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Abstract

The performance of the defect prediction model by using balanced and imbalanced datasets

makes a big impact on the discovery of future defects. Current resampling techniques only

address the imbalanced datasets without taking into consideration redundancy and noise

inherent to the imbalanced datasets. To address the imbalance issue, we propose Kernel

Crossover Oversampling (KCO), an oversampling technique based on kernel analysis and

crossover interpolation. Specifically, the proposed technique aims to generate balanced

datasets by increasing data diversity in order to reduce redundancy and noise. KCO first

represents multidimensional features into two-dimensional features by employing Kernel

Principal Component Analysis (KPCA). KCO then divides the plotted data distribution by

deploying spectral clustering to select the best region for interpolation. Lastly, KCO gener-

ates the new defect data by interpolating different data templates within the selected data

clusters. According to the prediction evaluation conducted, KCO consistently produced F-

scores ranging from 21% to 63% across six datasets, on average. According to the experi-

mental results presented in this study, KCO provides more effective prediction performance

than other baseline techniques. The experimental results show that KCO within project and

cross project predictions especially consistently achieve higher performance of F-score

results.

1 Introduction

Software defect prediction (SDP) provides feedback on software defects that may only be

detected in future software releases. To date, the extensive research on SDP has driven the

involvement of more industries to participate in bringing more additional resources toward

open-source software projects [1]. Hence, SDP research should thrive in the upcoming years

with more public access software projects available. A software project in the context of SDP is

a collection of procedures for the development of an intended software product with software

versions by the related software artifacts. The software version contains an abundance of
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historic software project development information stored in code repositories. Just-in-Time

SDP (JIT-SDP) enables the prediction process to be done once source code changes are com-

mitted to the code repositories. Specifically, JIT-SDP datasets require information regarding

code changes through set of software metrics, defects information, and meta-information

about the software project.

To model JIT-SDP, adequate training data should be available. Unfortunately, the required

data is unavailable in the initial phase of software development. For this reason, the available

datasets have a highly skewed distribution [2]. In this scenario, the clean class dominates the

data set compared to the defect class. Lack of variation in SDP imbalance datasets and a lack of

information on the distribution of the data are two of the key characteristics of SDP imbalance

datasets [2, 3]. The imbalance in the class distribution of data leads to biases in the learning of

the prediction model toward the clean class data. Consequently, the prediction model yields

misclassification results. In such a scenario, the prediction model tends to be over-optimized

for the clean class and may not generalize well to the defect class, leading to high misclassifica-

tion rates. One way that researchers have tried to address the class imbalance problem involves

oversampling techniques such as SMOTE [4], ROSE [5], ADASYN [6], and MWMOTE [7] to

increase minority representation in datasets through the creation of synthetic samples based

on existing samples. Under-sampling may also be used, which involves removing instances

from the majority class in order to ensure that there are an equal or nearly equal number of

samples. The disadvantages of undersampling include the risk of discarding valuable informa-

tion and under-trained models [8]. In terms of addressing class imbalance in software defect

prediction for information reservation, oversampling proved to be more effective than under-

sampling [9].

Oversampling presents a challenge since it introduces duplicate or overlapped instances

into the distribution of the existing data [10]. Studies often rebalance samples by oversampling

positive (defect) samples [11]. However, Zhang et al. [12] take the spatial distribution charac-

teristics of samples into consideration, which cause the boundaries between different types of

samples to become blurred. Several important aspects to consider when analyzing the spatial

distribution of samples, including class imbalance severity, clustering, overlap class and distri-

bution shape. For imbalance severity, a highly imbalanced dataset where the majority class sig-

nificantly outnumbers the minority class produces class imbalance bias. As a result, minority

class predictions are less accurate as the model tends to predict the majority class more fre-

quently. Second, grouping or clustering instances belonging to the same class impacts the per-

formance of a machine learning model. In densely grouped classes, the model has difficulty

separating instances from those of other classes. In class overlap, the extent to which instances

of different classes overlap or intermingle with each other. If instances are tightly clustered and

overlap heavily, the model may have difficulty distinguishing between classes. Lastly, the distri-

bution shape of the spatial distribution of instances across classes can also impact the perfor-

mance of a machine learning model. For example, a dataset with instances spread evenly

across a region may perform better than a dataset with instances tightly clustered in a few

areas.

As motivation for the characteristics of spatial distribution, this study improves the ability

to coop with these characteristics by proposing KCO. KCO offers an alternative solution to

improve classification performance when dealing with imbalanced data. Integrating KCO with

data pre-processing will enhance classification performance. Further, KCO avoids generating

erroneous or duplicate data instances that lead to high false positives by avoiding generating

less diverse data points within the minority class. Due to the above advantages, this study aims

to create balanced class datasets while reducing redundancy and noise by increasing diversity

of data In particular, we present KCO, which integrates the well-known KPCA as diversity
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analysis, spectral clustering to partition the spatial distribution, and crossover interpolation to

generate new samples.

We conducted experiments on six large-scale software projects, namely Bugzilla, Columba,

JDT, Mozilla, Platform, and PostgreSQL, which total 137,417 changes. We compare our tech-

nique with six baselines, including ADASYN [6], SMOTE [4], Borderline-SMOTE [13],

MWMOTE [7] and MAHAKIL [11]. Several studies [14–16] suggest that random under-sam-

pling (RUS) provides an effective sampling technique for JIT-SDP. This comparison also

includes RUS. In the experiments, KCO achieved F1-scores of 42.2%, substantially higher than

the baselines on average across the six projects.

