0) 0.39 (3) 0.14 (1) 0.39 (3) 0.12 (0)

5 0.16 (0) 0.05 (0) 0.14 (0) 0.08 (0) 0.38 (4) 0.13 (1) 0.34 (4) 0.09 (0)

6 0.16 (0) 0.06 (0) 0.13 (0) 0.06 (0) 0.38 (5) 0.11 (1) 0.33 (5) 0.09 (0)

7 0.15 (0) 0.05 (0) 0.13 (0) 0.05 (0) 0.32 (6) 0.1 (1) 0.32 (6) 0.08 (0)

8 0.15 (0) 0.06 (0) 0.13 (0) 0.03 (0) 0.28 (7) 0.09 (2) 0.28 (6) 0.09 (0)

9 0.14 (0) 0.05 (0) 0.11 (0) 0.04 (0) 0.28 (8) 0.09 (2) 0.28 (7) 0.07 (0)

10 0.14 (0) 0.05 (0) 0.12 (0) 0.04 (0) 0.26 (9) 0.09 (4) 0.23 (7) 0.07 (0)

Notes: This table presents the average silhouette score across all clusters for a given model and pre-specified number of clusters. To illustrate potential over-

segmentation, the number of clusters containing fewer than 1% of all observations is shown in parentheses.

https://doi.org/10.1371/journal.pone.0299713.t002
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whether and how neighborhood morphology aligns with socio-demographic characteristics of

these archetypes. Selecting a different number of clusters or a different clustering algorithm

may lead to neighborhoods with more or less refined and distinct morphological characteris-

tics. But, as we describe below, morphology would still likely correlate with socioeconomic

and demographic conditions in ways that map intuitively onto sociological understandings of

urban and suburban spaces.

We examine the results from the unsupervised classification by discussing descriptive statis-

tics for the morphometrics for each class and examining the distribution of each class across the

five metros and across central cities, suburban cities, and the urban fringe. We then use Ordi-

nary Least Squares regression analysis to examine the relationship between demographic and

socioeconomic characteristics and the prevalence of each class at the census tract level. The pur-

pose here is to examine whether the morphology-based classifications map onto social variables

in meaningful and informative ways. To do so, we estimate the following regression model:

Yij ¼ aþ bXij þ dDj þ εij

where Y represents the share of census blocks within each census tract i and metro area j that are

assigned to each of the five morphological classes from the K-means classification; α represents

the intercept; X represents a vector of socioeconomic and demographic characteristics for the ith
census tract in the jth metro area, including the median year structures were built, the population

density per square mile, the percentage of housing units located in structures with 20 or more

units, the homeownership rate, the median household income, the percentage of people who are

non-Hispanic White, and the percentage of workers who commute by car; β represents a corre-

sponding vector of coefficients that capture the relationship between each socioeconomic and

demographic indicator included in X; D represents a vector of dummy variables for each metro-

politan area; δ is a vector of coefficients associated with the metropolitan dummy variables and

represents the average difference in the share of neighborhoods of each class relative to the refer-

ence category (Atlanta), holding other variables constant; and ε is the error term.

Results

Descriptive statistics

As illustrated in Table 3, which shows the median for each morphometric for census blocks in

each metropolitan area, the five metropolitan areas differ in regard to the size and placement

Fig 1. Elbow plot.

https://doi.org/10.1371/journal.pone.0299713.g001
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of buildings in the typical neighborhood, but not in regard to the shape of buildings. For exam-

ple, the typical size of building footprints in each neighborhood (area_median) and the vari-

ability among building footprints within neighborhoods (area_iqr), both differ considerably

across metro areas. In Atlanta, Houston, and Los Angeles—the three post-car metros—the

median building in the median neighborhood is considerably larger (between 192 and 213

square meters) than in Boston or Chicago (147 to 158 square meters). Similarly, the variability

in the size of buildings is also larger in these post-car metros, where in the median neighbor-

hood buildings varied in size with an interquartile range of 84 square meters or more; this is

notably more intra-neighborhood variation in building size than is found in Boston (63) or

Chicago (74). Thus, neighborhoods in the older metros are typically composed of smaller and

more uniformly sized buildings than those in Sunbelt cities.

As illustrated in Table 3, there is also considerable variation between metropolitan areas in

regard to the distance between buildings and, relatedly, the number of buildings per square

kilometer. For example, in Los Angeles and Chicago–two of the most densely settled metropol-

itan areas in the country–more than half of buildings in the median neighborhood are within

approximately 19 meters of another building. However, in the typical neighborhood in less

densely settled Atlanta, most buildings are 33 meters from the nearest building. To put it dif-

ferently, the building density in Chicago (698 buildings per square kilometer) and Los Angeles

(872) is considerably higher than in Atlanta (179). Table 3 also reveals some counter-intuitive

and notable findings regarding the morphology of neighborhoods across the five metropolitan

areas. For example, in Boston, the distance between buildings (27 meters) is considerably

larger than in the post-car metros of Houston (21) and Los Angeles (19). One might expect

Boston to have higher building density given its period of development. As we explore in

Tables 4 and 5 below, this is largely explained by the location of buildings across central cities,

suburban cities, or the urban fringe within each metropolitan area. Similarly, it is notable that

building size is not directly related to either building density or distance between buildings.

Table 3. Median morphometrics by metropolitan area.

Atlanta Boston Chicago Houston Los Angeles

Size

area_iqr 87.50 63.39 74.37 86.52 84.45

perimeter_iqr 15.32 13.42 15.32 16.25 15.93

area_median 192.47 146.79 157.58 195.58 213.27

perimeter_median 58.21 51.04 53.03 58.70 62.73

area_max 405.41 305.45 338.95 397.99 415.05

Shape

compact_iqr 0.09 0.09 0.08 0.11 0.10

leqwratio_iqr 0.53 0.55 0.53 0.53 0.54

shape_iqr 0.08 0.09 0.08 0.10 0.09

compact_median 0.72 0.72 0.72 0.73 0.70

leqwratio_median 1.61 1.60 1.56 1.53 1.57

shape_median 0.55 0.56 0.56 0.56 0.55

Placement

nndist_iqr 10.49 7.85 4.55 5.95 3.33

nndist_median 33.05 27.30 19.90 21.79 18.46

angle_entropy 0.85 0.86 0.97 0.91 0.92

foot_density 178.77 439.76 698.02 502.56 871.61

settled_count 15 15 15 17 22

https://doi.org/10.1371/journal.pone.0299713.t003
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For example, although the post-care metros of Atlanta, Houston, and Los Angeles all have

larger buildings (median about 192 square meters), they vary markedly in both building foot-

print density and distance between buildings. These findings point toward potentially diver-

gent building development patterns within each metropolitan area.

Table 4. Median morphometrics by location.

Central Cities Suburban Cities Urban Fringe

Size

area_iqr 84.29 66.37 87.10

perimeter_iqr 17.64 12.80 16.76

area_median 160.90 183.85 178.87

perimeter_median 53.76 57.34 56.77

area_max 459.08 339.29 387.48

Shape

compact_iqr 0.10 0.08 0.10

leqwratio_iqr 0.64 0.46 0.58

shape_iqr 0.10 0.08 0.09

compact_median 0.71 0.72 0.71

leqwratio_median 1.65 1.53 1.60

shape_median 0.55 0.56 0.55

Placement

nndist_iqr 3.57 3.76 10.15

nndist_median 15.75 19.35 30.28

angle_entropy 0.93 0.93 0.90

foot_density 1083.50 804.95 179.20

settled_count 18 17 16

https://doi.org/10.1371/journal.pone.0299713.t004

Table 5. Selected median morphometrics by metropolitan area and location.