This paper makes the following main contributions:

• We present the first consideration of KPCA in addressing the class imbalance issue for

JIT-SDP, which has been neglected in previous studies.

• We develop a novel oversampling technique KCO for imbalanced datasets in JIT-SDP. Our

proposed technique introduces the KPCA method to learn more representative feature

representation of nonlinear distribution data and then the new instances of the defect data is

generated by employing crossover-interpolation.

The remainder of this paper proceeds in the following manner. Section 2 presents a review

of related work. Section 3 explains our technique framework. In Section 4, we describe the

experimental setup. Section 5 presents the experimental results. Section 6 discusses threats to

validity. Section 7 concludes the paper and presents the future work agenda.

2 Background

2.1 Just-in-Time software defect prediction

SDP closely follows the project release schedule, based on code snapshots and defects found in

previous releases. Therefore capable of predicting defect density and defect proneness at multi-

ple prediction levels (modules, classes, changes) [17]. An alternative to prior prediction levels

of SDP involves using software change histories to predict potential defects at the time of mak-

ing changes to the repository (“just-in-time”), or JIT-SDP. The majority of software changes

correspond to commits made to a Source Code Management (SCM) system or Version Con-

trol System (VCS). Fig 1 shows the overall JIT-SDP workflow. The workflow begins with iden-

tifying and assembling data sources that drive the model building process. The data sources

include software code changes, issue reports, commit messages, and others from VCS and

issue tracking system (ITS). The next step converts the raw data into feature vectors of software

metrics. A feature vector obtained from software metrics by using metric filtering of collinear-

ity analyses. Filtering analysis here is regarded as part of data pre-processing. In the following

classification stage, model training and optimization take place in order to construct the pre-

diction model. Following the construction of the prediction model, the model’s capabilities for

predicting software defects will be evaluated. In recent years, many studies have focused on the

application of deep learning techniques to JIT-SDP modelling [18, 19]. Yang et al. [20] pro-

posed an approach called Deeper, which leveraged deep belief network and logistic regression

classifier to predict defect-prone changes. Yang et al. [15] present various hybrid deep learning

as ensemble models to see if it will improve the performance of JIT-SDP. In the study of

Hoang et al. [21] utilize CNN to extract features from commit messages and code changes.

Qiao and Wang [22] utilized neural network to select useful features for effort-aware JIT-SDP.

Li et al. [23] leveraged an ensemble model of decision trees named EATT by using a greedy

strategy to rank changes based on effort awareness. Similarly, Zhu et al. [24] introduced
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denoising autoencoder for features representation into CNN to construct the basic change fea-

tures into the abstract deep semantic features. Motivated from these studies that conducted

experiments on deep learning approaches is on the rise, in this work, we focus modelling of

JIT-SDP using deep neural network algorithm.

2.2 Resampling approaches

Data from code changes often have class imbalance issues. Particularly, the difference between

defect-inducing changesets and clean changesets has substantial implications for software

projects. A typical distribution of software changes in a software project follows the Pareto

Principle, which states that 80% of defects originate from by 20% of the code [24]. Accordingly,

the ratio aligns with the observation that software defects in a project have skewed distribution,

with a relatively small number of files or modules containing a significant number of defects.

The class imbalance problem remains well-recognized as one of the major causes of the poor

performance of defect prediction models [25, 26]. Random under-sampling (RUS) is the sim-

plest and most common approach for undersampling in imbalance defect datasets [2, 14].

RUS approach randomly removes the majority class instances to match number of minority

instances. Liu et al. [27] introduced an under-sampling approach based on sequential evalua-

tion to guide the sampling process for subsequent classifiers. For each iteration, the majority of

instances classified correctly by the current iteration will be excluded from consideration in

the subsequent iteration. In the context of oversampling, Chawla et al. [28] proposed Synthetic

Fig 1. Workflow of JIT-SDP process.

https://doi.org/10.1371/journal.pone.0299585.g001
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minority over-sampling technique (SMOTE) as improvement technique of standard ran-

dom oversampling. SMOTE randomly creates new samples between several instances

within a defined neighborhood. He et al. [6] present ADASYN to assign weights to the

minority classes and dynamically adjust the weights in a bid to reduce the bias in the imbal-

anced dataset. ADASYN incorporates a density distribution in automatically deciding the

number of synthetic samples needed for each minority class sample. Barua et al. [7] pro-

posed MWMOTE to divide positive samples into safety data, boundary data, and potential

noise data, and then adopt different sampling strategies for different types of samples.

MWMOTE adaptively assigns the weights to the selected samples according to their impor-

tance in learning. Cabral et al. [29] recently proposed oversampling rate boosting (ORB) to

adjust the resampling rate over time rather than always using 1:1 ratio of the balanced defect

dataset. ORB automatically readjusts the resampling rate that evolve throughout time

according to the ratio of current instances class distribution. For the research community in

class imbalance classification, SMOTE serves as a basis for oversampling. Numerous exten-

sions and alternatives have been proposed since SMOTE was released in order to improve

its performance in different situations [30]. Despite the fact that greater predictive impact

for resampling on the minority class than on the majority class, most of the recent JIT-SDP

works pre-processed the imbalance dataset by an under-sampling approach. The preference

results from the fact that under-sampling requires shorter training time and a simpler pro-

cess than oversampling [27]. Consequently, prior JIT-SDP research typically used under-

sampling rather than oversampling [17]. For oversampling, JIT-SDP poses a challenge com-

pared to other defect prediction especially in term concept drift which led to nonlinear data

distribution [29, 31]. Addressing the challenges of oversampling in JIT-SDP requires the

development of specialized techniques that account for the nonlinear data distribution, and

complex interactions among software metrics.