area_median nndist_median foot_density Percentage of Blocks

Atlanta

Central Cities 187.46 21.12 492.96 5%

Suburban Cities 197.02 28.25 382 27%

Urban Fringe 191.17 36.35 85.61 68%

Boston

Central Cities 149.2 16.62 1107.15 6%

Suburban Cities 140.66 20.32 857.07 30%

Urban Fringe 149.89 31.6 235.38 64%

Chicago

Central Cities 128.79 11.94 1440.77 18%

Suburban Cities 151.79 18.37 841.11 49%

Urban Fringe 189.99 28.32 131.98 32%

Houston

Central Cities 194.14 18.81 802.54 23%

Suburban Cities 196.85 21.14 609.02 30%

Urban Fringe 195.44 26.67 211.54 47%

Los Angeles

Central Cities 181.15 15.67 1208.67 15%

Suburban Cities 225.21 18.2 947.25 56%

Urban Fringe 200.66 22.81 358.41 29%

https://doi.org/10.1371/journal.pone.0299713.t005
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To explore variation in building morphology within metropolitan areas, we now turn to an

examination across central cities, suburban cities, and the urban fringe, as shown in Table 4. A

number of morphometrics show notable variation across these spatial scales. As might be

expected, the median footprint of buildings in suburban cities and the urban fringe is consid-

erably larger than in central cities (median of approximately 180 compared with 161). Simi-

larly, buildings in the fringe are much farther from each other (median distance of 30 meters)

when compared with buildings in suburban and central cities (19 and 16 meters, respectively),

and neighborhoods along the fringe have considerably lower building density (179 buildings

per square kilometer) than in central and suburban cities (1,083 and 805 buildings per square

kilometer). Notably, however, as illustrated by the interquartile range (IQR) morphometrics,

the location with the least intra-neighborhood variability is suburban cities. For example, in

suburban cities the typical neighborhood has considerably less intra-neighborhood variation

in building size, as indicated by an interquartile range of 66 square meters, compared with 84

and 87 square meters in central cities and the suburban fringe. Suburban cities also show

lower intra-neighborhood variation across the other metrics studied here (area_iqr, compac-

t_iqr, leqwratio_iqr, nndist_iqr, perimeter_iqr, and shape_iqr) than do neighborhoods on the

urban fringe. The lower variability in suburban morphometrics across very different U.S. met-

ros reflects not only the prevalence of cookie-cutter style suburban neighborhoods with uni-

form housing types, but also the dominance of common land use regulations and

development practices (i.e., setbacks and minimum lot sizes) that shape suburban develop-

ment patterns.

Table 5 presents selected morphometrics–the median and maximum area, median distance

between buildings, and the building footprint density–in each metropolitan area, disaggre-

gated by location within the central city, suburban city, and urban fringe. For comparison

across metro areas, we also included the percentage of census blocks in each location. A num-

ber of these findings are notable. For example, although in all cases building density decreases

(and distance between the nearest building increases) as one moves from central cities to sub-

urban cities and from suburban cities to the urban fringe, the five metropolitan areas differ

substantially in regard to the intensity of development across these three locations. For exam-

ple, in Boston, nearly two-thirds (64%) of census blocks are located in the urban fringe, where

the distance between neighboring buildings is 31 meters (second only to the urban fringe of

Atlanta). This is driven by the prevalence of low-density, unincorporated New England towns,

many of which rely on exclusionary zoning to limit the density of new development [28]. In

comparison, in Los Angeles, more than two-thirds of census blocks are in suburban cities

(56%) and central cities (15%) and have the highest building footprint density and lowest dis-

tance between neighborhoods observed in suburban and fringe areas across the five metropoli-

tan areas.

A second notable finding is that, in some metros, there is minimal if any variation in the

size of the median building, while in others there is substantial variation between central city,

suburban city, and urban fringe locations. For example, in Atlanta, there is only a 10-square

meter difference between the size of the median building in suburban cities (197) and central

cities (187). The same is true in Boston (140 to 149) and Houston (194 to 196). In Chicago and

Los Angeles, however, the median building in central cities (128 and 181 square meters,

respectively) is more than 40 square meters smaller than buildings located in other parts of the

metropolitan area. This suggests highly divergent development patterns in these two metropol-

itan areas wherein suburban cities (in Los Angeles) or the urban fringe (in Chicago) are home

to substantially larger buildings than the central city. The results in Chicago make some intui-

tive sense: buildings in lower-density areas typically have larger footprints; thus, the urban

fringe has larger building footprints than suburban cities (189 vs 151 square meters), which in
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turn have larger footprints than central cities (128). In Los Angeles, however, suburban cities

have substantially larger buildings than exurban areas and central cities (225 vs. 200 and 181,

respectively). This is likely driven by what has been called “horizontal density”–the expansion

of single-family units and the widespread creation of accessory dwelling units across what

were historically exclusively single-family suburban neighborhoods [31,32].

Unsupervised classification

We now turn to a discussion of the results of our unsupervised classification (K-means using 5

classes). Fig 2 provides archetypal examples of each of the five classes, while Table 6 presents

Fig 2. Archetypal examples of each class.

https://doi.org/10.1371/journal.pone.0299713.g002
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the median for each of the 16 morphometrics in each of the 5 classes. As is clear, class 1 is pri-

marily composed of neighborhoods with smaller buildings, high levels of building density, and

low intra-neighborhood variability in building size, shape, and placement. In other words,

these are dense neighborhoods of smaller buildings that vary little from each other in regard to

the orientation of buildings. These are likely cookie-cutter, single-family, residential neighbor-

hoods with modestly sized homes. Class 4 is similar, with little intra-neighborhood variation

in the size, shape, and placement of buildings, but with lower density and larger buildings (see

below). Class 2 on the other hand contains neighborhoods with low overall building density

and a high degree of intra-neighborhood variability in regard to building size, shape, and

placement. These are therefore low-density neighborhoods which, as we illustrate shortly, are

primarily located on the urban fringe. Class 3 is composed primarily of neighborhoods with

large buildings with non-compact shapes. These census blocks likely contain commercial or

mixed-use buildings or other buildings with large and varied footprints. Lastly, class 5 is char-

acterized by the high density and high variability of building footprints.

Comparisons across the five classes reveal a number of interesting similarities and differ-

ences. For example, class 4 is similar to class 1, with low intra-neighborhood variability in

building size, shape, and placement, but larger building footprints and lower density. Thus,

class 1 may capture earlier suburban developments with modest homes on smaller lots while

class 4 may capture more recent suburban-style developments with larger houses on larger

lots. Moreover, class 5 is similar to both class 1 and class 4 in regard to the size and shape of

the median building, but neighborhoods in class 5 tend to have substantially higher intra-

neighborhood variability in building size and shape. In other words, the size and shape of

buildings within the same neighborhood vary considerably in class 5 but are relatively uniform

in classes 1 and 4. This variability is clearly illustrated in Fig 2, which depicts representative

arrangements of building footprints for each neighborhood class. Notably, neighborhoods in

class 5 also have substantially higher building density and substantially lower distances

Table 6. Median morphometrics by neighborhood class.

Class 1 Class 2 Class 3 Class 4 Class 5

Size

area_iqr 56.66 153.5 1140.4 63.78 95.49
perimeter_iqr 10.51 25.5 88.39 10.42 19.3
area_median 157.78 198.64 863.98 246.41 158.26

perimeter_median 50.72 59.46 124.14 67.06 53.08

area_max 398.76 1438.8 5056.22 458.57 654.16

Shape

compact_iqr 0.05 0.12 0.17 0.07 0.12
leqwratio_iqr 0.33 0.77 1.3 0.4 0.79
shape_iqr 0.06 0.12 0.15 0.06 0.12
compact_median 0.76 0.71 0.61 0.67 0.71

leqwratio_median 1.37 1.66 2.3 1.79 1.68

shape_median 0.6 0.54 0.47 0.52 0.54

Placement

nndist_iqr 4.95 19.63 15.43 5.18 4.24
nndist_median 20.19 36.26 40.76 27.52 16.07

angle_entropy 0.86 0.77 0.92 0.91 0.85

foot_density 928.67 162.52 240.33 616.4 1262.66

settled_count 24.17 35.51 13.38 16.74 30.44

https://doi.org/10.1371/journal.pone.0299713.t006

PLOS ONE Measuring neighborhood morphology: Evidence from building footprints in five U.S. metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0299713 April 10, 2024 12 / 20

https://doi.org/10.1371/journal.pone.0299713.t006
https://doi.org/10.1371/journal.pone.0299713


between buildings. Class 5 may therefore represent downtown” or “main street” neighbor-

hoods where there is a greater mix and density of buildings or denser, single-family neighbor-

hoods with weak or weakly enforced land use regulations.