3 Approach

In this section, we provide an overview of the proposed technique. Then, we describe diversity

measurement to analyse data distribution. The next section discusses the partitioning of data

for KCO. The final section contains details on crossover interpolation.

3.1 Overview of KCO

Using kernel analysis with spectral clustering and crossover interpolation as a combination

method of oversampling, this study recommends Kernel Crossover Oversampling (KCO). The

proposed algorithm consists of three phases designed to generate synthetic samples that pos-

sess both distinctive and common features, as illustrated in Fig 2. The first phase adopts KPCA

to segregate the measurements for the minority samples. In this process, KPCA transforms the

original dataset into a simpler dimension dataset to analyze the occupied space in the data dis-

tribution. In the second phase, spectral clustering divides the transformed data into several

clusters. We then evaluate the fitness of each cluster based on the overlapped spatial distribu-

tion. By using the crossover operator of as in genetic algorithms, new samples are continuously

synthesized to complete the oversampling of defect instances in the last phase. The newly gen-

erated samples combine with the initial data to produce a balanced dataset for training the

JIT-SDP model. Algorithm 1 illustrates the full process. During Phase 1, steps 1 to 6 are

described, then in Phase 2, steps 7 to 11, and finally, steps 12 to 22 for the last stage. To facili-

tate replication, we publish the source code of KCO at https://github.com/amuhaimin24/KCO

—JIT-SDP. The following sections describe each phase in more detail.
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Algorithm 1 Pseudo Code of Kernel clustering oversampling (KCO)
Input: Dataset of majority and minority class samples N; desired bal-
anced proportion Pfp
Output: Balanced dataset at a set Pfp value
Procedure Begin
1) Split dataset N into majority class Nmaj and minority class Nmin
2) Compute the number of additional minority class to be generated T

to attain Pfp
3) Xnew: array for generated samples, initialized to 0
4) Xnewchk: keeps count of the number of synthetic samples generated
5) Compute Kernel function of PCA for dataset N, KPCA = KernelPCA

(n_components = 2, kernel = ’rbf’) where n_components = dimension of
data and RBF = radial basis function
6) Transform dataset N into KPCA, Xtranformed
7) Create partitions of dataset Xtranformed using Spectral clustering

technique, cluster = {i. . .10}
8) For each clusteri, sequentially compute spatial distribution fit-

ness F(clusteri) = Nmaj / (Nmaj + Nmin)
9) End for
10) Rank clusters according to spatial distribution fitness in

increasing order
11) Clusterbest: Select top three clusters
12) While length of Xnewchk � size of Nmin
13) Select samples parenta, parentb from Clusterbest, where parenta

and parentb are not equal
14) Generate a minority class synthetic sample Xi where Xi = average

(parenta, parentb)

Fig 2. Workflow of KCO.

https://doi.org/10.1371/journal.pone.0299585.g002
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15) Add Xi to Xnew and increase Xnewchk (i): Xnewchk = Xnewchk (i) + 1
16) End while
17) While length Xnewchk � T
18) Select samples parenta, parentb from Clusterbest and Xnew respec-

tively, where parenta and parentb are not equal
19) Generate a minority class synthetic sample, where Xi =

λðparentaÞ þ ð1 � λÞparentb
20) Add Xi to Xnew and increase Xnewchk (i): Xnewchk = Xnewchk (i) + 1
21) End while
22) Add Xnew to dataset N
23) Return N

3.2 Diversity measurement

Euclidean distance fails to be effective in nonlinear distributions [32] as presented in JIT-SDP

datasets. JIT-SDP data typically exhibit a nonlinear distribution as a result of the uncorrelated

relationship between software metrics. Several factors may affect the distribution, including

clusters, non-convex shapes, or overlapping regions that are not accurately represented using a

linear distance measure. The relationship between data points is unable to be well-represented

by a straight line calculated by Euclidian distance. Therefore, the measure does not accurately

reflect the diversity of data points. Moreover, the JIT-SDP datasets contain noise or duplicates

as a result of the collection process for the metrics [2]. Accordingly, the Euclidean distance

measure unable to identify highly correlated or duplicated data samples within nonlinear dis-

tribution which failed to provide meaningful during information classifier training. As an

alternative to handle highly correlated data, one may utilize feature engineering techniques

such as Principal Component Analysis (PCA) [33]. PCA learns the original feature combina-

tions linearly in new dimensional spaces. Nevertheless, PCA assumes that the learning data fol-

low a linear separable Gaussian distribution. For real world data, particularly code changesets,

linearly separated data is impractical due to the nonlinear structures of software metrics.