Lastly, there are also interesting similarities between classes 2 and 5. Despite the relatively

small size of buildings in both classes, there is a high degree of intra-neighborhood variability

in building size and shape in both class 2 and class 5. The primary factor that distinguishes

these two classes is the distance between buildings and the overall density of buildings within

the neighborhood. Unlike class 5, which has the highest density of all 5 classes (1,262 buildings

per square kilometer), class 2 has the lowest building density with a median of 162 buildings

per square kilometer.

Spatial and socioeconomic analyses

Morphological analysis of building footprints alone is clearly able to distinguish a typology of

U.S. neighborhoods, but how does this morphology-based taxonomy map onto variation in

spatial and social dimensions between neighborhoods? We conclude by examining the distri-

bution of each class across space and the association of each class with key demographic and

socioeconomic characteristics. To do so, we examine the share of each class that is located in

each metropolitan area and in three sub-metropolitan regions (central cities, suburban cities,

and the urban fringe). We also use regression analysis to examine the association between the

share of neighborhoods (census blocks) in each tract that were predicted to be of each class

and key socioeconomic and demographic data, as measured by 2016–2020 tract-level estimates

from the American Community Survey.

We begin by discussing the results for class 3. Recall that, as illustrated in Table 3, class 3

neighborhoods have substantially larger buildings than the other four classes. Table 7 shows

that a relatively small share of neighborhoods in each metro area and each sub-metropolitan

region are in class 3. For example, class 3 neighborhoods make up a low of 6% of census blocks

in Boston and a high of 12% of census blocks in Los Angeles. Similarly, class 3 neighborhoods

make up a maximum of 14% of census blocks in central cities, and between 8–9% in suburban

cities and the urban fringe. The regression results in Table 8 provide additional insight into the

characteristics of class 3 neighborhoods. Tracts with a higher share of class 3 neighborhoods

had substantially higher shares of housing units in structures with 20 or more units in total

(effect size of .47), lower homeownership rates (-.33), and lower shares of residents who com-

muted to work by car (-.15). Notably, class 3 neighborhoods also have the strongest association

with household income (.11), suggesting that tracts with concentrations of class 3 neighbor-

hoods have residents with higher-than-average incomes. These results suggest that class 3 rep-

resents mixed-use business and commercial areas with higher-than-average shares of

Table 7. Percentage of classes by metro and location.

Metro Class 1 Class 2 Class 3 Class 4 Class 5

Atlanta 24% 46% 10% 18% 3%

Boston 31% 34% 6% 16% 13%

Chicago 30% 17% 8% 20% 25%

Houston 30% 28% 10% 12% 20%

Los Angeles 19% 14% 12% 23% 33%

Central Cities 21% 6% 14% 11% 48%

Suburban Cities 34% 11% 9% 22% 24%

Urban Fringe 21% 44% 8% 17% 10%

https://doi.org/10.1371/journal.pone.0299713.t007
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multifamily housing, rental housing, and multi-modal means of transit. The metropolitan

dummy variables in the regression shown in Table 8 represent the average difference in the

share of neighborhoods of each class relative to the reference category (Atlanta), holding other

variables constant. We do not interpret these coefficients directly as they are used simply to

control for variation in the prevalence of each class at the metropolitan level and largely sub-

stantiate the findings in Table 8.

At the opposite end of the spectrum are class 2 neighborhoods which, as discussed earlier,

are characterized by low-density/high-variability development. The distribution of class 2

neighborhoods varies substantially, both across metro areas and sub-metropolitan contexts.

For example, class 2 makes up 46% of neighborhoods in Atlanta but only 14% and 17% in Los

Angeles and Chicago, respectively (see Table 3 and Fig 3). Similarly, class 2 is very common in

the urban fringe (44% of neighborhoods), but uncommon in suburban cities (11%) and central

cities (6%). The regression results also highlight that tracts with high shares of class 2 neighbor-

hoods have exceedingly low population densities (effect size of -.64; see Table 8). Each of these

Table 8. Regression: Tract-level factors that predict the prevalence of each morphological class.