Prior studies have indicated that KPCA perform better than PCA for software engineering

tasks [34]. Researchers have investigated the use of KPCA in software defect prediction, espe-

cially for the selection of features. Xu et al. [35] found that basic classifiers including KCPA as

a feature selection method achieve promising performance when compared to 41 baseline

methods. Experimental results indicate that the framework outperforms PROMISE and NASA

datasets, particularly in terms of F-measure, MCC, and AUC. Ho et al. [36] utilized KPCA to

reduce the dimensions of defect feature spaces from software metrics in order to extract essen-

tial information. A deep neural network (DNN) is then built to emphasize the semantic rela-

tions between software metrics so that defect data are distinguished from non-defect data

using newly generated features from KPCA. Azzeh et al. [37] examine the performance of non-

linear kernel functions and linear kernel functions in the context of different experimental

parameters such as the granularity of the data, the imbalance ratio of the dataset, and feature

subsets. According to their findings, RBF is the only kernel function that exceeds linear and

other nonlinear kernel functions. Nonetheless, reducing the dimensionality of a dataset did

not often improve the accuracy of software defects prediction [38, 39]. Therefore, the KPCA

should not be limited to measuring the similarity between features in software metrics. In

other aspects of JIT-SDP, KCPA presents a promising alternative. As a result of KCPA, pat-

terns in the data are identified that are not apparent by traditional methods of data representa-

tion, including handling high-dimensional datasets and capturing non-linear relationships

among features. Therefore, the analysis of data distribution can be particularly important for

data resampling.
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This study employs KPCA to map multivariate of software metrics into a linear projection

using a nonlinear kernel function. The process of data projection involves transforming the

original data into lower dimension data. Data transformation process converts multivariate

data into a new set of uncorrelated variables. Enabling efficient multidimensional scaling of

JIT-SDP datasets with varying software metrics. In this way, the diversity analysis of JIT-SDP

datasets by KPCA is independent of the data dimensions and becomes a scale-independent

measurement. Therefore, the complex structure becomes easier to manage and allows the

representation of features to be projected in a linear manner. Using a Radial Basis Function

(RBF) kernel, KPCA provides a linear representation of the data while preserving the relative

distances between pairs of data points that are close to the original space.

Algorithm 2 Pseudo Code of KPCA
Input: Dataset N x D; Number of principal components: k
Output: Projected_data with an N x k matrix representing the projected
data onto the selected principal components
Procedure Begin
1) Compute Kernel Matrix N x N, K
2) For i = 1 to N do
3) For j = 1 to N do
4) K[i, j] = RBF(Data[i], Data[j])
5) Center the Kernel Matrix
6) for i = 1 to N do
7) for j = 1 to N do
8) K[i, j] = K[i, j] - mean_rows[i] - mean_cols[j] + mean_total
9) Compute the Eigenvectors and Eigenvalues of the centered kernel

matrix K
10) Sort the eigenvalues in descending order and select the top k

eigenvalues and corresponding eigenvectors
11) Project Data onto Principal Components
12) for i = 1 to N do
13) for j = 1 to k do
14) Projected_Data[i, j] = dot_product(alpha[j], K[i, :])
15) Return Projected_Data

3.3 Data partitioning

KCO relies on spectral clustering to simplify multidimensional nonlinear datasets while reduc-

ing them into clusters of data exhibiting similar characteristics on lower dimensions. Spectral

clustering treats the data clustering problem as a graph partitioning problem without making

any assumptions about the shape of the clusters. Fig 3 illustrates spectral clustering in sample

distributions in the JIT-SDP dataset.

The basic premise of spectral clustering in defect datasets is as follows: For a dataset with n
samples D = {x1, x2, . . ., xn} and each sample consist of variables xi = {v1,v2,..,vm}, where m is

the number of software metrics. The clustering is based on dividing each sample into k clusters

C = {C1, C2,.., Ck}. As a result, the samples in the clusters have a variance that is:

argmins

Xk

i¼1

X

x2Ci

kx � mikð1Þ ð1Þ

Where, μi is the mean value of the samples in Ci.

Fitness calculation is made for each cluster based on the number of samples taken from

both the minority and the majority classes. The intuition behind fitness assessment for clusters

is that regions with a lower proportion of majority samples should have fewer overlapped
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spatial distributions. The following formula calculates the fitness weight of each cluster:

Fitness Cið Þ ¼
LengthðXmajÞ

LengthðXmaj þ XminÞ
ð2Þ

A fitness evaluation is conducted for each cluster, and the three best clusters are chosen. Clus-

ters selected for interpolation have a greater proportion of empty spaces, indicating that there

are more areas that can be utilized for new samples. Using selected clusters, a pool of suitable

templates for oversampling is established.

3.4 Crossover-interpolation

Interpolation in oversampling generates synthetic samples from existing minority class sam-

ples. One of the earliest methods for oversampling was the SMOTE, introduced by Chawla

et al. [4]. SMOTE uses interpolation to generate synthetic samples from existing minority class

samples. Even so, the use of SMOTE to develop prediction models may still result in overgen-

eralization as it relies solely on the selection of nearest neighbor instances. Due to the limita-

tions of SMOTE, a variety of modifications have been proposed, including Borderline-

SMOTE [13] and MWMOTE [7]. Nevertheless, prior techniques unable to provide a diverse

and balanced set of synthetic samples from datasets with high-dimensional input features.

Cross-over interpolation provides an alternative way to generate synthetic samples by combin-

ing or "crossing over" the features of two existing minority class samples. Consequently, the

generation new samples exhibit more representative and diverse to better reflect minority class

distributions. In SDP, Bennin et al. [11] first to propose crossover interpolation into oversam-

pling process which named as MAHAKIL. They adopted Mahalanobis distance to rank

instances and divide them into two groups. During the generation of new instances, two corre-

sponding instances are chosen from each group. Synthetic instances tend to be more diverse

when pairs of selected instances do not have a close distance between them. In comparison to

SMOTE-based oversampling techniques, MAHAKIL offers superior performance and greater

stability. Even though MAHAKIL intends to improve the diversity of data, it unable to detect

defects consistently, thereby reducing its value. Particularly, MAHAKIL ineffective to calculate

the Mahalanobis distance when the number of minority class instances is smaller than the

dimensionality of these instances. Thus, MAHAKIL unable to function optimally when the

number of minority class instances is less than the number of metrics. Zhang et al. [12]

extended the work of Bennin et al. [11] by adding K-means clustering to MAHAKIL in order

Fig 3. Spectral clustering within transformed data.

https://doi.org/10.1371/journal.pone.0299585.g003
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to improve the recognition rate of positive samples. By using K-means, they divide positive

samples into K-clusters and crossover interpolate synthetic instances.

This study uses the crossover operator to generate new samples in the same manner as

genetic algorithm. In this process, chromosome information contributes by two parents to

generate a child. Chromosome information defined in this study as software metrics for

JIT-SDP modeling purposes. In order to generate new samples, crossover operators combine

the characteristics of two samples. Given two samples of Sg
a = [a1,. . ., al] and Sg

b = [b1,. . ., bl] are

two chromosomes crossed in gth generation and l is the length of chromosome or features, the

child sample of g + 1 th generation is:

Sgþ1

c ¼ lSg
a þ ð1 � lÞS

g
b ð3Þ

Where λ provides a random variable between a range of [0,1].

During the experiment, λ is set to 0.5 for generating the child samples. The setting means

that the child samples inherit 50 percent of their characteristics from each of their parent sam-

ples. Fig 4 illustrates an example of crossover operation during the generation of a new sample.

Fig 5 illustrates the generation of new synthetic samples based on the level of inheritance.

First, based on diversity measurements obtained from KPCA, the grandparent samples are

identified, G0. The samples from G0 are then used to generate the G1 set of new synthetic sam-

ples. To prevent new samples from entering the region of the majority class, the first parent

node or grandparent act as a boundary such that all children produced in the future reside

within the range of the parents. In the second generation G2, samples from grandparent and

samples from G1 are selected as template to generate new samples. In case of the interpolation

at current generation is still not meet with the maximum samples, the process continues to

crossover interpolate the samples within the previous generation until maximum number

reach. The process of pairing the child nodes with older generations is repeated until the gen-

erated samples are sufficient (greater than or equal to the required number of samples). The

pairing process is carried out using the sequential information inherited from the immediate

parents of the instances beginning at G1.

4 Experimental setup

In this section, we evaluate the effectiveness of KCO. The experimental environment is an

Intel(R) Core (TM) I5-10400 2.9 GHz CPU, 16 GB RAM desktop running Windows 10. In

Sections 4.1 and 4.2, we describe the experiment setup and evaluation metrics, followed by the

presentation of three research questions in Section 4.3, along with the experimental findings

that answer these research questions. Artificial neural network algorithm serves as the classifier

algorithm of the JIT-SDP model in this comparison. The classifier for defect prediction utilizes

Fig 4. Example of multi-point crossover.

https://doi.org/10.1371/journal.pone.0299585.g004
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the resampled data generated by resampling techniques. For comparison, we use default

hyperparameters for all compared techniques.

4.1 Benchmark datasets

We evaluate six imbalanced software project datasets which comprise Bugzilla, Columba,

Eclipse.JDT (JDT), Eclipse.Platform (Platform), Mozilla, and PostgreSQL (Postgres). Note that

all the datasets are imbalanced. The most imbalanced dataset, Mozilla, contains only 5%

defects, while the most balanced dataset, Bugzilla, contains 36% defects. To ease the analysis of

prediction results, these datasets are classified into two severity groups as shown in Table 1.

Mild imbalanced class refers to datasets that contain more than 25% defects. High imbalanced

datasets are based on datasets with fewer than 25% defects. The severity of the imbalance class

represents the difficulty for data resampling in the imbalance distribution.

4.2 Evaluation measures

The evaluation measure is important to reveal the performance of the classifier, especially for

imbalanced datasets. Some conventional measures lead to a wrong conclusion owing to the

Fig 5. Crossover interpolation across generations.

https://doi.org/10.1371/journal.pone.0299585.g005

Table 1. Imbalanced class datasets.

Project Project Duration # Instances Defect % Severity

Columba 08/1998–12/2006 4455 31 Mild imbalanced class

Bugzilla 11/2002–07/2006 4620 36 Mild imbalanced class

Postgres 11/2002–07/2006 20431 25 Mild imbalanced class

JDT 05/2001–12/2007 35386 14 High imbalanced class

Platform 07/1996–05/2010 64250 14 High imbalanced class

Mozilla 08/1998–12/2006 98275 5 High imbalanced class

https://doi.org/10.1371/journal.pone.0299585.t001
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skewness of the class distribution [10]. For example, consider an extremely imbalanced dataset:

99% of instances are of the majority class, and the remaining 1% samples belong to the minor-

ity class. In case of using the accuracy measure which indicates how many test samples are cor-

rectly classified as the evaluation criterion, even if the classifier ignores all of the minority

classes, it still reaches a very high accuracy rate of 99%. Therefore, this experiment also consid-

ered F1-score, which is a commonly used measure to evaluate classification performance.

F1-score combines Precision and Recall from a confusion matrix. The confusion matrix lists

all four possible prediction results. If an instance is correctly classified as a defect, it is a true

positive (TP); if an instance is misclassified as a defect, it is a false positive (FP). Similarly, for

false negatives (FN) and true negatives (TN). Based on the four numbers, Precision, Recall,

and F1-score are calculated. Precision is the ratio of correctly predicted defect instances to all

instances predicted as defects (Precision ¼ TP=ðTP þ FPÞ. Recall is the ratio of the number of

correctly predicted defect instances to the actual number of defect instances

(Recall ¼ TP=ðTP þ FNÞ. Finally, F1-score is a harmonic mean of Precision and Recall,

Fscore ¼ 1:25�Recall�Precision
ð0:25�PrecisionþRecallÞ.