Share of Blocks in

Class 1

Share of Blocks in

Class 2

Share of Blocks in

Class 3

Share of Blocks in

Class 4

Share of Blocks in

Class 5

Share of Blocks in Class 1

or Class 4

(Intercept) 0.16 *** 0.38 *** 0.00 -0.23 *** -0.33 *** -0.02

(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

Median Year Structure Built 0.12 *** 0.04 *** 0.11 *** 0.26 *** -0.41 *** 0.28 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Population density 0.33 *** -0.64 *** -0.11 *** 0.18 *** 0.27 *** 0.41 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Median Household Income -0.07 *** -0.02 * 0.11 *** -0.06 *** 0.03 ** -0.10 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Non-Hispanic White (%) -0.12 *** 0.11 *** -0.04 *** 0.08 *** -0.02 * -0.05 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Homeownership Rate 0.24 *** 0.02 * -0.33 *** 0.23 *** -0.13 *** 0.37 ***
(0.02) (0.01) (0.01) (0.02) (0.01) (0.01)

Commute by Car (%) 0.11 *** -0.03 *** -0.15 *** 0.08 *** 0.00 0.15 ***
(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Units in Structures with 20

+ Units (%)

-0.18 *** 0.03 *** 0.47 *** -0.08 *** -0.18 *** -0.22 ***

(0.01) (0.01) (0.01) (0.01) (0.01) (0.01)

Boston 0.22 *** -0.06 ** -0.16 *** 0.15 *** -0.11 *** 0.29 ***
(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

Chicago 0.09 ** -0.69 *** 0.08 *** 0.41 *** 0.21 *** 0.37 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)

Houston -0.04 -0.38 *** 0.14 *** -0.34 *** 0.51 *** -0.27 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)

Los Angeles -0.54 *** -0.50 *** -0.03 0.49 *** 0.62 *** -0.13 ***
(0.03) (0.02) (0.02) (0.03) (0.02) (0.03)

N 12072 12072 12072 12072 12072 12072

R2 0.20 0.67 0.53 0.18 0.52 0.30

All continuous predictors and the outcome variable are mean-centered and scaled by 1 standard deviation

*** p < 0.001

** p < 0.01

* p < 0.05.

https://doi.org/10.1371/journal.pone.0299713.t008

PLOS ONE Measuring neighborhood morphology: Evidence from building footprints in five U.S. metropolitan areas

PLOS ONE | https://doi.org/10.1371/journal.pone.0299713 April 10, 2024 14 / 20

https://doi.org/10.1371/journal.pone.0299713.t008
https://doi.org/10.1371/journal.pone.0299713


Fig 3. Distribution of the five classes across the metropolitan landscape.

https://doi.org/10.1371/journal.pone.0299713.g003
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statistics suggests that class 2 neighborhoods represent low-intensity development on the

urban fringe. This conclusion is also supported by the fact that the concentration of class 2

neighborhoods has a significant but modest association with the share of non-Hispanic Whites

(.11); counterintuitively, however, commuting by car has a small though statistically significant

association with the prevalence of class 2 neighborhoods (-.03), the reason for which is

unclear.

We now turn to a discussion of classes 1, 4, and 5. As we noted earlier, these three classes

are relatively similar in their morphology: all three contain smaller, closely spaced (i.e., high-

density) buildings. The main morphological differences between the three are A) that class 5

neighborhoods have greater variability in building size and shape than do classes 1 and 4, and

B) that class 4 has larger buildings than class 1 (see Table 3). However, their distribution across

space and their socioeconomic and demographic profiles differ in important ways. To illus-

trate this fact, we begin by discussing class 5 and how its physical morphology relates to tract-

level socioeconomic and demographic characteristics that distinguish it from neighborhoods

in classes 1 and 4.