4.3 Experimental design

The main goal of the research is to propose a resampling technique named KCO on JIT-SDP

datasets. To that end, we conducted experimental investigations based on three research ques-

tions in the following order.

RQ1:Does KCO contribute to the diversity of the datasets?

To evaluate whether KCO improves the diversity of the data distribution, we conduct an

analysis to compare the distribution of the resampled data by oversampling when applied sepa-

rately to oversample datasets. The analysis considers sparsity of data distribution where the

larger sparsity data contain less information across data classes. Oversampling in training data-

sets reduces the impact of noise and improves sparsity of data distribution toward dense data.

Dense data yields more informative data, which results in more accurate predictions due to

more data available for model training. By measuring the percentage of non-zero values in the

data, sparsity of the data distribution is analyzed using data density measurement. The analysis

provides a simple and straightforward way to quantify the sparsity of the data. In measuring

the diversity of data for resampled datasets (d), sparsity formulation is utilized.

sparsity ¼ 1 �
non zero ðdÞ

sizeðdÞ .

RQ2:Does KCO improve the diversity within the data distribution at the expense of its abil-
ity to provide accurate predictions?

To validate the effectiveness of oversampling providing diverse data distribution, we com-

pare the proposed technique with baseline techniques. Evaluation of accuracy prediction is

conducted based on 10-folds stratified within project validation. The validation started with

the splitting of data into 8:2 ratio, for both training and prediction datasets. Then, the training

dataset undergoes 10-fold stratified within project validation. The datasets are divided ran-

domly into 8-folds, 2-folds serve as training data, and the remaining fold serves as test data. In

stratified cross validation, each fold is used as a testing dataset only once. Additionally, the

data are folded so that every fold consists of the same proportions as the original dataset. the

data need to be folded in such a way that each fold consists of the same proportions as the orig-

inal dataset. The average result is recorded using StratifiedKFold to strengthen the reliability of

the experiment outcomes.
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RQ3:How does KCO addresses class imbalance problem under different imbalance severity?

To evaluate the performance of oversampling more accurately, the effectiveness of oversam-

pling should be evaluated in the context of the different validation settings. We conducted

cross-project prediction and timewise prediction. In cross project prediction, the prediction of

software defects is evaluated across different software projects. Specifically, the models are con-

structed by one source of software project and use these models to predict software defects on

another target software project. For a set of n projects, this method produces n * (n—1) predic-

tion effectiveness values. In timewise prediction, we evaluated JIT-SDP within the same project

datasets, in which the chronological order of changes based on the commit date is considered.

Assuming the changes are divided into n parts, we first construct the models based on the

changes from part i and i + 1. Then we use the constructed models to predict the changes from

part i + 4 and i + 5. For each fold, it consists of varies in the size of data and imbalance ratio.

5 Experimental results

RQ1: Does KCO contribute to the diversity of the datasets?

Table 2 provides data distribution for the different resampling techniques. The results indi-

cate KCO achieves the lowest sparsity values across all datasets. Considering the difference in

sparsity values, only KCO provides a significant difference value of 8% to 10% for data sparsity

before resampling (original). In the case of Mozilla, the data sparsity generated by KCO,

MWMOTE, and MAHAKIL is similar.

Resampling low sparsity datasets becomes more difficult due to less significant variation

among data points within the dataset, making them dense datasets. Among the datasets, Bug-

zilla exhibits the most dense distribution. As a result, baseline resampling techniques, includ-

ing SMOTE, Borderline, RUS, ADASYN and MWMOTE fail to significantly improve data

sparsity. Indeed, resampling in a dense dataset presents difficulties in generating more data

samples in limited empty spaces. On the contrary, KCO provides better data distribution than

baseline techniques with more robust performance in identifying empty spaces by using kernel

function. Overall, KCO produces more sparse data than SMOTE, Borderline, RUS, and ADA-

SYN. KCO compares favourably with data generated by MAHAKIL and MWMOTE utilizing

Mozilla, Bugzilla, and JDT. Considering that KCO generates more diverse data than other

baseline techniques, contributing to data distribution diversity.

Having more diverse data distribution is preferable because it can help improve the perfor-

mance of machine learning models. Diversity in the training data ensures that the training

data can provide more discriminative information for the model. Such diverse distribution

provided by KCO is preferable because it improves the generalization capabilities of the

Table 2. Distribution of software project data after data resampling.

Techniques

/Datasets

Columba Bugzilla Postgres JDT Platform Mozilla

KCO 23% 18% 20% 22% 22% 18%

MAHAKIL 28% 20% 22% 24% 25% 18%

MWMOTE 30% 24% 22% 26% 26% 18%

Borderline 32% 26% 26% 29% 29% 21%

RUS 32% 25% 25% 31% 29% 20%

SMOTE 32% 25% 25% 30% 29% 22%

ADASYN 33% 26% 26% 31% 30% 23%

Original 34% 26% 28% 33% 34% 28%

https://doi.org/10.1371/journal.pone.0299585.t002
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classifier, enhances its ability to handle complex class boundaries, increases discriminative

power, and addresses biases toward certain intra distribution. By incorporating diverse data

distribution for model training, defect classifier become more robust, adaptable, and capable

of making accurate predictions on a broader range of data instances.

RQ2: Does KCO improve the diversity within the data distribution at the expense of its abil-

ity to provide accurate predictions?

Based on Table 3 and Fig 6, KCO, MAHAKIL, and MWMOTE in general are the top per-

formance techniques which outperform other baseline techniques in terms of F-score measure

for almost all datasets. Surprisingly KCO achieved the highest performance among them, espe-

cially in the severely imbalanced datasets as in Platform and Mozilla. On average, KCO

Table 3. Prediction performance of F-score for within project prediction.

Techniques /Datasets ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO

Columba 49.2 48.6 47.9 48.5 49.1 51.2 52.6

Bugzilla 58.9 58.6 61.1 63.4 62.9 62.7 62.5

Postgres 49.5 49.6 53.5 54.6 51.8 52.2 50.4

JDT 27.6 28.8 27.8 29.7 29.8 29.2 32.0

Platform 30.0 31.2 32.0 34.1 30.6 31.2 35.2

Mozilla 16.1 18.6 19.4 19.5 15.7 16.8 20.7

Average 38.6 39.2 40.3 41.6 40.0 40.6 42.2

https://doi.org/10.1371/journal.pone.0299585.t003

Fig 6. Prediction performance in different training/testing folds of within project prediction.

https://doi.org/10.1371/journal.pone.0299585.g006
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achieves 52.6%, 32%, 35.2%, and 20.7% of the highest average F-score in Columba, JDT, Plat-

form, and Mozilla respectively. RUS is recognized as the most commonly used resampling

technique for imbalanced datasets, however its F-score consistency is almost equal to other

oversampling techniques such as ADASYN, SMOTE, and Borderline.

For stability, consideration should be given to the robustness of the techniques in dealing

with severely imbalanced datasets. The severity of the imbalanced ratio certainly affects the sta-

bility of resampling techniques. Due to the severity factor, the resampling techniques have dif-

ficulty to achieve consistency of F-scores when dealing with large datasets as presented in

Platform and Mozilla. Oversampling techniques with data partition embedded algorithms

such as MAHAKIL, MWMOTE, and KCO tend to achieve a better F-score for these datasets,

especially KCO which achieves the highest average score for all severely imbalanced datasets.

The results show that simple techniques such as RUS, SMOTE, and ADASYN fail to maintain

stability when dealing with imbalanced datasets in JIT-SDP. Contrary to KCO, the results

show the most effective resampling technique when dealing with highly imbalanced data.

KCO provides a more diverse distribution of data especially for severely imbalance datasets.

Specifically, the generation of new synthetic data through multiple levels of inheritance from

the original data, improving the diversity of the overall data distribution. The prediction

model can learn more discriminative patterns and make better-informed decisions, resulting

in improved prediction performance. In contrast to mild imbalanced datasets, KCO fails to

provide a reliable result because defect class have dense distributions. Consequently, KCO

faces a challenge in conducting diversity analysis through KPCA. For other baseline tech-

niques, mild imbalance datasets prove easier to resample the class distribution considered

dense. The main factor is that through diversity measures (Euclidian distance and Mahalobis

distance) by baseline techniques can provide meaningful attributes that effectively distinguish

classes.

RQ3: How does KCO addresses class imbalance problem under different imbalance severity?

The analysis further compares proposed KCO to the baseline techniques for cross project

prediction as given in Table 4, and Fig 7. From the result, KCO achieves approximately in

range of 33% to 46% across projects prediction for mean of F-score as given in Table 4. KCO

outperforms or obtains similar performance to other baselines in almost all datasets, as

achieves in the highest average score for JDT, Platform and Mozilla cross prediction. Contrary

to other baseline techniques, none of the techniques achieves the highest average F-score. In

exception for ADASYN and Borderline achieving draws in Columba, Bugzilla, and Postgres.

Furthermore, MWMOTE, MAHAKIL and RUS are unable to produce substantially average in

F1-score under cross project prediction setting. For cross project prediction, KCO demon-

strates excellent performance in cross project prediction due to the consideration of the size of

the data as an additional attribute for data resampling. Cross project prediction provides more

Table 4. Average of F-score for cross project prediction.

Techniques /Datasets ADASYN BORDERLINE MAHAKIL MWMOTE RUS SMOTE KCO

Columba 33 33 31 31 25 30 33

Bugzilla 27 27 22 24 22 26 26

Postgres 28 28 26 26 27 27 28

JDT 40 39 26 25 26 38 41

Platform 40 39 40 25 26 38 41

Mozilla 44 43 40 34 33 41 46

Win/Draw/Lose 0/3/3 0/3/3 0/0/6 0/0/6 0/0/6 0/0/6 3/2/1

https://doi.org/10.1371/journal.pone.0299585.t004
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information on the pattern of the defect class, resulting in a more diverse distribution. KCO

takes advantage of the large size of defect instances and utilizes similarity analysis provided by

KPCA to identify feasible regions for generating new samples. Resulting in a more accurate

performance in cross project prediction, even when dealing with varying class distribution

imbalance ratios in the original datasets. In essence, KCO leverages the benefits of a larger

dataset size and the insights gained from the similarity analysis, which contribute to its supe-

rior performance in cross project predictions.

In Fig 8 and Table 5, we provide an evaluation of the prediction performance in the timewise

validation scenario. The result indicates that the proposed technique KCO only obtained the

highest average of F-scores for the JDT dataset. In contrast, MAHAKIL fared better in the Post-

gres, Platform, and Mozilla data sets, outperforming both KCO and other baseline techniques.