As illustrated in Table 4, class 5 neighborhoods are most common in central cities (48% of

neighborhoods) and least common on the urban fringe (10%). Classes 1 and 4, on the other

hand, are more common in suburban cities (34% and 22% of neighborhoods, respectively)

than in central cities (21% and 11%) or the urban fringe (21% and 17%). Class 5 thus likely rep-

resents older residential neighborhoods in dense urban centers, while classes 1 and 4 are pri-

marily suburban neighborhoods. Thus, while class 5 is made up of small and densely spaced

buildings, their location near central cities likely means these are some of the oldest residential

neighborhoods, or “first suburbs,” built before the dominance of subdivision regulations and

zoning ordinances when more variability in housing forms (i.e. townhomes and row houses

alongside single-family homes) was common [24]. The regression results at the tract level con-

firm these distinctions. For example, although tracts with high shares of class 1 neighborhoods

have a small positive association with the median year of construction (.12), those with high

shares of class 5 neighborhoods have a much larger, negative association (-.41); thus, tracts

with newer housing are more likely to contain class 1 neighborhoods and less likely to contain

class 5 neighborhoods.

Although classes 1 and 5 share some similarities, other characteristics of class 1 are indica-

tive of suburban neighborhoods, while those of class 5 suggest they contain older urban neigh-

borhoods. For example, tracts with high shares of class 1 and class 5 neighborhoods have high

population densities (effect sizes of .33 and .27, respectively; see Table 8) and both have low

percentages of multifamily structures (i.e., the share of units in structures with 20 or more

units; -.18). However, whereas high concentrations of class 5 neighborhoods have a negative

association with homeownership rates (-.13), homeownership is closely associated with the

prevalence of class 1 neighborhoods (.24). Similarly, shares of commuting by car are not asso-

ciated with class 5 neighborhoods but are common in class 1 (.11). These statistics, along with

differences in the median year housing was built in each class, point to class 5 as older urban

neighborhoods with a mix of owners and renters and class 1 as more recent suburban neigh-

borhoods with high concentrations of homeowners.

We conclude by examining the socioeconomic and demographic characteristics of class 4

neighborhoods, paying particular attention to how they differ from those in class 1. As our ear-

lier analysis of building morphology illustrated, class 4 neighborhoods have larger building

footprints and lower density than in class 1. Once again, the demographic and socioeconomic

characteristics provide insight into the social context for these differences. For example, in

tracts with high shares of class 4 neighborhoods, the median structure was built more recently

(effect size of .26; see Table 8) than in tracts with class 1 neighborhoods (.12). Similarly, tracts
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with high shares of class 4 neighborhoods have lower population densities (.18 vs. .33). These

statistics suggest that class 1 neighborhoods may represent earlier suburbs while class 4 neigh-

borhoods represent more recent development; their morphology corresponds with the

decade-by-decade increase in the average size of US homes that accompanied widespread sub-

urbanization. That said, however, it is notable that the sign and magnitude of the coefficients

are similar across the two models predicting the share of class 1 and class 4 neighborhoods,

and that the r-squared in these models is substantially lower (.2 and .18, respectively) than for

classes 2, 3, and 5 (.67, .53, and .52).

The low r-squared suggests, along with similarities in their morphological characteristics,

suggest that class 1 and class 4 neighborhoods may not be distinct enough to warrant being

considered separate types of neighborhood. To examine whether collapsing these two classes

into a single neighborhood type led to changes in the regression results, we estimated a sixth

regression model predicting the share of neighborhoods in either class 1 or 4. The results,

shown in the last column in Table 8, provide some evidence that classes 1 and 4 represent simi-

lar neighborhood types. For example, after combining the two categories, the r-squared

increases to .3 while the coefficients typically have the same sign as in the first and fourth mod-

els but are generally larger in magnitude.

Discussion and conclusion

Neighborhood morphology–as represented by the size, shape, and placement of building foot-

prints–provides a high-resolution means of measuring patterns of development across the

urban landscape. In this paper, we examine whether neighborhood morphometrics at the cen-

sus block level provide insight into spatial patterns of development and socioeconomic and

demographic conditions across metropolitan and sub-metropolitan areas. We observe sub-

stantial differences in the size and placement of buildings across the five metropolitan areas, as

well as across central cities, suburban cities, and the urban fringe. We also use unsupervised

classification to develop a morphological typology of neighborhoods and examine variation in

the prevalence of neighborhood types across urban space and its association with neighbor-