KCO appears incapable of resampling effectively than other baseline techniques except for JDT

datasets. The result differs from previous cross project prediction, where KCO performs signifi-

cantly better than all the baseline methods when considering F-score. Despite the fact that KCO

underperformed in timewise predictions, this only reflects the specificity rather than the

Fig 7. Resampling performance in cross project prediction.

https://doi.org/10.1371/journal.pone.0299585.g007

Fig 8. F-score of six datasets timewise predictions.

https://doi.org/10.1371/journal.pone.0299585.g008
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generality of the technique performance. In terms of timewise prediction, KCO fails to achieve

optimal results and performs worse than most baseline techniques. Since in KCO, the strength of

data partitioning depends on the size of training data, and for each training fold consists of data

of different sizes. Identifying suitable regions for interpolation faced difficulty in smaller data sets

due to a lack of similarity among data samples. Accordingly, KCO appears to be insufficient as an

appropriate technique for resampling smaller data sets. Note that proper hyperparameters for

data partitioning in KCO will help to avoid this shortfall in smaller data sets.

6. Threat of validity

A known validity of empirical experiments involves the quality of the data, which often diffi-

cult to obtain and verify. Nevertheless, noise and outliers inherent within datasets extracted

from most open-source projects tend to have significant effects on prediction performance

[40]. Removal of outliers from the original data presents a potential threat to these experimen-

tal results. The outliers introduce additional noise to the distribution of the original datasets.

Nevertheless, oversampling techniques like MAHAKIL and MWMOTE possess the ability to

handle outliers during data partition. Thus, the experiment conducted in this work exclude

removal of outlier to produce a fair comparison. However, applications of data cleansing tech-

niques for noise detection and elimination remain open for future investigations.

The software metrics considered for this analysis pose a potential threat to experimental

results. By using a single set or type of metrics, generalization to other types of software metrics

might not be valid for the reported results. Nonetheless, code and process metrics prove to per-

form very well and have proven useful in several empirical studies on JIT-SDP. The reason

relates to the ease of extracting both types of metrics from any software once the VCS contains

code change transactions.

The effectiveness of the proposed KCO depends on the ability to assess the diversity of data

using KPCA. Despite KPCA’s benefits, high computation costs must be considered. In cases of

large data sets with many features present, the covariance matrix proves difficult to calculate

accurately. Thus, the initiative needs to allocate a significant amount of time and memory as

these resources increase quadratically rather than linearly with the number of features. In the

case of only a few features, however, the issue may not be significant. The challenge also applies

to approaches based on Euclidean distances. The computation of covariance matrices for large

dimensional features requires a more advanced and efficient method for handling the covari-

ance aspect of training datasets.

7 Conclusions

This paper presents kernel based cross interpolation for oversampling the imbalanced class

datasets in JIT-SDP. This study presented an experimental setup aimed at mitigating

Table 5. Average of F-score in timewise predictions.

Techniques/

Datasets

ADASYN Borderline RUS SMOTE MAHAKIL MWMOTE KCO

Columba 42 37 41 38 39 45 42

Bugzilla 52 53 53 55 52 53 51

Postgres 72 71 74 73 75 73 74

JDT 25 26 26 26 23 23 27

Platform 27 29 30 30 35 33 30

Mozilla 18 21 18 18 24 23 17

https://doi.org/10.1371/journal.pone.0299585.t005

PLOS ONE Balancing class distribution in just-in-time software defect prediction using kernel crossover oversampling

PLOS ONE | https://doi.org/10.1371/journal.pone.0299585 April 11, 2024 17 / 21

https://doi.org/10.1371/journal.pone.0299585.t005
https://doi.org/10.1371/journal.pone.0299585


conclusion instability. We conducted an experiment to compare eight resampling techniques

for developing JIT-SDP models derived from six state-of-the-art software projects. Although

oversampling improves classification on average, a scatter distribution concentrated in local

regions can be generated in extremely dense distribution datasets. Rather than being distrib-

uted evenly across the feature space, synthetic samples concentrate in local regions. Such a sit-

uation negatively impacts downstream resampling techniques that rely on accurate

predictions of data cluster membership. Specifically, data partitioning techniques such as

MAHAKIL and MWMOTE suffer from this problem. In light of this issue, KCO provides a

diverse distribution of data by using a measure of similarity between data points to prevent the

influence of nonlinear interaction between different attributes of samples. KCO uses kernel

analysis to reduce the dimensionality of multivariate data while retaining maximum variation.

Exploiting covariance among imbalanced data samples enables feasible interpolation spaces,

reducing the impact of nonlinear distribution of imbalanced data. Additionally, KCO handles

nonlinear data distributions in the datasets by crossover-interpolation to reduce near duplicate

data for balanced class datasets. Crossover-interpolation produces generated data samples by

multiple levels of pairing inheritance from the original data samples. As a result, KCO pro-

duces a more diverse set of data without compromising the origin information of the data dis-

tribution. Our work evaluates the performance of KCO on three different prediction settings.

Experimental results show KCO consistently achieves higher F-score results for within-project

and cross-project predictions. KCO achieves better overall classification performance, proving

the feasibility of the approach in this study. Therefore, when dealing with an imbalanced class

distribution task, KCO should be used for oversampling to improve JIT-SDP model classifica-

tion performance. In future work, we plan to explore the impact of the different kernel func-

tions in KPCA and the different activation functions in KCO on the performance of JIT-SDP

models.
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