hood-level socioeconomic and demographic conditions. Our cluster analysis reveals a set of

five neighborhood types, including “first suburb” neighborhoods with modest and uniform

housing size and placement; newer suburbs with larger but relatively uniform housing; older,

high-density neighborhoods with highly varied housing; low-density neighborhoods with

highly varied patterns of development; and neighborhoods with larger commercial or multi-

family buildings. By comparing the prevalence of these neighborhood types across three met-

ropolitan scales (urban, suburban, and urban fringe) and with tract-level socioeconomic and

demographic data, we provide additional nuance regarding differences in the period of devel-

opment, type of housing, characteristics of residents, and connection to employment opportu-

nities across different neighborhood types. In doing so, we demonstrate a method of

characterizing neighborhood morphology, detail a typology of U.S. neighborhoods across

varying U.S. metros, and examine how different neighborhood morphologies align with varia-

tion in spatial and sociodemographic characteristics such as population density, prevalence of

multifamily housing, income, race/ethnicity, homeownership, and commuting by car.

Beyond a typology of U.S. neighborhoods, the growing availability of building footprint

data and an increasing number of statistical software programs for analyzing them [7,32]

make possible a wide variety of analyses of neighborhood morphology that have the potential

to advance geographic science in urban areas in important ways. Detailed data from the U.S.

Census Bureau on neighborhood level conditions (e.g., the type and size of dwellings) are only

available at the census block group level. However, block groups are often large, arbitrarily
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delineated and contain a mixture of housing and neighborhood types. Building footprints and

morphometrics derived from them provide a high-resolution option for distinguishing

between different types of development at various spatial scales.

While it is beyond the scope of this paper to analyze all the ways physical morphology

relates to tract-level socioeconomic and demographic characteristics, the association between

neighborhood morphology and key socio-spatial characteristics indicates a number of signifi-

cant applications of this method. Building footprint-derived estimates of neighborhood mor-

phology provide an additional, high resolution means of analyzing patterns of urban

development. As we illustrate, morphometrics capture variability in the layout of buildings

and, in doing so, capture distinct morphological characteristics that reflect historical and con-

textual differences in development patterns across central cities, suburbs, and the urban fringe.

Morphometrics may therefore be useful as primary or supplemental data inputs for efforts to

examine and address a myriad of issues such as zoning and land use, housing supply and pol-

icy, residential segregation, neighborhood change, infrastructure investment, the development

and operation of transit networks, historic preservation, and the coordination of regional

development.

Future research could examine the causes of neighborhood morphology and its potential

association with important societal outcomes. For example, scholars might use neighborhood

morphology as the dependent variable in analyses of the impact of land use regulation, code

enforcement actions, lending policy, and developer practices to understand how these policy

and market factors shape the supply of housing and, as a result, the morphology of new neigh-

borhoods. Similarly, scholars might use neighborhood morphology as the independent vari-

able in analyses of residential segregation, economic mobility, or environmental vulnerability

to understand how patterns of development shape access to opportunity or exposure to risk.

As the availability of building footprints (or the aerial imagery used to derive them) increases,

scholars could also examine temporal variation in development patterns and neighborhood

morphology. This in turn could be used to examine physical patterns of neighborhood change

(e.g., abandonment, infill, and upgrading) and socioeconomic or demographic patterns of

neighborhood change (e.g., filtering, population loss, gentrification, etc.).

Future research might also address some of the limitations of the methods used here. For

example, our method of unsupervised classification undoubtedly aggregates distinct neighbor-

hoods into only a handful of neighborhood types. Scholars could use footprint-derived mor-

phometrics and ground-truthed (parcel or zoning) data to distinguish between single-family

and multifamily neighborhoods, manufactured home communities, and mixed-use develop-

ments. Future research could also explore alternative means of delineating neighborhood

boundaries other than census blocks, including other census geographies, plat maps, or zoning

districts. Additionally, morphological analysis might compress long, place-based histories into

a geographic cross-section of the built environment. Thus, morphological analysis can be used

to complement analyses of administrative, regulatory, and development data, thus opening

multiple avenues of future research that can provide deeper insight into development patterns

and economic or social phenomena.
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